
Programming for Problem Solving

ARRAYS&FUNCTIONS

ARRAYS

Arrays are data structures which hold multiple variables of the same data type. An array is an

identifier to store a set of data with common name. Note that a variable can store only a

single data. Arrays may be one dimensional or multi dimensional.

Arrays, like other variables in C, must be declared before they can be used.

int names[4];

names[0] = 101;

names[1] = 232;

names[2] = 231;

names[3] = 0;

We created an array called names, which has space for four integer variables.

Arrays have the following syntax, using square brackets to access each indexed value (called

an element).

x[i]

so that x[5]refers to the sixth element in an array called x. In C, array elements start with 0.

Assigning values to array elements is done by,

x[10] = g;

and assigning array elements to a variable is done by,

g = x[10];

Defining an array one dimensional arrays

Definition: Arrays are defined like the variables with an exception that each array name must

be accompanied by the size (i.e. the max number of data it can store).For a one dimensional

array the size is specified in a square bracket immediately after the name of the array.

The syntax is

data-type array name[size];

So far, we've been declaring simple variables: the declaration int i; declares a single variable,

named i, of type int. It is also possible to declare an arrayof several elements. The declaration

int a[10];

declares an array, named a, consisting of ten elements, each of type int. We can represent the

array a

above with a picture like this:

Array Initialization

Although it is not possible to assign to all elements of an array at once using an assignment

expression, it is possible to initializesome or all elements of an array when the array is

defined. The syntax looks like this:

int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

The list of values, enclosed in braces {}, separated by commas, provides the initial values for

successive elements of the array.

Programming for Problem Solving

If the statement is like

int x[6]={0,1,2};

then the values are stored like x[0]=0, x[1]=1, x[2]=2, x[3]=0, x[4]=0 and x[5]=0.

Processing one dimensional array

1)Reading arrays: For this normally we use for- loop. If we want to read n values to an array

name called‘mark’ , the statements look like

int mark[200],i,n;

for(i=1;i<=n;++i)

scanf(“%d”,&x[i]);

Note: Here the size of array declared should be more than the number of values that are

intended to store.

2) Storing array in another:

To store an array to anotherarray. Suppose a and b are two arrays and we want to store that

values of array a to array b. The statements look like

float a[100],b[100];

int I;

for(i=1;i<=100;++i)

b[i]=a[i];

Problem:To find the average of a set of values.

#include<stdio.h>

main()

{

intx,i;

float x[100],avg=0;

printf(“\n the no: of values “);

scanf(“%d”,&n);

printf(“\n Input the numbers”);

for(i=1;i<=n;++i)

{

scanf(“%f”,&x[i]);

avg=avg+x[i];

}

avg=avg/n;

printf(“\n Average=%f”,avg);

}

MULTI-DIMENSIONAL ARRAYS

Multi-dimensional arrays are defined in the same manner as one dimensional arrays except

that a separate pair of square brackets is required to each subscript.

Example: float matrix[20][20] (two dimensional)

Intx[10][10][5] (3-dimensional)

Initiating a two dimensional array we do as int x[3][4]={1,2,3,4,5,6,7,8,9,10,11,12}

Or

Programming for Problem Solving

int x[3][4]={

{1,2,3,4};

{5,6,7,8};

{89,10,11,12};

}

NOTE: The size of the subscripts is not essential for initialization. For reading a two

dimensional array we use two for-loop.

Example:

for(i=1;i<=2;++i)

for(j=1;j<=3;++j)

scanf(“%f”,&A[i][j]);

NOTE: If x[2][3]is a two dimensional array, the memory cells are identified with

name x[0][0],x[0][1],x[0][2],x[1][0],x[1][1] and x[1][2].

Program for the addition of two matrices

#include<stdio.h>

 int main() {

 int i, j, mat1[10][10], mat2[10][10], mat3[10][10];

 int row1, col1, row2, col2;

 printf("\nEnter the number of Rows of Mat1 : ");

 scanf("%d", &row1);

 printf("\nEnter the number of Cols of Mat1 : ");

 scanf("%d", &col1);

 printf("\nEnter the number of Rows of Mat2 : ");

 scanf("%d", &row2);

 printf("\nEnter the number of Columns of Mat2 : ");

 scanf("%d", &col2);

 /* Before accepting the Elements Check if no of rows and columns of both matrices is

equal */

 if (row1 != row2 || col1 != col2) {

 printf("\nOrder of two matrices is not same ");

 exit(0);

 }

 //Accept the Elements in Matrix 1

 for (i = 0; i < row1; i++) {

 for (j = 0; j < col1; j++) {

 printf("Enter the Element a[%d][%d] : ", i, j);

 scanf("%d", &mat1[i][j]);

 }

 }

Programming for Problem Solving

 //Accept the Elements in Matrix 2

 for (i = 0; i < row2; i++)

 for (j = 0; j < col2; j++) {

 printf("Enter the Element b[%d][%d] : ", i, j);

 scanf("%d", &mat2[i][j]);

 }

 //Addition of two matrices

 for (i = 0; i < row1; i++)

 for (j = 0; j < col1; j++) {

 mat3[i][j] = mat1[i][j] + mat2[i][j];

 }

 //Print out the Resultant Matrix

 printf("\nThe Addition of two Matrices is : \n");

 for (i = 0; i < row1; i++) {

 for (j = 0; j < col1; j++) {

 printf("%d\t", mat3[i][j]);

 }

 printf("\n");

 }

 return (0);

}

Output:

Enter the number of Rows of Mat1 : 3

Enter the number of Columns of Mat1 : 3

Enter the number of Rows of Mat2 : 3

Enter the number of Columns of Mat2 : 3

Enter the Element a[0][0] : 1

Enter the Element a[0][1] : 2

Enter the Element a[0][2] : 3

Enter the Element a[1][0] : 2

Enter the Element a[1][1] : 1

Enter the Element a[1][2] : 1

Enter the Element a[2][0] : 1

Enter the Element a[2][1] : 2

Enter the Element a[2][2] : 1

Enter the Element b[0][0] : 1

Enter the Element b[0][1] : 2

Enter the Element b[0][2] : 3

Enter the Element b[1][0] : 2

Enter the Element b[1][1] : 1

Programming for Problem Solving

Enter the Element b[1][2] : 1

Enter the Element b[2][0] : 1

Enter the Element b[2][1] : 2

Enter the Element b[2][2] : 1

The Addition of two Matrices is :

2 4 6

4 2 2

2 4 2

FUNCTIONS

Functions are programs.There are two types of functions- library functions and programmer

written functions. We arefamiliarised with library functions and how they are accessed in a C

program.

The advantage of function programs are many

1) A large program can be broken into a number of smaller modules.

2) If a set of instruction is frequently used in program and written as function program, it can

be used in any program as library function.

Defining a function.

Generally a function is an independent program that carries out some specific well defined

task. It is written after or before the main function. A function has two components-definition

of the function and body of the function.

Generally it looks like

datatype function name(list of arguments with type)

{

Function body

return;

}

 Return Type or data type: A function may return a value. The return_type is the data type

of the value the function returns. Some functions perform the desired operations without

returning a value. In this case, the return_type is the keyword void.

 Function Name: This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value

to the parameter. This value is referred to as actual parameter or argument. The parameter list

refers to the type, order, and number of the parameters of a function. Parameters are optional;

that is, a function may contain no parameters.

 Function Body: The function body contains a collection of statements that define what the

function does.

If the function does not return any value to the calling point (where the function is accessed)

.The syntax looks like

function name(list of arguments with type)

{

statements

return;

Programming for Problem Solving

}

If a value is returned to the calling point, usually the return statement looks like

return(value).In that case data type of the function is executed.

Note that if a function returns no value the keyword voidcan be used before the function

name

Example:

(1) writecaption(char x[]);

{

printf(“%s”,x);

return;

}

(2) int maximum(int x, int y)

{

int z ;

z=(x>=y)? x : y ;

return(z);

}

(3) maximum(intx,int y)

{

int z;

z=(x>=y) ?x : y ;

printf(“\n maximum =%d”,z);

return ;

}

Note: In example (1) and (2) the function does not return anything.

Advantages of functions

1. It appeared in the main program several times, such that by making it a function, it can be

written just once, and the several placeswhere it used to appear can be replaced with calls to

the new function.

2. The main program was getting too big, so it could be made (presumably) smaller and more

manageable by lopping part of it off and making it a function.

3. It does just one well-defined task, and does it well.

4. Its interface to the rest of the program is clean and narrow

5. Compilation of the program can be made easier.

Accessing a function

A function is accessed in the program (known as calling program)by specifying its name with

optional list of argumentsenclosed in parenthesis. If arguments are not required then only

with empty parenthesis.

The arguments should be of the same data type defined in the function definition.

Example:

1) inta,b,y;

y=maximum(a,b);

2) char name[50] ;

Programming for Problem Solving

writecaption(name);

3) arrange();

If a function is to be accessed in the main programit is to be defined and written before the

main function after the preprocessor statements.

Example:

#include<stdio.h>

int maximum (intx,int y)

{

int z ;

z=(x>=y) ?x : y ;

return (z);

}

main()

{

inta,b,c;

scanf(“%d%d”,&a,&b);

c=maximum(a,b);

printf(“\n maximum number=%d”,c);

}

Function prototype

It is a common practice that all the function programs are written after the main() function

.when they are accessed in the main program, an error of prototype function is shown by the

compiler. It means the computer has no reference about the programmer defined functions,

as they are accessed before the definition .To overcome this, i.e to make the compiler aware

that the declarationsof the function referred at the calling point follow, a declaration is done

in the beginning of the program immediately after the preprocessor statements. Such a

decleration of function is called prototype decleration and the corresponding functions are

called function prototypes.

Example 1:

#include<stdio.h>

int maximum(intx,int y);

main()

{

inta,b,c;

scanf(“%d%d”,&a,&b);

c=maximum(a,b);

printf(“\n maximum number is : %d”,c);

}

int maximum(int x, int y)

{

int z;

z=(x>=y) ?x : y ;

return(z);

}

Programming for Problem Solving

Example 2:

#include<stdio.h>

voidint factorial(int m);

main()

{

int n;

scanf(“%d”,&n);

factorial(n);

}

voidint factorial(int m)

{

inti,p=1;

for(i=1;i<=m;++i)

p*=i;

printf(“\n factorial of %d is %d “,m,p);

return();

}

Note: In the proPassing arguments to a functionThe values are passed to the function program

through the arguments. When a value is passed to a function via an argument in the calling

statement, the value is copied into the formal argument of the function (may have the same

name of the actual argument of the calling function).This procedure of passing the value is

called passing by value. Even if formal argument changes in the function program,

the value of the actual argument does not change.

Example:

#include<stdio.h>

void square (int x);

main()

{

int x;

scanf(“%d”,&x);

square(x):

}

void square(int x)

{

x*=x ;

printf(“\n the square is %d”,x);

return;

}

In this program the value of x in the program is unaltered.

Function Arguments:

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

Programming for Problem Solving

The formal parameters behave like other local variables inside the function and are created

upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function:

Call Type Description

Call by value

This method copies the actual value of an argument into the

formal parameter of the function. In this case, changes made

to the parameter inside the function have no effect on the

argument.

Call by reference

This method copies the address of an argument into the

formal parameter. Inside the function, the address is used to

access the actual argument used in the call. This means that

changes made to the parameter affect the argument.

By default, C uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function and above mentioned example

while calling max() function used the same method.

A scope in any programming is a region of the program where a defined variable can have its

existence and beyond that variable can not be accessed. There are three places where

variables can be declared in C programming language:

1. Inside a function or a block which is called local variables,

2. Outside of all functions which is called global variables.

3. In the definition of function parameters which is called formal parameters.

Let us explain what are local and global variables and formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They can be

used only by statements that are inside that function or block of code. Local variables are not

known to functions outside their own. Following is the example using local variables. Here

all the variables a, b and c are local to main() function.

#include <stdio.h>

int main ()

{

 /* local variable declaration */

int a, b;

int c;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

http://www.tutorialspoint.com/cprogramming/c_function_call_by_value.htm
http://www.tutorialspoint.com/cprogramming/c_function_call_by_reference.htm

Programming for Problem Solving

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

return 0;

}

Global Variables

Global variables are defined outside of a function, usually on top of the program. The global

variables will hold their value throughout the lifetime of your program and they can be

accessed inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for

use throughout your entire program after its declaration. Following is the example using

global and local variables:

#include <stdio.h>

 /* global variable declaration */

int g;

int main ()

{

 /* local variable declaration */

int a, b;

 /* actual initialization */

 a = 10;

 b = 20;

 g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

return 0;

}

A program can have same name for local and global variables but value of local variable

inside a function will take preference. Following is an example:

#include <stdio.h>

 /* global variable declaration */

int g = 20;

int main ()

{

 /* local variable declaration */

Programming for Problem Solving

int g = 10;

printf ("value of g = %d\n", g);

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of g = 10

Recursion

It is the process of calling a function by itself ,until some specified condition is satisfied. It is

used for repetitive computation (like finding factorial of a number) in which each action is

stated in term of previous result

Example:

#include<stdio.h>

longint factorial(int n);

main()

{

int n;

longint m;

scanf(“%d”,&n);

m=factorial(n);

printf(“\n factorial is : %d”, m);

}

longint factorial(int n)

{

if (n<=1)

return(1);

else

return(n*factorial(n-1));

}

In the program when n is passed the function, it repeatedly executes calling the

same function for n, n-1, n-2,………………..1.

