Methodist College of Engineering & Technology

(Affiliated to Osmania University, Hyderabad) King Koti Road, Abids, Hyderabad

Department of Mechanical Engineering

LABORATORY MANUAL Computer Aided Production Drawing & CAM Lab

Student Name :

Hall Ticket No:

Class / Sem :

Course Code			Cour	se Title			Core / Elective			
PC551ME	COMPL	MPUTER AIDED PRODUCTION DRAWING & CAM LAB Core								
Droroquisito	C	Contact Ho	urs per we	ek		9EE	Cradita			
Prerequisite	L	Т	D	Р	CIE	SEE	Creans			
Machine Drawing	-	-	-	2	25	50	1			

SYLLABUS

Course Objectives:

- > To learn design criteria of machine components, selection of materials and manufacturing Process.
- To learn application of principles to design helical coiled and leaf springs, gears, curved beams, sliding contact and rolling element bearings, chain drives, IC engine components and flywheel.
- To familiarize with NC features, part programming using G and M codes, APT, CNC, DNC and FMS etc.

Course Outcomes:

- > Create the models of the components
- > Demonstrate the documentation and presentation skills
- > Prepare the production drawings of the parts from the given assembly drawing
- > Generate the bill of materials and indicate details pertaining to manufacturing requirements.
- > To recognize the importance of Computer Aided Manufacturing and prepare a simple part program to perform machining on a CNC machine.
- > To produce various machine components by performing different machining operations.

LIST OF EXPERIMENTS

- 1. Part modeling from given assembly drawings using any solid modeling package.
- 2. Geometric dimensioning and tolerance representation on part drawings.
- 3. Conventional practices indicating Dimensional, Form & Position tolerances.
- 4. Calculation of limits, suggestion of suitable fits for mating parts with Interference detection.
- 5. Surface finish, surface treatments- specification and indication methods on the drawings.
- 6. Generation of production drawings in 2D from part models representing Limits, fits, tolerances, Surface finish, geometrical and form tolerance etc.
- 7. Preparation of Process sheet incorporating Tool work orientation diagrams.
- 8. Facing, Turning, Step turning, Taper turning & Contouring on CNC Lathe.
- 9. Pocketing and Contouring on CNC Milling.
- 10. Simulation and Development of NC code using CAM software.
- 11. Programming for integration of various CNC machines, robots and material handling system.
- 12. Develop simple objects using 3D printing technology.

Note: Minimum ten experiments should be conducted in the semester

Solidworks

It is a Parametric CAD Modeling Package developed by Dassault Systems.

It consists of different modules each one meant for specific task as explained below:

Part Module

It is used to model 3D parts. Each part needs to be modelled & saved in a different file.

Sketch

It is a feature present within the part module & is used to create 2D profiles which can be then converted to 3D using other features like Extrude, Revolve etc... Steps for using sketch are described below:

- 1. Click on the sketch button at the left top corner.
- 2. Select a plane on which you need the sketch.
 - a. You may choose the Front, Top or Right reference planes to begin with.
 - b. You can also choose the flat faces of a solid as sketch plane.
- 3. A sketch can be drawn using commands like line, circle, rectangle, polygon, arc etc...
- 4. Geometric 8 dimensional constraints can be used to define relations between geometry.
- 5. A fully constrained sketch will turn black as shown in the below diagram.
- 6. If any part of the sketch is blue it means that its not completely constrained & can move. It can be dragged by left clicking to check where its moving & corrective action taken.

Extrude Feature

It is used to add solid thickness to a cross section, closed sketch or region.

Assembly Module

It is used to assembly 3D parts by importing the parts saved using Part Module ${\bf 8}$ then applying constraints over them.

Drawing Module

It is used to place projected views of the modelled parts & mentioning dimensions, tolerances, notes, bill of materials, assembly with ballooned numbering etc...

METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY ABIDS, HYDERABAD

Experiment No 1

Part modeling from given assembly drawings using any solid modeling package.

Aim:

To create all the components of the Wheel Support assembly and then assemble them, as shown in Figure 1 using dimensions of the components are shown in Figures 2 through 6. Also, draft the 3 view of each component showing all dimensions & Isometric view of the assembly with balloons & Bill of materials table.

Figure 1 The Wheel Support assembly

Software Package Used:

SolidWorks 2016

Hardware Specifications of System:

Processor: _____, RAM: _____, Hard Disk: _____

Features used:

Sketch, Extruded Boss/Base, Extruded Cut, Revolved Boss/Base, Fillet

Modules used:

Part, Assembly, Drawing Mate connectors in Assembly: Concentric, Coincidental

Figure 2 Dimensions of the Base

Figure 9-3 Dimensions of the Support

Figure 4 Front view of the Wheel

Figure 5 Sectioned side view of the Wheel

Figure 6 Dimensions of the Shoulder Screw, Bolt, Nut, Bushing, and Washer

c. Drawing

Viva Questions

- 1. What are the different design approaches? Explain their advantages & limitations with examples.
 - a. Top Down b. Bottom Up
- 2. What are the modules present in Solidworks? Explain their functions.
 - a. Part b. Assembly
- 3. What is the function of following features? Note some of their applications.
 - c. Extruded Cut
 - b. Extruded Boss/Base d. Revolved Boss/Base
- 4. What are constraints in a sketch? Explain the steps to add constraints in sketch.
 - a. Horizontal
 f. = Curve
 j. Tangent

 b. Vertical
 g. Coradial
 k. Collinear

 c. Parallel
 h. Fix
 I. Coincide

 d. Perpendicular
 i. Concentric
 m. Merge
 - e.Equal =

a. Sketch

- 5. How can you identify which entities are completely constrained?
- 6. What are the options in trim? Explain
- a. For power Trim
 b. Corner
 c. Trim away inside
 7. What are the types of splines / curves available in Solidworks?
- 7. vvnat are the types of splines / curves available in Soliawork
- 8. Explain slot & Polygon features in sketch of Solidworks.
- 9. What is the use of "Convert to entities" feature in sketch?
- 10. Explain the transformation tools available in sketch.
 - a. Move c. Rotate e. Stretch
 - b. Copy d. Scale
- 11. What is the difference between Mirror in Sketch & Mirror in Pattern?

Experiment No 2

Geometric dimensioning and tolerance representation on part drawings.

Fig. 2.42 Shape identification symbols

(a)

(d)

(e)

Method of Placing Limit Dimensions (Tolerancing Individual Dimensions)

There are three methods used in industries for placing limit dimensions or tolerancing individual dimensions.

Method 1

In this method, the tolerance dimension is given by its basic value, followed by a symbol, comprising of both a letter and a numeral. The following are the equivalent values of the terms given in Fig. 15.4:

Fig. 15.4 Toleranced dimensions for internal and external features

The terms ϕ 25H7, 10H10 and 40C11 refer to internal features, since the terms involve capital letter symbols. The capital letter 'H' signifies that the lower deviation is zero and the number symbol 7 signifies the grade, the value of which is 21 microns (Table 15.1) which in-turn is equal to the upper deviation. The capital letter C signifies that the lower deviations is 120 microns (Table 15.3). The value of the tolerance, corresponding to grade 11 is 160 microns (Table 15.1). The upper deviation is obtained by adding 160 to 120 which is equal to 280 microns or 0.28 mm.

The terms ϕ 40H11 and 10h9 refer to external features, since the terms involve lower case letters. The letter 'h' signifies that the upper deviation is zero (Fig. 15.3) and the number symbol 11 signifies the grade, the value of which is 160 microns (Table 15.1), which in-turn is equal to the lower deviation.

Method 2

In this method, the basic size and the tolerance values are indicated above the dimension line; the tolerance values being in a size smaller than that of the basic size and the lower deviation value being indicated in line with the basic size.

Figure 15.5 shows dimensioning with a bilateral tolerance; the variation form the basic size being equal on either side.

Figure 15.6 shows dimensioning with a bilateral tolerance; the variation being unequal.

Figure 15.7 shows dimensioning with a unilateral tolerance; the variation being zero in one direction.

Method 3

In this method, the maximum and minimum sizes are directly indicated above the dimension line (Fig. 15.8).

When assembled parts are dimensioned, the fit is indicated by the basic size common to both the components, followed by the hole tolerance symbol first and then by the shaft tolerance symbol (e.g., ϕ 25 H7/h6, etc., in Fig. 15.9).

Fig 15.9 Toleranced dimensioning of assembled parts.

 Table 15.1A Relative magnitude of IT tolerances for grades 5 to 16 in terms of tolerance unit i for sizes upto 500 mm

Grade	IT 5	IT 6	IT 7	IT 8	IT 9	IT 10	IT 11	IT 12	IT 13	IT 14	IT 15	IT 16
Tolerance values	7i	10 <i>i</i>	16 <i>i</i>	25i	40 <i>i</i>	64 <i>i</i>	100 <i>i</i>	160 <i>i</i>	250 <i>i</i>	400 <i>i</i>	640 <i>i</i>	1000 <i>i</i>

Thus, the fundamental tolerance values for different grades (IT) may be obtained either from Table 15.1 or calculated from the relations given in Table 15.1A.

Example 1 Calculate the fundamental tolerance for a shaft of 100 mm and grade 7.

The shaft size, 100 lies in the basic step, 80 to 120 mm and the geometrical mean is

 $D = \sqrt{80 \times 120} = 98 \text{ mm}$

The tolerance unit, $i = 0.45 \sqrt[3]{98} + 0.001 \times 98 = 2.172$ microns

For grade 7, as per the Table 15.1A, the value of tolerance is,

 $16i = 16 \times 2.172 = 35$ microns

(tallies with the value in Table 15.1).

Diameter			0.						Toler	rance (Grades						.0.		
steps in mi	n	01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14*	15*	16 *
To and inc	3	0.3	0.5	0.8	1.2	2	3	4	6	10	14	25	40	60	100	140	250	400	600
Over To and inc	3 6	0.4	0.6	1	1.5	2.5	4	5	8	12	18	30	48	75	120	180	300	480	750
Over To and inc	6 10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	150	220	360	580	900
Over To and inc	10 18	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	180	270	430	700	1100
Over To and inc	18 30	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	210	330	520	840	1300
Over To and inc	30 50	0.6	1	1.5	2.5	4	7	11	16	25	39	62	100	160	250	390	620	1000	1600
Over To and inc	50 80	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	300	460	740	1200	1900
Over To and inc	80 120	1	1.5	2.5	4	6	10	15	22	35	54	87	140	220	350	540	870	1400	2200
Over To and inc	120 180	1.2	2	3.5	5	8	12	18	25	40	63	100	160	250	400	630	1000	1600	2500
Over To and inc	180 250	2	3	4.5	7	10	14	20	29	46	72	115	185	290	460	720	1150	1850	2900
Over To and inc	250 315	2.5	4	6	8	12	16	23	32	52	81	130	210	320	520	810	1300	2100	3200
Over To and inc	315 400	3	5	7	9	13	18	25	36	57	89	140	230	360	570	890	1400	2300	3600
Over To and inc	400 500	4	6	8	10	15	20	27	40	63	97	155	250	400	630	970	1550	2500	4000

Table 15.1 Fundamental tolerances of grades 01, 0 and 1 to 16 (values of tolerances in microns) (1 micron = 0.001 mm)

*Upto 1 mm, Grades 14 to 16 are not provided.

Table 15.2 Fundamental deviations for shafts of types a to k of sizes upto 500mm (contd.)

Funda	mental o	deviation	in micro	ns									(1 mic	ron = 0.0	01 mm)
Dia	meter			Ľ	Jpper de	viation (e	es)					Low	er devia	tion (ei)	
steps	in mm	a	Ь	c	d	e	f	g	h	js⁺	j				k
over	upto				All g	rades	20				5.6	7	8	4 to 7	≤ 3, > 7
_	*3	- 270	- 140	- 60	- 20	- 14	- 6	- 2	0		- 2	- 4	- 6	- 0	- 0
3	6	- 270	- 140	- 70	- 30	- 20	- 10	- 4	0	1	- 2	- 4		+ 1	0
6	10	- 280	- 150	- 80	- 40	- 25	- 13	- 5	0		- 2	- 5		+ 1	0
10	14	- 290	- 150	- 95	- 50	- 32	- 16	- 6	0	± IT/2	- 3	- 6		+ 1	0
14	18	1													
18	24	- 300	- 160	- 110	- 65	- 40	- 20	- 7	0	1	- 4	- 8	<u>8779</u> 57	+ 2	0
24	30	1													
30	40	- 310	- 170	- 120	- 80	- 50	- 25	- 9	0	1	- 5	- 10		+ 2	0
40	50	- 320	- 180	- 130	1										
50	65	- 340	- 190	- 140	- 100	- 60	- 30	- 10	0	1	- 7	- 12		+ 2	0
65	80	- 360	- 200	- 150											
80	100	- 380	- 220	- 170	- 120	- 72	- 36	- 12	0		- 9	- 15		+ 3	0
100	120	- 410	- 240	- 180											
120	140	- 460	- 260	- 200											
140	160	- 520	- 280	- 210	- 145	- 85	- 43	- 14	0		- 11	- 18		+ 3	0
160	180	- 580	- 310	- 230	1										
180	200	- 660	- 340	- 240											
200	225	- 740	- 380	- 260	- 170	- 100	- 50	- 15	0	± IT/2	- 13	- 21	27-70	+ 4	0
225	250	- 820	- 420	- 280											
250	280	- 920	- 480	- 300	- 190	- 110	- 56	- 17	0		- 16	- 26		+4	0
280	315	- 1050	- 540	- 330											
315	355	- 1200	- <mark>60</mark> 0	- 360	- 210	- 125	- 62	- 18	0		- 18	- 28	_	+ 4	0
355	400	- 1350	- 680	- 400											
400	450	- 1500	- 760	- 440	- 230	- 135	- 68	- 20	0	1	- 20	- 32	1	+ 5	0
450	500	- 1650	- 840	- 480											

*The deviations of shafts of types a and b are not provided for diameters upto 1 mm $\,$

+ For types js in the particular Grades 7 to 11, the two symmetrical deviations \pm IT/2 may possibly be rounded, if the IT value in microns is an odd value; by replacing it by the even value immediately below.

Funda	mental d	eviation	in micro	ns									(1 micr	ron = 0.0	01 mm)
Diar	neter						L	ower dev	iations (ei)					
steps	ın mm	m	n	р	r	S	t	u	υ	x	у	z	za	zb	zc
Over	Upto							All g	rades						
() <u></u> ()	3	+ 2	+ 4	+ 6	+ 10	+ 14	<u></u>	+ 18	<u></u> 50	+ 20	<u></u>	+ 26	+ 32	+ 40	+ 60
3	6	+ 4	+ 8	+ 12	+ 15	+ 19		+ 23	<u> </u>	+ 28		+ 35	+ 42	+ 50	+ 80
6	10	+ 6	+ 10	+ 15	+ 19	+ 23	<u></u> 81	+ 28	<u>a_</u> 8	+ 34	<u>10 -</u> 21	+ 42	+ 52	+ 67	+ 97
10	14	+ 7	+ 12	+ 18	+ 23	+ 28		+ 33		+ 40		+ 50	+ 64	+ 90	+ 130
14	18								+ 39	+ 45		+ 60	+ 77	+ 108	+ 150
18	24	+ 8	+ 15	+ 22	+ 28	+ 35		+ 41	+ 47	+ 54	+ 63	+ 73	+ 98	+ 136	+ 188
24	30						+ 41	+ 48	+ 55	+ 64	+ 75	+ 88	+ 118	+ 160	+ 218
30	40	+ 9	+ 17	+ 26	+ 34	+ 43	+ 48	+ 60	+ 68	+ 80	+ 94	+ 112	+ 148	+ 200	+ 274
40	50						+ 54	+ 70	+ 81	+ 97	+ 114	+ 136	+ 180	+ 242	+ 325
50	65	+ 11	+ 20	+ 32	+ 41	+ 53	+ 66	+ 87	+ 102	+ 122	+ 144	+ 172	+ 226	+ 300	+ 405
65	80				+ 43	+ 59	+ 75	+ 102	+ 120	+ 146	+ 174	+ 210	+ 274	+ 360	+ 480
80	100	+ 13	+ 23	+ 37	+ 51	+ 71	+ 91	+ 124	+ 146	+ 178	+ 214	+ 258	+ 335	+ 445	+ 585
100	120				+ 54	+ 79	+ 104	+ 144	+ 172	+ 210	+ 254	+ 310	+ 400	+ 525	+ 690
120	140		5		+ 63	+ 92	+ 122	+ 170	+ 202	+ 248	+ 300	+ 365	+ 470	+ 620	+ 800
140	160	+ 15	+ 27	+ 43	+ 65	+ 100	+ 134	+ 190	+ 228	+ 280	+ 340	+ 415	+ 535	+ 700	+ 900
160	180				+ 68	+ 108	+ 146	+ 210	+ 252	+ 310	+ 380	+ 465	+ 600	+ 780	+ 1000
180	200				+ 77	+ 122	+ 166	+ 236	+ 274	+ 350	+ 425	+ 520	+ 670	+ 880	+ 1150
200	225	+ 17	+ 31	+ 50	+ 80	+ 130	+ 180	+ 258	+ 310	+ 385	+ 470	+ 575	+ 740	+ 960	+ 1250
225	250				+ 84	+ 140	+ 196	+ 284	+ 340	+ 425	+ 520	+ 640	+ 820	+ 1050	+ 1350
250	280				+ 94	+ 158	+ 218	+ 315	+ 385	+ 475	+ 580	+ 710	+ 920	+ 1200	+ 1550
280	315	+ 20	+ 34	+ 56	+ 98	+ 170	+ 240	+ 350	+ 425	+ 525	+ 650	+ 790	+ 1000	+ 1300	+ 1700
315	355				+ 108	+ 190	+ 268	+ 390	+ 475	+ 590	+ 730	+ 900	+ 1150	+ 1500	+ 1900
355	400	+ 21	+ 37	+ 62	+ 114	+ 208	+ 294	+ 435	+ 530	+ 660	+ 820	+ 1000	+ 1300	+ 1650	+ 2100
400	450				+ 126	+ 232	+ 330	+ 490	+ 595	+ 740	+ 920	+ 1100	+ 1450	+ 1850	+ 2400
450	500	+ 23	+ 40	+ 68	+ 132	+ 252	+ 360	+ 540	+ 660	+ 820	+ 1000	+ 1250	+ 1600	+ 2100	+ 2600

Table 15.2 Fundamental deviations for shafts of types m to zc of sizes upto 500 mm (contd.)

1. Convert the following tolerances into

- a. Second method of representing the tolerances (with relative upper & lower limits in small letters)
- b. the absolute values of upper ϑ lower limits.

Table 15.3 Fundamental deviations for holes of types A to N for sizes upto 500 mm (contd.)

Fund	amenta	l deviat	ion in r	nicrons													(1	micron =	0.001	mm)
Diam steps ir	eter 1 mm					Le	ower de	viations	(EI)							Upp	pe <mark>r</mark> devi	iations (ES	5)	
		A *	*B	C	D	E	F	G	H	Js+		J		K		1	И		N	
Over	Upto				A	ll grad	es				6	7	8	<mark>≤ 8</mark>	> 8	≤ 8 ‡	> 8	≤ <u>8</u>	> 8*	≤ 7
	3*	+ 270	+ 140	+ 60	+ 20	+ 14	+ 6	+ 2	0		+ 2	+ 4	+ 6	0	0	- 2	- 2	- 4	- 4	
3	6	+ 270	+ 140	+ 70	+ 30	+ 20	+ 10	+ 4	0		+ 5	+ 6	+ 10	- 1 + Δ	-	-4 + Δ	<u>– 4+</u> Δ	- 8 + Δ	0	
6	10	+ 280	+ 150	+ 80	+ 40	+ 25	+ 13	+ 5	0		+ 5	+ 8	+ 12	$-1 + \Delta$	-	<u>-6+</u> Δ	<mark>- 6+</mark> Δ	$-10 + \Delta$	0	1
10	14	+ 290	+ 150	+ 95	+ 50	+ 32	+ 16	+ 6	0		+ 6	+ 10	+ 15	- 1+ Δ		$-7 + \Delta$	- 7	$-12 + \Delta$	0	1 + L
14	18									\pm IT/2										les >
18	24	+ 300	+ 160	+ 110	+ 65	+ 40	+ 20	+ 7	0		+ 8	+ 12	+ 20	$-2 + \Delta$	_	- 8 + Δ	- 8	<mark>- 1</mark> 5 + Δ	0	r grae
24	30																			as for
30	40	+ 310	+ 170	+ 120	+ 80	+ 50	+ 25	+ 9	0	10 O	+ 10	+ 14	+ 24	$-2 + \Delta$	-	- 9 + Δ	- 9	$-17 + \Delta$	0	tion
40	50	+ 320	+ 180	+ 130																devia
50	65	+ 340	+ 190	+ 140	+ 100	+ 60	+ 30	+ 10	0		+ 13	+ 18	+ 28	$-2 + \Delta$	-	- 1 1+ Δ	- 11	$-20 + \Delta$	0	ame
65	80	+ 360	+ 200	+ 150	1															S
80	100	+ 380	+ 220	+ 170	+ 120	+ 72	+ 36	+ 12	0		+ 16	+ 22	+ 34	- <mark>3 +</mark> Δ		- 1 3 + Δ	- 13	- 23 + Δ	0	
100	120	+ 410	+ 240	+ 180																
120	140	+ 460	+ 260	+ 200																
140	160	+ 520	+ 280	+ 210	+ 145	+ 85	+ 43	+ 14	0		+ 18	+ 26	+ 41	$-3 + \Delta$	-	- 15 + Δ	- 15	$-27 + \Delta$	0	
160	180	+ 580	+ 310	+ 230	0.002	60.50										1.1.58				
180	200	+ 660	+ 340	+ 240					S								. c			∇ + L
200	225	+ 740	+ 380	+ 260	+ 170	+ 100	+ 50	+ 15	0		+ 22	+ 30	+ 47	<u>-4+Δ</u>	_	- 17 + Δ	- 17	- 31 + Δ	0	es >
225	250	+ 820	+ 420	+ 280						21										grad
250	280	+ 920	+ 480	+ 300	+ 190	+ 110	+ 56	+ 17	0	± 1T/	+ 25	+ 36	+ 55	- 4+ Δ	_	- 20 + A	- 20	- 34 + Δ	0	us for
280	315	+ 1050	+ 540	+ 330					100000											ion a
315	355	+ 1200	+ 600	+ 360	+ 210	+ 125	+ 62	+ 18	0	1	+ 29	+ 39	+ 60	- 4 + Δ	_	- 21 + Δ	- 21	$-37 + \Delta$	0	leviat
355	400	+ 1350	+ 680	+ 400									1000000	0.1469.0394				100000000000000000000000000000000000000		ame c
400	450	+ 1500	+ 760	+ 440	+ 230	+ 135	+ 68	+ 20	0	1	+ 33	+ 43	+ 66	- 5+ Δ	_	- 23 + Δ	- 23	$-40 + \Delta$	0	S
450	500	+ 1650	+ 840	+ 480																

* The deviation of holes of types A and B in all grades >8 are not for diameters upto 1 mm.

+ For the hole of type Js in the grades 7 and 11, the two symmetrical ± deviations IT/2 may possibly rounded. If the IT value in microns is an odd value,

replace it by the even value immediately below. \ddagger Special case: For the hole M6, ES = 9 from 250 to 315 (instead of - 11).

Funde	amental a	deviati	ion in m	icrons													(1 mic	ron = 0.0	001 mm)
Diamet in	er steps mm							Upp	er devid	ations (1	ES)								
		Р	R	S	T	U	V	X	Y	Z	ZA	ZB	ZC			∆ in	microns	5 [#]	
Over	Upto						>7							3	4	5	6	7	8
	3	- 6	- 10	- 14	-	- 18	-	- 20	_	- 26	- 32	- 40	- 60			2	Δ = 0		
3	6	- 12	- 15	- 19	-	- 23	-	- 28	-	- 35	- 42	- 50	- 80	1	1.5	1	3	4	6
6	10	- 15	- 19	- 23	-	- 28		- 34	-	- 42	- 52	- 67	- 97	1	1.5	2	3	6	7
10	14	- 18	- 23	- 28	-	- 33	-	- 40	-	- 50	- 64	- 90	- 130	1	2	3	3	7	9
14	18						- 39	- 45	_	- 60	- 77	- 109	- 150						
18	24	- 22	- 28	- 35	-	- 41	- 47	- 54	- 63	- 73	- 93	- 136	- 188	1.5	2	3	4	8	12
24	30				- 41	- 48	- 55	- 64	- 75	- 88	- 118	- 160	- 218						
30	40	- 26	- 34	- 43	- 48	- 60	- 68	- 80	- <mark>94</mark>	- 112	- 148	- 200	- 274	1.5	3	4	5	9	14
40	50				- 54	- 70	- 81	- 97	- 114	- 136	- 180	- 242	- 325						
50	65	- 32	- 41	- 53	- 65	- 87	- 102	- 122	- 144	- 172	- 226	- 300	- 405	2	3	5	6	11	16
65	80		- 43	- 59	- 75	- 102	- 120	- 146	- 174	- 210	- 274	- 360	- 480						
80	100	- 37	- 51	- 71	- 91	- 124	- 146	- 178	- 214	- 258	- 335	- 445	- 585	2	4	5	7	13	19
100	120		- 54	- 79	- 104	- 144	- 172	- 210	- 254	- 310	- 400	- 525	- 690						
120	140		- 63	- 92	- 122	- 170	- 202	- 248	- 300	- 365	- 470	- 620	- 800	3	4	6	7	15	23
140	160	- 43	- 65	- 100	- 134	- 190	- 228	- 280	- 340	- 415	- 535	- 700	- 900	1					
160	180	1	- 68	- 108	- 146	- 210	- 252	- 310	- 380	- 465	- 600	- 780	- 1000	1					
180	200		- 77	- 122	- 166	- 236	- 284	- 350	- 425	- 520	- 670	- 880	- 1150						
200	225	- 50	- 80	- 130	- 180	- 256	- 310	- 385	- 470	- 575	- 740	- 960	- 1250	3	4	6	9	17	26
225	250		- 84	- 140	- 196	- 284	- 340	- 425	- 520	- 640	- 820	- 1050	- 1350						
250	280	- 56	- 94	- 158	- 218	- 315	- 385	- 475	- 580	- 710	- 920	- 1200	- 1550	4	4	7	9	20	29
280	315		- 98	- 170	- 240	- 350	- 425	- 525	- 650	- 790	- 1000	- 1300	- 1700						
315	355	- 62	- 108	- 190	- 268	- 390	- 475	- 590	- 730	- 900	- 1150	- 1500	- 1900	4	5	7	11	21	32
355	400		- 114	- 208	- 294	- 435	- 530	- 650	- 820	- 1000	- 1300	- 1650	- 2100						
400	450	- 68	- 126	- 232	- 330	- 490	- 595	- 740	- 920	- 1100	- 1450	- 1850	- 2400	5	5	7	13	23	34
450	500		- 132	- 252	- 360	- 540	- 660	- 820	- 1000	- 1250	- 1600	- 2100	- 2600		23	100	10022		0.000

Table 15.3 Fundamental deviations for holes of types P to ZC for sizes upto 500mm (Contd.)

P to ZC

*In determining K, M, N upto grade 8 and P to ZC upto grade 7, take the Δ values from the columns on the right. Example: For P7, from diameters 18 to 30 mm, Δ = 8; hence ES = – 14.

Term	Abbreviat ions	Term	Abbreviat ions	Material	Abbreviat ion
Across corners	A/C	Manufacture	MFG	Aluminium	AL
Across flats	A/F	Material	MATL	Brass	BRASS
Approved	APPD	Maximum	max.	Bronze	BRONZE
Approximate	APPROX	Metre	m	Cast iron	CI
Assembly	ASSY	Mechanical	MECH	Cast steel	CS
Auxiliary	AUX	Millimetre	mm	Chromium steel	CrS
Bearing	BRG	Minimum	min.	Copper	Cu
Centimetre	Cm	Nominal	NOM	Forged steel	FS
Centres	CRS	Not to scale	NTS	Galvanised iron	GI
Centre line	CL	Number	No.	Gray iron	FG
Centre to centre	C/L	Opposite	OPP	Gunmetal	GM
Chamfered	CHMED	Outside diameter	OD	High carbon steel	HCS
Checked	CHD	Pitch circle	PC	High speed steel	HSS
Cheese head	CH HD	Pitch circle dia	PCD	High tensile steel	HTS
Circular pitch	CP	Quantity	QTY	Low carbon steel	LCS
Circumference	OCE	Radius	R	Mild steel	MS
Continued	CONTD	Radius in a note	RAD	Nickel steel	Ni S
Counterbore	C BORE	Reference	REF	Pearlitic malleable iron	PM
Countersunk	CSK	Required	REQD	Phosphor bronze	PHOS.B
Cylinder	CYL	Right hand	RH	Sheet steel	Sh S
Diameter	DIA	Round	RD	Spring steel Spring	S
Diametral pitch	DP	Screw	SCR	Structure steel	St
Dimension	DIM	Serial number	SI. No.	Tungsten carbide steel	TCS
Drawing	DRG	Specification	SPEC	Wrought iron	WI
Equi-spaced	EQUI-SP	Sphere/Spherical	SPHERE	White metal	WM
External	EXT	Spot face	SF		-
Figure	FIG.	Square	SQ		
General	GNL	Standard	STD		
Ground level	GL	Symmetrical	SYM		
Ground	GND	Thick	ТНК		
Hexagonal	HEX	Thread	THD		
Inspection	INSP	Through	THRU		
Inside diameter	ID	Tolerance	TOL		
Internal	INT	Typical	TYP		
Left hand	LH	Undercut	U/C		
Machine	M/C	Weight	WT		

Methods of indicating notes on drawing

S.No. Note		Meaning / Instruction
1. DIA 25 DEE	P 25 Dr	ill a hole of diameter 25 mm, to a depth of 25 mm.
2. DIA 10 CSK	DIA 15 Dr to	ill a through hole of diameter 10 mm and countersink get 15 mm on top.
3. 4 HOLES, D C BORE DIA	A 15 DEEP 8 8 r	rll through hole of ϕ 12 mm, counterbore to a depth of nm, with a ϕ 15 mm, the number of such holes being four.
4. 6 HOLES, E DIA 17 C BO SOCKET HI	QUI-SP Dr DRE FOR M 16 so D CAP SCR equ	till a through hole of ϕ 17 and counterbore to insert a cket headed cap screw of M 16. Six holes are to be made ui-spaced on the circle.
5. KEYWAY, V DEEP 3	VIDE 6 Cu	at a key way of 6 mm wide and 3 mm depth.
6. KEY SEAT, DEEP 10	WIDE 10 Cu ler	at a key seat of 10 mm wide and 10 mm deep to the ngth shown.
7. U/C, WIDE	6 DEEP 3 Ma	achine an undercut of width 6 mm and dpeth 3 mm.
8. (a) DIAMON RAISED	ID KNURL 1 Ma 30°	ake a diamond knurl with 1 mm pitch and end chamfer of 30°.
(b) M 18 \times 1	Cu	at a metric thread of nominal diameter 18 mm and pitch 1 mm.
9. (a) THD RE DIA 20 W	LIEF, Cu /IDE 3.5 3.5	at a relief for thread with a diameter of 20.8 mm and width 5 mm.
(b) NECK, W DEEP 1.5	VIDE 3 Tu 5	urn an undercut of 3 mm width and 1.5 mm depth
(c) CARB AN	ND HDN Ca	rburise and harden.
10. (a) CARB, H AND GN	DN Ca D	urburise, harden and grind.
(b) MORSE	TAPER 2 Mo	orse taper No. 1 to be obtained.
11. DIA 6 REAM PIN	I FOR TAPER Dr 6	ill and ream with taper reamer for a diameter of mm to suit the pin specified.
12. 6 ACME TH	D Cu	at an ACME thread of pitch 6 mm.

Fig. 2.55 Method of indicating notes (Contd.)

Computer Aided Production Drawing & CAM Lab - Page 17

Experiment No 3

Conventional practices indicating Dimensional, Form & Position

tolerances.

Tolerances of size are not always sufficient to provide the required control of form. For example, in Fig. 15.15 a the shaft has the same diameter measurement in all possible positions but is not circular; in Fig. 15.15 b, the component has the same thickness throughout but is not flat and in Fig. 15.15 c, the component is circular in all cross-sections but is not straight. The form of these components can be controlled by means of geometrical tolerances.

Fig. 15.15 Errors of form

Form variation:

It is a variation of the actual condition of a form feature (surface, line) from geometrically ideal form.

Position Variation:

It is a variation of the actual position of the form feature from the geometrically ideal position, with reference to another form (datum) feature.

Geometrical tolerance:

It is defined as the maximum permissible overall variation of form or position of a feature. Geometrical tolerances are used,

- (i) to specify the required accuracy in controlling the form of a feature,
- (ii) to ensure correct functional positioning of the feature,
- (iii) to ensure the interchangeability of components, and
- (iv) to facilitate the assembly of mating components.

Tolerance Zone:

It is an imaginary area or volume within which the controlled feature of the manufactured component must be completely contained (Figs. 15.16 a and b).

Datum:

It is a theoretically exact geometric reference (such as axes, planes, straight lines, etc.) to which the tolerance features are related (Fig. 15.17).

Datum feature:

It is a feature of a part, such as an edge, surface, or a hole, which forms the basis for a datum or is used to establish its location (Fig. 15.17).

Fig. 15.17

Parts of datum feature:

- 1. The datums are indicated by a leader line, terminating in a filled or an open triangle (Fig. 15.17).
- 2. Datum Letter: To identify a datum for reference purposes, a capital letter is enclosed in a frame, connected to the datum triangle (Fig. 15.17).
- 3. The datum feature is the feature to which tolerance of orientation, position and run-out are related. Further, the form of a datum feature should be sufficiently accurate for its purpose and it may therefore be necessary in some cases to specify tolerances of form from the datum features. Table 15.7 gives symbols, which represent the types of characteristics to be controlled by the tolerance.

Indicating geometric tolerances on the drawing

To eliminate the need for descriptive notes, geometrical tolerances are indicated on drawings by symbols, tolerances and datums, all contained in compartments of a rectangular frame, as shown in Fig. 15.17.

Characteristics t	o be toleranced	Symbols
	Straightness	
	Flatness	
Form of single features	Circularity (roundness)	\bigcirc
	Cylindricity	Ŋ
	Profile of any line	\cap
	Profile of any surface	\Box
	Parallelism	//
Orientation of related features	Perpendicularity (squareness)	\bot
	Angularity	2
	Position	\oplus
Position of related features	Concentricity and coaxiality	\bigcirc
	Symmetry	-
	Run-out	1

Table 15.7 Symbols representing the characteristics to be toleranced

The tolerance frame is connected to the tolerance feature by a leader line, terminating with an arrow in the following ways:

- 1. On the outline of the feature or extension of the outline, but not a dimension line, when the tolerance refers to the line or surface itself (Figs. 15.18 a to c), and
- 2. On the projection line, at the dimension line, when the tolerance refers to the axis or median plane of the part so dimensioned (Fig. 15.18 d) or on the axis, when the tolerance refers to the axis or median plane of all features common to that axis or median plane (Fig. 15.18 e).

Fig. 15.18 Indication of feature controlled (outline or surface only)

Experiment No 4

Calculation of limits, suggestion of suitable fits for mating parts with

Interference detection.

Fits:

The relation between the two mating parts is known as a fit. Depending upon the actual limits of the hole or shaft sizes, fits may be classified as clearance fit, transition fit and interference fit.

Clearance Fit:

It is a fit that gives a clearance between the two mating parts.

Minimum clearance:

It is the difference between the minimum size of the hole and the maximum size of the shaft in a clearance fit.

Maximum Clearance:

It is the difference between the maximum size of the hole and the minimum size of the shaft in a clearance or transition fit.

The fit between the shaft and hole in Fig. 15.10 is a clearance fit that permits a minimum clearance (allowance) value of 29.95 - 29.90 = +0.05 mm and a maximum clearance of +0.15 mm.

Transition Fit:

This fit may result in either an interference or a clearance, depending upon the actual values of the tolerance of individual parts. The shaft in Fig. 15.11 may be either smaller or larger than the hole and still be within the prescribed tolerances. It results in a clearance fit when shaft diameter is 29.95 and hole diameter is 30.05 (+ 0.10 mm) and interference fit, when shaft diameter is 30.00 and hole diameter 29.95 (- 0.05 mm).

Interference Fit:

If the difference between the hole and shaft sizes is negative before assembly; an interference fit is obtained.

Minimum Interference:

It is the magnitude of the difference (negative) between the maximum size of the hole and the minimum size of the shaft in an interference fit before assembly.

Fig. 15.12 Interference fit

Maximum Interference:

It is the magnitude of the difference between the minimum size of the hole and the maximum size of the shaft in an interference or a transition fit before assembly.

Clea	rance	Tran	asition	Inter	ference
Hole basis	Shaft basis	Hole basis	Shaft basis	Hole basis	Shaft basis
H7 - c8	C8 - h7	H6 – j5	J6 - h5	H6 – n5	N6 - h5
H8 - c9	C9 – h8	H7 – j6	J7 - h6		
H11 – c11	C11 - h11	H8 – j7	J8 - h7	H6 – p5	P6 - h5
				H7 – p6	p7 – h6
H7 - d8	D8 - h7	H6 – k5	K6 - h5	100.0	
H8 - d9	D9 - h8	H7 – k6	K7 - h6	H6 - r5	R6 - h5
H11 – d11	D11 – h11	H8 – k7	K8 - h7	H7 – r6	R7 - h6
H6 - e7	E7 - h6	H6 – m5	M6 - h5	H6 - s5	S6 - h5
H7 - e8	E8 - h7	H7 – m6	M7 - h6	H7 - s6	S7 - h6
H8 - e8	E8 - h8	H8 - m7	M8 - h7	H8 - s7	S8 - h7
H6 - f6	F6 - h6	H7 – n6	N7 - h6	H6 – t5	T6 - h5
H7 - f7	F7 - h7	H8 – n7	N8 - h7	H7 – t6	T7 - h6
H8 - f8	F8 - h8			H8 - t7	T8 - h7
		H8 – p7	P8 - h7		
H6 - g5	G6 - h5	5.4.0029409 - 4.00009 - 1		H6 - u5	U6 - h5
H7 - g6	G7 - h6	H8 - r7	R8 - h7	H7 – u6	U7 - h6
H8 - g7	G8 - h7			H8 – u7	U8 - h7

Table 15.6. Types of fits with symbols and applications

Type of fit	Symbol of fit	Examples of application
Interference fit		
Shrink fit	H8/u8	Wheel sets, tyres, bronze crowns on worm wheel
Heavy drive fit	H7/s6	hubs, couplings under certain conditions, etc.
Press fit	H7/r6	Coupling on shaft ends, bearing bushes in hubs, valve
Medium press fit	H7/p6	seats, gear wheels.
Transition fit		
Light press fit	H7/n6	Gears and worm wheels, bearing bushes, shaft and wheel assembly with feather key.
Force fit	H7/m6	Parts on machine tools that must be changed without damage, <i>e.g.</i> , gears, belt pulleys, couplings, fit bolts inner ring of ball bearings.
Push fit	H7/k6	Belt pulleys, brake pulleys, gears and couplings as well as inner rings of ball bearings on shafts for average loading conditions.
Easy push fit	H7/j6	Parts which are to be frequently dismantled but are secured by keys, <i>e.g.</i> , pulleys, hand-wheels, bushes, bearing shells, pistons on piston rods, change gear trains.
Clearance fit		
Precision sliding fit	H7/h6	Sealing rings, bearing covers, milling cutters on milling mandrels, other easily removable parts.
Close running fit	H7/g6	Spline shafts, clutches, movable gears in change gear trains, etc.
Normal running fit	H7/f7	Sleeve bearings with high revolution, bearings or machine tool spindles.
Easy running fit	H8/e8	Sleeve bearings with medium revolution, grease lubricated bearings of wheel boxes, gears sliding or shafts, sliding blocks.
Loose running fit	H8/d9	Sleeve bearings with low revolution, plastic material bearings.
Slide running fit	H8/c11	Oil seals (Simmerrings) with metal housing (fit in housing and contact surface on shaft), multi-spline shafts.

Exercise: Solve the following questions manually in the Lab Records...

15.1 Calculate the maximum and minimum limits for both the shaft and hole in the following; using the tables for tolerances and name the type of fit obtained: (a) 45H8/d7(c) 120H7/s6 (b) 180H7/n6 (d) 40G7/h6(e) 35 C11/h10 15.2 The dimensions of a shaft and a hole are given below: Shaft, Basic size = 60mm and given as 60 - 0.020Hole, Basic size = 60mm and given as 60 - 0.005Find out: (a) Tolerance of shaft (b) Tolerance of hole (c) Maximum allowance (d) Minimum allowance (e) Type of fit 15.3 A schematic representation of basic size and its deviations are given in Fig. 15.19. Calculate the following in each case for a shaft of 50 mm basic size: (c) Tolerance (a) Upper deviation (b) Lower deviation (d) Upper limit size (e) Lower limit size

- 15.4 A schematic representation of basic size and its deviations are given in Fig. 15.20. Identify them.
- 15.5 A 30mm diameter hole is made on a turret lathe to the limits, 30.035 and 30.00. The following two grades of shafts are used to fit in the hole:

(b) \$\phi30.055mm and 30.050mm

Calculate the maximum tolerance, clearance and indicate the type of fit in each case by a sketch

- 15.6 Compute the limit dimensions for a clearance fit on the hole basis system, for a basic size of 40 mm diameter, with a minimum clearance of 0.05 mm; with the tolerance on the hole being 0.021 and the tolerance on the shaft being 0.15 mm.
- 15.7 Find the limit dimensions for an interference fit on the shaft basis system for the above problem and compare the dimensions of the shaft and hole.
- 15.8 Determine the type of fit and calculate the clearance and or interference for the schematic tolerance zones shown in Fig. 15.21

Experiment No 5

Surface finish, surface treatments - specification and indication methods on the drawings.

Machining Symbols

This article deals with the symbols and other additional indications of surface texture, to be indicated on production drawings. The basic symbol consists of two legs of unequal length, inclined at approximately 60° to the line, representing the surface considered (Fig. 16.2a). This symbol may be used where it is necessary to indicate that the surface is machined, without indicating the grade of roughness or the process to be used. If the removal of material is not permitted, a circle is added to the basic symbol, as shown in Fig. 16.2b. This symbol may also be used in a drawing, relating to a production process, to indicate that a surface is to be left in the state, resulting from a preceding manufacturing process, whether this state was achieved by removal of material or otherwise. If the removal of material by machining is required, a bar is added to the basic symbol, as shown in Fig. 16.2c. When special surface characteristics have to be indicated, a line is added to the longer arm of the basic symbol, as shown in Fig. 16.2d.

The value or values, defining the principal criterion of roughness, are added to the symbol as shown in Fig. 16.3.

A surface texture specified, as in Fig. 16.3a, may be obtained by any production method. as in Fig. 16.3b, must be obtained by removal of material by machining. as in Fig. 16.3c, must be obtained without removal of material. When only one value is specified to indicate surface roughness, it represents the maximum permissible value. If it is necessary to impose maximum and minimum limits of surface roughness, both the values should be shown, with the maximum limit, a1, above the minimum limit, a2 (Fig. 16.4a).

The principal criterion of surface roughness, Ra may be indicated by the corresponding roughness grade number, as shown in Table 16.2

$Roughness \ values \ R_a \ \mu m$	Roughness grade number	Roughness grade symbol
50	N12	\sim
25	N11	
12.5	N10	\vee
6.3	N9	
3.2	N8	\bigtriangledown
1.6	N7	
0.8	N6	
0.4	N5	\bigtriangledown
0.2	N4	10 * 0 0 * 0000*
0.1	N3	
0.05	N2	\bigtriangledown
0.025	N1	0 0.50 Er 0.50 F.

Table 16.2 Equivalent surface roughness symbols

Indication of special surface roughness characteristics

In certain circumstances, for functional reasons, it may be necessary to specify additional special requirements concerning surface roughness. If it is required that the final surface texture produced by one particular production method, this method should be indicated on an extension of the longer arm of the symbol as shown in Fig. 16.4b. Also, any indications relating to the treatment of coating may be given on the extension of the longer arm of the symbol. Unless otherwise stated, the numerical value of the roughness, applies to the surface roughness after treatment or coating. If it is necessary to define surface texture, both before and after treatment, this should be explained by a suitable note or as shown in Fig. 16.4c.

If it is necessary to indicate the sampling length, it should be selected from the series given in ISO/R 468 and be stated adjacent to the symbol, as shown in Fig. 16.4d. If it is necessary to control the direction of lay, it is specified by a symbol added to the surface roughness symbol, as shown in Fig. 16.4e

NOTE The direction of lay is the direction of the predominant surface pattern, ordinarily determined by the production method employed. Table 16.3 shows the symbols which specify the common directions of lay.

Symbol	Inter	rpretation
=	Parallel to the plane of projection of the view in which the symbol is used	Direction of lay
T	Perpendicular to the plane of projection of the view in which the symbol is used	Direction of lay
x	Crossed in two slant directions relative to the plane of projection of the view in which the symbol is used	Direction of lay
М	Multi-directional	
С	Approximately circular, relative to the centre of the surface to which the symbol is applied	
R	Approximately radial, relative to the centre of the surface to which the symbol is applied	

Table 16.3 Symbols specifying the directions of lay

Indication of Machining Allowances

When it is necessary to specify the value of the machining allowance, this should be indicated on the left of the symbol, as shown in Fig. 16.5a. This value is expressed normally in millimetres. Figure 16.5b shows the various specifications of surface roughness, placed relative to the symbol.

Fig. 16.5

Indications of Surface Roughness Symbols in Drawings

The symbol and the inscriptions should be so oriented, that they may be read from the bottom or the right hand side of the drawing (Fig. 16.6a). If it is not practicable to adopt this general rule, the symbol may be drawn in any position (Fig. 16.6b), provided that it does not carry any indications of special surface texture characteristics.

Fig. 16.6

The symbol may be connected to the surface by a leader line, terminating in an arrow. The symbol or the arrow should point from outside the material of the piece, either to the line representing the surface, or to an extension of it (Fig. 16.6a) In accordance with the general principles of dimensioning, the symbol is only used once for a given surface and, if possible, on the view which carries the dimension, defining the size or position of the surface (Fig. 16.7).

If the same surface roughness is required on all the surfaces of a part, it is specified, either by a note near a view of the part (Fig. 16.8), near the title block, or in the space devoted to general notes, or following the part number on the drawing.

METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY ABIDS, HYDERABAD

If the same surface roughness is required on the majority of the surfaces of a part, it is specified with the addition of, the notation, except where otherwise stated (Fig. 16.9a), or a basic symbol (in brackets) without any other indication (Fig. 16.9b), or the symbol or symbols (in brackets) of the special surface roughness or roughnesses (Fig. 16.9c).

Fig. 16.9

To avoid the necessity of repeating a complicated specification a number of times, or where space is limited, a simplified specification may be used on the surface, provided that its meaning is explained near the drawing of the part, near the title block or in the space devoted to general notes (Fig. 16.10).

Fig. 16.10

Experiment No 6

Generation of production drawings in 2D from part models representing Limits, fits, tolerances, Surface finish, geometrical and form tolerance etc.

1.Stuffing box

CamScanner

Aim:

Create a 3D model of each part from the assembly given below. Create the production drawing of each part along with tolerance (Dimensional, Geometric & Surface Finish) information. Create a Process chart for at least one component.

Fig 9.12 Stuffing box

Software Package Used:

SolidWorks 2016

Hardware Specifications of System:

Processor:
RAM:,
Hard Disk:

Modules used:

Features used:

_/

Scanned with CamScanner

Fig. 9.13 Details of stuffing box

2.Eccentric

Aim:

Creat each part from the assembly given below. Create the production drawing of each part along with tolerance (Dimensional, Geometric & Surface Finish) information. Create a Process chart for at least one component.

Software Package Used:

SolidWorks 2016

Hardware Specifications of System:

Processor:	
RAM:,	
Hard Disk:	

Modules used:

Features used:

Experiment No 7

Preparation of Process sheet incorporating Tool work orientation diagrams.

3.Single tool post

Aim:

Create a 3D model of each part from the assembly given below. Create the production drawing of each part along with tolerance (Dimensional, Geometric & Surface Finish) information. Create a Process chart for at least one component.

Part No.	NameMatl.PillarMCS		Qty.	
1			1	
2	Block	MCS	1	
3	Ring	MS		
4	Wedge	MCS	1	
5	Screw	TS	1	

Fig. 9.30 Single tool post

Software Package Used: SolidWorks 2016

Hardware Sp	ecifications	of System
-------------	--------------	-----------

Processor:
RAM:,
Hard Disk:

Modules used:

Features used:

•

Fig. 9.31 Details of single tool post

4.Protected flange coupling

Aim:

Create a 3D model of each part from the assembly given below. Create the production drawing of each part along with tolerance (Dimensional, Geometric & Surface Finish) information. Create a Process chart for at least one component.

Part No.	Qty.	Name	Matl.
1	2	Shaft	MS
2	2	Sunk key	MS
3	4	Nut	MS
4	d. In a	Flange	CI
5	o 1 .	Flange	CI
6	4	Bolt	MS

Fig. 9.2 Protected flange coupling

Software Package Used:

SolidWorks 2016

Hardware Specifications of System:

Processor:,
RAM:,
Hard Disk:

Modules used:

Features used:

