Scheme of Instruction & Examination B.E. I – SEMESTER CIVIL ENGINEERING

			Semes	ter -	I				
S.	~		s	cher	ne of Ir	struction	Schen Exami n	inatio	
N o	Course Code			Hours Per week			Maximum Marks		
		Course Title	L			Duration in Hrs	CIE	SE E	Cre dits
Theory Courses									
1	2BS101 HS	Engineering Mathematics - I	3	1	0	4	40	60	4
2	2BS107 HS	Engineering Chemistry	3	1	0	4	40	60	4
3	2HS101 HS	English	2	0	0	2	40	60	2
4	2ES101C E	Engineering Mechanics-I	3	0	0	3	40	60	3
			Labo	rato	ries				
5	2BS154 HS	Engineering Chemistry Lab	0	0	3	3	40	60	1.5
6	2HS151 HS	English Lab	0	0	2	2	40	60	1
7	2ES152 ME	Engineering Workshop Practice	0	0	4	4	40	60	2
8	2C151SP	Yoga/NSS/Sports	0	0	2	2	50	-	0
			11	2	11	24	330	420	17.5

			Semest	ter -	II					
S.	Course					nstruction	Schen Exami	inatio		
N o	Code			Hours Per week			Maxii Mai			
Ŭ		Course Title				Duration		SE	Cre	
			L	Т	P/D	in Hrs	CIE	Ε	dits	
Theory Courses										
1	2BS202	Engineering								
1	HS	Mathematics - II	3	1	0	4	40	60	4	
2	2BS205	Engineering								
2	HS	Physics	3	1	0	4	40	60	4	
3	2ES202	Engineering								
3	CE	Mechanics II	2	0	0	2	40	60	3	
		Elements of								
4	2ES202	Electrical and								
-	EE	Electronics								
		Engineering	3	0	0	3	40	60	3	
5	2MC20	Environmental								
5	1CE	Science	2	0	0	2	40	60	0	
			Labo	rato	ries					
6	2BS252	Engineering								
0	HS	Physics Lab	0	0	3	3	40	60	1.5	
		Elements of								
7	2ES252	Electrical and								
/	EE	Electronics								
		Engineering Lab	0	0	2	2	40	60	1	
8	2ES251	Engineering								
0	CE	Graphics Lab	1	0	4	5	40	60	3	
			15	2	9	26	320	480	19.5	
BS:	BS: Basic Sciences ES: Engineering Sciences HS:									

BS: Basic Sciences Humanities and Sciences

MC: Mandatory Courses

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lectures T : Tutorials P: Practicals D : Drawing

1). Each Contact Hour is a Clock hour Note:

Course code	Course Title	Co		Co	ore/ Elective		
	Engineering Mathematics – 1	Co	re				
2BS101HS		L	Т	P/D	Credits	CIE	SEE
		3	1	0	4	40	60

Prerequisite: Basics of Matrices, Differentiation, Integration and Trigonometric results

Course Objectives: The objective of this course is to make the student

- Study matrix algebra and its use in solving system of linear equations and solving eigen value problems.
- ▶ study mean value theorems and their application to mathematical problems.
- introduce the concepts of functions of several variables and multiple integrals
- introduce the concepts of Multiple Integrals
- study vector differential and integral calculus.

Course Objectives: After completion of the course, the student will be able to

- Find the rank of matrix and its use to find solution of linear equations, eigen value problem, Quadratic forms..
- Explain the concepts of derivatives using mean value theorems and their generalization. Concepts of curvature, evolutes, involutes, envelopes of family cf curves
- Find Partial derivatives of functions of two variables using concept of limits and continuity and study the concepts of maximum and minimum of functions of two variables.
- Identify the key concepts, theories and mathematical fundamentals to derive mathematical relations involved in evaluation of double integrals and triple integrals and solving Engineering problems.
- Evaluate gradient of a scalar field, divergence, curl of a vector field to find the values of line, surface and volume integrals and establish their relation using Green, Gauss and Stokes theorems.

Unit-I (10Hrs)

Matrices: Rank of a matrix, Echelon form, System of linear equations, Linear dependence, independence of vectors, Linear transformation, Orthogonal transformation, Eigen values, Eigen vectors, Properties of eigen values, Cayley-Hamilton theorem, Quadratic forms, Reduction of quadratic form to canonical form by orthogonal transformation, Nature of quadratic form.

Unit-II (10Hrs)

Calculus of one variable: Rolle's theorem, Lagrange's, Cauchy's Mean value theorems, Taylor's series, Curvature, Radius of curvature, Circle of Curvature, Envelope of family of curves, Evolutes and Involutes.

Unit-III (10Hrs)

Multivariable Calculus (Differentiation): Functions of two variables, Limits and continuity, Partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions (Chain rule), Change of variables, Jacobian, Higher order partial derivatives, Taylor's series of functions of two variables, Maximum and minimum of values of functions of two variables, Lagrange's method of undetermined multipliers.

Unit-IV (8Hrs)

Multivariable Calculus (Integration): Double Integrals, Change of order of integration,

change of variables from cartesian to plane polar coordinates, Triple Integrals.

Unit-V (12Hrs)

Vector Calculus: Scalar and vector fields, Gradient of a scalar field, Directional derivative, Divergence and Curl of a vector field, Line, Surface and Volume integrals, green's theorem in a plane, Gauss's divergence theorem, Stoke's theorem (without proofs) and their verification.

TEXT BOOKS :

- T1. Dr.B.S. Grewal, Higher. Engineering Mathematics, Khanna Publications, 43rd Edition,2014. (Unit 1-5)
- T2. Advance Engineering Mathematics by Jain and Iyengar,5th Edition, Narosa Publications (Unit 1-5)

T3.B. V. Ramana, Higher Engineering Mathematics,3rd Edition 2015. (Unit 1-5)

REFERENCES/ SUGGESTED READING:

- R1. M.D Raisinghania, Ordinary Differential Equations, 11th Revised Edition
- R2. S.S. Sastry, Engineering mathematics, 3rd Edition, Paperback
- R3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley, 9th Edition, 2012.
- R4. Peter. V. O' Neil, Advance Engineering Mathematics,' Publisher, Global Engineering 7th Edition, 2012

Course code	Course Title			Co	re/ Electiv	ve		
		1		-	Core			
2BS107HS		L	Т	P/D	Credits	CIE	SEF	
	Engineering Chemistry	3	1	0	4	40	60	
Prerequisite:	Electrochemistry & Batteries, V	Wate	r& C	orrosi	on, Polym	ers, En	ergy	
Sources, Inorg	ganic Engineering Materials.				-			
Course Object	ctives: The objective of this cou	ırse i	s to 1	nake tl	he student			
> The o	objective of this course is to ma	ke th	e stu	dent				
	erstand the principals of electroc	chem	istry	in stor	age of ele	ctrical		
	gy in batteries.							
	onalize bulk properties and proc	esses	s usir	ng ther	modynam	ic		
	iderations.							
	s knowledge in causes of corros							
	vledge about the disadvantages	of ha	rd w	ater an	d treatmen	nt of wa	ater	
	rinking purpose.						1	
	ain the influence of chemical str choice in engineering application		re or	i prope	erties of m	aterials	and	
	sed to qualitative and quantitati		orom	ators o	fahamiaa	1 fuele		
	omes: After completion of the c							
	. Apply concept of electrode po							
	rochemical reaction; illustrate						01	
	ing of batteries		o un	uryticu	rteeninqu	es ana		
	2. Identify the mechanism of co	rrosi	on o	f matei	rials on ba	sis of		
	rochemical approach and devis						imate	
	hysical & chemical parameters							
	ess of water treatment.	-	-			-		
	Explain the influence of chemi					s of		
	rials and their choice in enginee							
	Classify chemical fuels and gr			-	-		lysis.	
		them through qualitative analysis.						
UNIT-I: (10 Hrs)								
Electrochemistry and Batteries :								
	nistry: Electrochemical cells,	Ele	ctrol	vtic a	nd Galva	nic cel	ls-	
	ell notation, cell reaction							
	otential and Standard Electro							
	n of Calomel Quinhydrone and							
	solution by using Quinhydror							
	t equation and its derivation. A							
	electrode potential and emf of cells. Numerical problems.							

Batteries: Primary batteries: Zn - Carbon battery. Secondary batteries: Pb-Acid cell & battery and Li-Ion cell battery, Applications. Flow batteries (Fuel cells): Hydrogen-Oxygen fuel cells& functioning. Applications of batteries.

UNIT-II: (10 Hrs)

Water Chemistry--its treatment and corrosion:

Water Chemistry: Hardness of Water-Types and units of hardness, estimation of temporary and permanent hardness of water by EDTA method. Alkalinity of water and its determination. Water softening by Ion exchange process and desalination of water by reverse osmosis method. Numerical problems. Specifications of potable water--Steps involved in treatment of water – Sterilization by Chlorination -Disinfection of water by chlorination. Break Point Chlorination – advantages.

Corrosion: Causes and effects of corrosion. Types of Corrosion-Dry corrosion – its types or Chemical corrosion and Wet or Electrochemical corrosion and their mechanism. Concentration cell corrosion. Waterline, Pitting and galvanic corrosion. Factors effecting rate of corrosion.

UNIT-III: (10 Hrs)

Polymers: Basics of terms polymers: Monomer functionality, degree of polymerization. Types of Polymerization (i) Addition--Mechanism of free radical polymerization (ii) Condensation (iii) Co-Polymerization with examples.

Classification of polymers - Thermoplastics & Thermosetting resins.

Plastics, Fibres and Elastomers and their characteristics. Preparation, Properties & Uses of the following polymers: Plastics - PVC and Bakelite, Fibres - Nylon 6:6, and Dacron. Elastomers - Buna-S, Butyl Rubbers.

Conducting polymers : Concepr, Classification and Mechanism of conduction in Trans Poly-acetylene, Doped Conducting Polymers. Applications of conducting polymers.

Biodegradable polymers: Concept. preparation, properties and applications of polylactic acid

UNIT-IV

Energy Sources (10 Hrs)

Fuels: Introduction. Classification and advantages, disadvantages of solid, liquid and gaseous fuels. Requirements of a good fuel. Biofuels - Biodiesel.

Combustion: Calorific value of the fuel-Lower calorific value (LCV), Higher calorific value (HCV). Theoretical calculations of calorific value by Dulongs formula-Numerical problems. Solid Fuels: Coal-Proximate and Ultimate analysis and its significance.

Liquid Fuels:Source-Fractional distillation of petroleum, important fractions and their uses. Knocking, uel rating-Octane and Cetane numbers.

Gaseous Fuels: LPG, CNG composition and uses.

Biodiesel: Sources, Concept of Trans esterification and carbon neutrality. Properties and significance

UNIT-V

Inorganic Engineering Materials:

Refractories: Properties of refractories (Refractoriness, RUL, Thermal Spalling, Porosity, Dimensional Stability). Manufacture of Refractories, common refractory bricks – Silica, Fire Clay, Magnasite, Dolamite, Chromite, Graphite Bricks).

Lubricants: Definition, Mechanism of Lubrication(Flash Point & Fire Point, Cloud Point & Pour Point)—Hydrodynamics, Boundary Extreme Pressure lubrication. Classification: Solid, Semi Solid and Liquid Lubricants. Properties of Lubricants—determination of Viscosity, Viscosity Index, Saponification Number, Iodine value and its significance. Applications of Lubricants.

Cement: Concept--Natural Cement, Puzzolana Cement, Slag Cement, Portland Cement, Quick Setting Cement, Expanding Cement.

Text Books :

- T1. PC Jain, M Jain Engineering Chemistry, Dhanapathi Rai &sons, 16th edition, 2015, New Delhi. (Unit: 1,4,5)
- T2. B.R. Puri, L.R. Sharma and M.S. Pathania, "Principles of Physical Chemistry", S. S. Chand & Company Ltd., Revised edition (2013). (Unit 2)
- T3. Sashi Chawla,—Engineering Chemistry, Dhanpat Rai & Sons, New Delhi, 2017 (1St January 2017) (Unit 3)
- T4. O G Palanna, —Engineering Chemistryl, Tata Mc Graw Hill, New Delhi, First Edition 2009.(Unit 2&4)

Reference Books :

- R1. J D Lee, Concise inorganic chemistry, Blackwell science ltd, USA, Fifth edition
- R2. P.W. Atkins, Physical Chemistry .
- R3. T.W. Graham Solomons, C.B. Fryhle and S.A. Snyder, "Organic Chemistry", Wiley, 12th edition (2017).

Course code	Course Title	Core/ Elective					
					Core		
2HS101HS	English	L	Т	P/D	Credits	CIE	SEE
		2	0	0	1	40	60

Prerequisite: Know the basic functions of the Language

Course Objectives: The following are the Objectives of the Course:

To enable and enhance the English language abilities of engineering students, especially in reading and writing, by –

- Using authentic material for language learning and gaining proficiency in it (Knowledge) (Comprehension)
- Exposing them to a variety of content-rich text.
- Strengthening their grammar and vocabulary.
- Improving their reading and comprehension skill.
- Honing their writing skills.
- Encouraging them to think creatively and critically.

Course Outcomes:

After completion of the course, the student will be able to

- CO.1. Read, understand, interpret and comprehend a variety of written texts and develop positive attitude and commitment towards their (students') goal and society.
- CO.2 Remember and recognize the significance of vocabulary (roots and affixes, homonyms, one- word substitutes, etc.) and use language accurately for effective communication.
- CO.3 Apply appropriate grammatical concepts (tenses, articles, prepositions, etc.) to spoken and written English in informal and formal ambience.
- CO.4 Compile information of various aspects of English diction Develop creativity in writing skills by framing Paragraphs, Essays, Letters, Emails and SOPs.
- CO.5 Analyze different ways of life through reading prose and poetry, each symbolizing a particular virtue and the learners develop the ability to be creative.

Unit – I : (6 Hrs)

Reading : Amitav Ghosh "Coming Home"

Vocabulary : Word Formation - Prefixes, Suffixes , Root words

Grammar : Articles, Prepositions, Determiners

Writing : Types of Sentences; Guided Writing (Expanding the Outline / Writing from verbal cues)

Unit – II : (6 Hrs)

Reading : Rudyard Kipling, "If"

Vocabulary : Word Formation – Compounding and Blending, Contractions Grammar : Transitions, Connectives, Question Tags

Writing : Précis & Paragraph Writing **Unit – III : (6 Hrs)** Reading : Martin Luther King Jr. "I have a Dream" Vocabulary : Synonyms, Antonyms, One-Word Substitutes Grammar : Voice Writing : Letter Writing

Unit – IV : (6 Hrs)

Reading : Robert Frost, "Road Not Taken"

Vocabulary : Homophones, Homonyms, Homographs

Grammar : Narration (Direct – Indirect Speech)

Writing : Reporting Events (Swearing in, Poll-Address, News Events, Visit to Book Exhibition, Annual /Farewell Day)

Unit – V : (6 Hrs)

Reading : George Orwell' " The Sporting Spirit" (Excerpt)

Vocabulary : Inclusive Language, Euphemism

Grammar : Tense

Writing : SOP

Text Books :

T1. E. Suresh Kumar, *Engineering English*, Orient Black Swan, 2014. **References / Suggested Reading:**

R1. Modern English Grammar

R2. "Grammar in Use" Raymond Murpphy

R2. Sudharshana, NP and C Savitha, English for Engineers. Cambridge University Press 2018.

Course code	Course Title	Core/ Elective					
2ES101CE	Engineering Mechanics-I				Core		
	0	L	Т	P/D	Credits	SEE	CIE
		3	0	0	3	40	60

Prerequisite Basics of Mechanics section from Physics

Course Objectives: The objective of this course is to make the student

- > Force systems in plane and in space, their resolution, and resultants
- Equilibrium equations of planar and spatial force systems, and their applications to solving unknown forces.
- Laws of friction and applications to simple mechanical systems
- Centroids and moment of inertia of various plane figures and rigid bodies
- Analysis of plane trusses to find the support reactions and the axial forces in members

Course Outcomes:

After completion of the course, the student will be able to

- CO1. Apply the concepts of force systems and static equilibrium for solving for unknown forces
- CO.2 Understand free body diagram and apply equilibrium equations to solve for unknown forces
- CO.3 Solve for unknown forces in problems involving friction between contacting bodies
- CO.4 Determine centroids and moments of inertia for elementary, composite figures and solid bodies.
- CO.5 Analyze a plane truss to solve for unknown support reactions and member forces.

Unit-I: (08 Hrs)

Resolution and Resultant of Force System: Basic concepts of a force system. Components of forces in a plane. Resultant of coplanar concurrent force system. Moment of a force, couple and their applications. Resultant of coplanar non-concurrent force system.

Unit-II: (10 Hrs)

Equilibrium of Force System: Free body diagram, Equations of equilibrium, Lami's theorem, Equilibrium of planar & spatial systems.

Unit-III: (06 Hrs)

Friction: Theory of static friction, Laws of friction, applications to single body, connected systems, wedge friction and belt friction.

Unit-IV: (08 Hrs)

Centroid and Centre of Gravity: Centroid of lines and areas from first principles, centroid of composite figures, Pappu's theorems & their applications

Area Moment of Inertia: Introduction, polar moment of inertia, radius of gyration and transfer formula. Moment of Inertia of plane areas by integration, M.I of composite areas, product of inertia, transfer formula for product of inertia.

Unit-V: (08 Hrs)

Mass Moment of Inertia: Mass Moment of Inertia of thin plates, radius of gyration, transfer formula and mass moment of inertia of cylinder, sphere, cone and composite bodies

Analysis of Perfect Pin-jointed Frames (Trusses): Types of Frames, Assumptions for forces in members of perfect frame, Method of joints and Method of sections for Cantilever Trusses, simply supported Trusses. (Analytical Method)

Text Books

- T1. Engineering Mechanics: Principles of Statics and Dynamics, R. C. Hibbler, Pearson Education; Fourteenth edition, 2017
- T2. Engineering Mechanics S.S. Bhavikatti et al, New Age International Publishers, 2017 (Unit 1-5)

References/ Suggested Reading

- R1. Engineering Mechanics (In SI Units), by S.P. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill International, 5th edition, 2017
- R2. A Textbook of Engineering Mechanics, R.S. Khurmi and N. Khurmi, S. Chand Publications, 22nd Edition, 2018 (Unit1-5)
- R3. Engineering Mechanics Statics and Dynamics, by N H Dubey, McGraw Hill Education, 2017
- R4. Singer's Engineering Mechanics Statics and Dynamics, by K. Vijay Kumar Reddy and J. Suresh Kumar, B.S. Publishers, 2011
- R5. Engineering Mechanics Statics and Dynamics, A. K. Tayal, 14th Edition, Umesh Publishers, 2010

MCET, Hyderabad

w. e. f Academic Year 2021-22

MCEI, Hyaerai	paa	w. e. f Academic Year 2021-22								
Course code	Course Title			C	ore/ Elective	e				
		Cor	e							
2BS154HS	Engineering	L	Т	P/D	Credits	CIE	SEE			
	Chemistry Lab	0	0	3	1.5	40	60			
Prerequisite: H	ligher secondary level P	hysic	S							
Course Object	ives: The objective of th	nis co	urse is	s to mak	e the student	t				
Apply	the theoretical knowled	ge in	doing	practica	al experimen	ts.				
Acquir	e skills to handle instru	ments								
Unders	Understand the behavior of semiconductors and opto-electronic devices.									
Analyz	e errors in experimenta	imental data.								
	aphs between different									
	Objectives: After completion of the course, the student will be able to									
	1.1. Develop analytical/					orerequis	site			
	on experience for engine									
> CO15 recordi	1.2. Understand the needing.	d for j	precis	e measu	rement pract	tices for	data			
	1.3. Understand the prinn t technologies and com									
> CO15	1.4. Analyze the techniq fic tools such as lasers a	ues a	nd ski	ills assoc						
	1.5 Acquire knowledge		-		skills through	h workin	g in			
	in performing the labor									
results	results									
List of Experiments										
1. Introdu	action to Chemical Ana	alysis	and	Techniq	ues of Weig	hing.				
VolumetricA	nalysis:									
2 Prenar	ation of Standard Moh	r's sal	lt solu	tion St	andardizatio	n of KN	InO₄			

- **2.** Preparation of Standard Mohr's salt solution, Standardization of KMnO₄ and estimation ferrous ion.
- **3.** Preparation of Standard $K_2Cr_2O_7$ solution, Standardization of Mohrs Salt Sol estimation of dichromate ion. ($Cr_2O_7^{2--}$)

Complexometry

- **4.** Preparation of Standard Magnesium sulphate solution, standardization of EDTA and estimation of Total Hardness of water.
- **5.** Preparation of Standard Sodium Carbonate Solution, Standardization of HCl Estimation of Carbonate and Bicarbonate Alkalinity of water sample.

Conductometry:

6. Estimation of HCl by conductometry.

Potentiometry

- 7. Estimation of HCl by potentiometry (acid base titration)
- 8. Estimation of Fe^{2+} by potentiometry (redox titration)

P^H Metry:

- **9.** Estimation of HCl by P^HMetry. <u>Colorimetry</u>
- **10.** Verification of Beers Law using potassium permanganate and estimation of amount of KMnO4 in the given sample solution.

List of Additional Experiments

1. To determine the viscosity of a given oil by Ostwald's Viscometer.

References :

- 1. B.D. Khosla, A. Gulati and V. Garg , —Senior Practical Physical Chemistryl, R. Chand & Co., Delhi, 2011.
- 2. K. K. Sharma and D.S. Sharma, —An Introduction to Practical Chemistryl, Vikas publishers, New Delhi, 1982.

MCET, Hyderabad

w. e. f Academic Year 2021-22

Course c	ode	Course Title	Core/ Elective							
						Core				
2HS1511	HS	English Lab	L	Т	P/D	Credits	CIE	SEE		
			0	0	2	1	40	60		
		Understanding of the English Al						ounds		
	-	tives: The objective of this cours					to :			
		n the Sound Systems, Word Stre				-				
		the knowledge of the appropriat	te us	e of	Langua	age and B	ody			
Language										
	-	uire the Techniques to Participate			-	ussions				
		e their Participation and Presentati								
	Com	prehend how Interviews are con-	duct	ed ar	id face	d				
Course (Juteo	mes: After completion of the co	iirce	the	studer	t will be a	ble to			
		-								
 Enhance Pronunciation, Stress, Intonation and Articulation Skills Speak the Language coherently, with a lesser MTI 										
 Employ Language and Body Language intelligibly 										
 Engage in Group Discussions efficiently 										
 Prepare and Produce Decent Presentations to Fare, Well in Interviews 					'S					
		LIST OF EXPER						-		
1.	Ice-I	Breaking Session								
2.		oduction to English Phonetics :	Org	gans	of Spe	ech : Spee	ech			
		hanism			1	I				
3.	Sour	nds of English : Introduction to	Inter	matic	onal Ph	nonetic Al	phabet,			
		sification and Description of Eng								
		nds & Consonant Sounds; Minim								
4.		d Stress : Primary Stress, Secon					tress, R	lules		
		Vord Stress			,		- , -			
5.		nation : Major Patterns of Inton	atior	ı in E	English					
6.		king Activity: JAM : an impro			-		eaker i	s		
	-	osed to express the idea (s) on th	-	-		-				
		nute.	0		1 /					
7. Role Play: Use of dialogues in a variety of situations and settings										
8. Group Discussion: Initiating, continuing and conclu						-				
		ponents and Types of GDs,	6			0	,			
9.		er-Point Presentation: (Gen	iera	IТ	opics)	Making	effe	ctive		
		entations, Expressions which ca			- ·	U				
	-	verbal communication, Copir			-					
		tions and answer session	0		2			0		
	1400									

10. **Interview Skills:** Facing interviews confidently, Use of suitable expressions during interviews; Mock interviews

Text Books :

T1. E. Suresh Kumar. *A Handbook for English Language Laboratories (with CD)*. Revised edition, Cambridge University Press India Pvt. Ltd. 2014

Reference / Suggested Reading:

- R1. T. Balasubramanian. A Text book of English Phonetics for Indian Students. Macmillan, 2008.
- R2. Edgar Thorpe. Winning at Interviews. Pearson Education, 2006.
- R3. J. Sethi et al., A Practical Course in English
- R4. Pronunciation (with CD). PrenticeHall of India,2005.

R5.Hari Mohan Prasad. *How to Prepare for Group Discussions and Interviews*. TataMcGraw Hill, 2006.

Course code	Course Title	Core/ Elective					
2ES152ME	En sin serie s Werlach an	Core					
	Engineering Workshop Practice	L	Т	P/D	Credits	CIE	SEE
	Practice	0	0	4	2	40	60

Prerequisite: Practical skill

Course Objectives: The objective of this course is to make the student

- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To gain basic knowledge on various manufacturing processes used for the production of various engineering products.
- To gain hands on exposure on computer hardware and working knowledge on computers and software.
- Adopt safety practices while working with various tools.

Course Outcomes: After completion of the course, the student will be able to

- CO.1. Identify and demonstrate the usage of different tools to be used in various manufacturing trades with safety measures.
- CO.2. Apply the skills developed to undertake the jobs connected to various engineering workshop trades including fitting, carpentry, sheet metal, house wiring, welding, and foundry.
- CO.3. Demonstrate the knowledge of various machine tools and their operations such as machining, injection moulding, casting and 3D printing and basic electronics lab instruments.
- CO.4. Illustrate the advanced machining processes like CNC, rapid prototyping.
- CO.5 Apply the basic knowledge of computers to assemble and disassemble various components of computer and able to install various operating systems such as windows or Linux.

LIST OF EXPERIMENTS

A. TRADES FOR EXERCISES:

At least two exercises to be done from each trade.

- 1. CARPENTRY: Sawing and Grooving, T-lap joint, Dove-tail Joint.
- 2. **FITTING:** Step Cutting & Filing, Drilling & Tapping, V-Fitting
- 3. **HOUSE WIRING**: Parallel & Series, Two-Way Switch, Tube light Connections.
- 4. SHEET METAL WORKING: Open Scoop, Funnel, Rectangle Tray.
- 5. **BLACK SMITHY:** Upsetting, Fullering, S-Hook
- 6. WELDING: Lap joint, Single V-butt joint, Corner joint

7. **PLUMBING:** Practice of Internal & External Pipe Threading, Pipe Fitting, Tap and Shower connections.

B. TRADES FOR DEMONSTRATION AND EXPOSURE:

- 1. Machines (lathe and drilling)
- 2. Injection Molding
- 3. Mould making and Casting
- 4. Basic Electronics Lab Instruments
- 5. 3D Printing

C. PRESENTATIONS AND VIDEOS LECTURES:

- 1. Manufacturing Methods
- 2. Glass Cutting
- 3. 3D Printing
- 4. CNC Lathe
- **D. IT-WORKSHOP:** Computer hardware, Identification of parts, disassembling and assembling of computer to working condition. Operating System Installation

Text Book:

 P. Kannaiah, K.L.Narayana "Workshop Manual" Scitech Publications; 2nd Edition.

References:

- 1. Venugopal,K, "Workshop Manual", Anuradha Publications; 2012th edition.
- 2. K.C.John, "Mechanical Workshop" 2nd Edition, PHI, 2010.
- 3. Hajra Choudhury, "Elements of Workshop Technology" Vol.1, Asian Publishers, Edu., 2010.

Course code	Course Title	Core/ Elective			ve		
2BS202HS	En sin a sein a Mathamatian	Core					
	Engineering Mathematics –	L	Т	P/D	Credits	CIE	SEE
	11	3	1	0	4	40	60

Prerequisite: Basics of Differentiation, Integration and Trigonometric results. **Course Objectives:** The objective of this course is to make the student

- > Study the concepts of sequences, series, and their properties.
- Provide the over view of ordinary differential equations of first order and their application to mathematical problems.
- Solving higher order ordinary differentiation by various mathematical methods.
- > Evaluate improper integrals using Beta and Gamma functions
- > Study Laplace transforms and its applications to differential equations.

Course Outcomes:

After completion of the course, the student will be able to

- CO.1. To Test for the convergence and divergence of infinite series using the comparison test, Ratio test, Cauchy's n'th root test, Leibnitz's test, and also analyzing the nature of series.
- CO.2. Solve the ordinary differential equations of first order and their physical and geometrical applications.
- CO.3 Solve the ordinary differential equations of second and higher with constant and variable coefficient by different methods. Solution of nonhomogeneous equations, Euler-Cauchy equation. Method of variation of parameters.
- CO.4 Evaluate the improper integrals using beta and gamma functions. Solution of Legendre polynomials.
- CO.5 Evaluate Laplace Transforms, Inverse Laplace Transforms of functions and their applications to ordinary differential equations.

Unit-I (10Hrs)

Sequence and series: Sequences—General properties of series, Series of positive terms, Comparison test, tests of convergence-D'Alembert's Ratio test, Cauchy's nth root test, Raabe's test, Logarithmic test, Alternating series, Series of positive and negative terms, Absolute convergence, and Conditional convergence.

Unit-II (10Hrs)

Differential Equations of First Order: Exact Differential Equations, Integrating Factors, Linear differential Equations, Bernoulli's Equation, Riccati's and Clairaut's differential equations, Orthogonal Trajectories of a Given Family of Curves, Applications of differential equations-L-C, L-R circuit.

MCET, Hyderabad

Unit-III (12Hrs)

Differential Equations of Higher Order: Solutions of second and higher order linear Homogenous Equations with Constant Coefficients, Solutions of non-homogeneous linear differential equations, Method of Variation of Parameters, solution of Euler-Cauchy Equation, Applications of differential equations-L-CR circuit.

Unit-IV (8Hrs)

Special functions: Gamma Function, Beta Function, Relation between Gamma and Beta Functions, Error Function, Power Series Method, Legendre's Differential Equations and Legendre's Polynomial Pn(x), Orthogonal property of Legendre's Polynomial Rodrigue's Formula (with proof).

Unit-V (10Hrs)

Laplace Transforms: Laplace Transforms, Inverse Laplace Transforms, Properties of Laplace Transforms and inverse Laplace Transforms, Convolution Theorem (without proof). Solution of ordinary differential Equations using Laplace Transforms.

TEXT BOOKS :

- T1. Dr.B.S. Grewal, Higher. Engineering Mathematics, Khanna Publications, 43rd Edition,2014. (Unit 1-5)
- T2. Advance Engineering Mathematics by Jain and Iyengar,5th Edition, Narosa Publications (Unit 1-5)
- T3.B. V. Ramana, Higher Engineering Mathematics,3rd Edition 2015. (Unit 1-5)

REFERENCES/ SUGGESTED READING:

- R1. M.D Raisinghania, Ordinary Differential Equations, 11th Revised Edition
- R2. S.S. Sastry, Engineering mathematics, 3rd Edition, Paperback
- R3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley, 9th Edition, 2012.
- R4. Peter. V. O' Neil, Advance Engineering Mathematics,' Publisher, Global Engineering 7th Edition, 2012

Course code	Course Title	Core/ Elective					
	ENCINEEDING DUVGLOG				Core		
2BS205HS	ENGINEERING PHYSICS	L	Т	P/D	Credits	CIE	SEE
		3	1	0	4	40	60

Prerequisite: Basics of Oscillations, Crystals, magnetic materials..

Course Objectives: The objective of this course is to make the student

- > The objective of this course is to make the student to
- understand the basics concepts of waves and oscillations
- > The knowledge of different types of crystal systems, to analyze the crystal parameters and to classify the defects present in the crystal.
- > Understand the properties of Magnetic and superconducting materials.
- Know the construction of lasers and optical fibers and apply their basic principles to various laser systems and optical fibers
- Acquire knowledge of acoustics and Ultrasonics

Course Outcomes:

After completion of the course, the student will be able to

- CO202.1. Solve engineering problems using the concept to waves and oscillations
- CO202.2 classify Crystal's systems and acquire the knowledge of various imperfections.
- > CO202.3 have exposure on magnetic and dielectric materials.
- CO202.4 Explain the lasing action in lasers, propagation of light in optical fibers and compile their applications different fields.
- > CO202.5 knowledge about acoustics, ultrasonics and its applications

Unit – I (12 Hrs)

Waves and Oscillations: Simple Harmonic Oscillators- Complex number notation and phasor representation of simple harmonic representation - damped Harmonic oscillator- heavy damping, critical damping, weak damping, Energy decay in damped Harmonic oscillator – Quality factor – Forced Oscillations- steady state solution, resonance - power absorbed by a forced oscillator.

UNIT II (10 Hrs)

Crystallography: Introduction, Types of crystal systems, Space Lattice, Bravais lattices, Lattice planes and Miller Indices (Cubic system), Inter planar'd' spacing (Cubic system), Bragg's law, Powder diffraction method.

Crystal Defects: Classification of point defects, Concentration of Schottky defects in metals and ionic crystals, Concentration of Frenkel defects, Line defects, Screw and Edge dislocations, Burger's vector

UNIT III (10 Hrs)

Magnetic materials: Introduction, Classification of magnetic materials – Dia, para, ferro, antiferro and ferri magnetic materials their properties and ferrites applications, Weiss molecular field theory of ferro magnetism, Domain theory,

Hysteresis curve, Soft and hard magnetic materials and their applications.

Superconductivity: Introduction, General properties of superconductors, Meissner effect, BCS theory (qualitative), Type I and Type II superconductors, Applications of superconductors

Unit – IV (9 Hrs)

Lasers: Characteristics of Lasers – monochromatic, directionality, coherence, divergence, Basic concepts of transitions - absorption, spontaneous and stimulated emissions, Einstein's theory of matter and radiation interaction (A & B coefficients), Concepts of meta stable states, population inversion and pumping, Components of lasers, Types of lasers- Ruby laser, He-Ne laser, Semiconductor laser and Applications of laser.

Fiber optics: Introduction to Optical fiber, structure of an optical fiber, Basic principle – total internal reflection, Concept of Numerical Aperture(NA) and acceptance angle, Derivation of Numerical Aperture, Types of optical fibers – Step Index and Graded Index fibers(w.r.t to refractive index and mode of propagation), Fiber drawing process (Double crucible method), Applications of optical fibers.

Unit - V (9 Hrs)

Acoustics and Ultrasonics: Acoustics: Reverberation, reverberation time, Sabine's formula (qualitative), absorption coefficient, measurement of absorption coefficient, factors affecting acoustics of an auditorium and their remedies; Ultrasonics: Introduction; Generation of ultrasonic waves; Magnetostriction method, piezoelectric method, properties, applications.

Text Books:	
T1.	N. Subrahmanyam and Brij Lal, Waves and Oscillations, 2nd
	Revised edition, S.Chand, Jan 2018, Paperback (Unit 1)
Τ2.	B.K.Pandey and S.Chaturvedi, Engineering physics, Cengage
	Publications, 2012, 1 st Edition. (Unit 1-5)
ТЗ.	M.N.Avadhanulu, P.G. Kshirsagar and TVS Arun Murthy, A
	Text Book Engineering Physics, 11th Edition, S.Chand,
	2018.(Unit 1-5).
References/ Sug	ggested Reading
R1.	R. Murugeshan and Kiruthiga Sivaprasath, Modern Physics, S.
	Chand Publications, 2014.
R2.	Charles Kittel, Introduction to Solid State Physics, Wiley India
	Edition Paperback – 1 January 2019
R3.	V. Raghavan, Materials Science and Engineering, Prentice Hall
	India Learning Private Limited 6 th Revised Edition,
	2015Publications (unit 1-5)

MCET, Hyd		Core/ Elective					
Course coe	ENGINEERING	Core					
	MECHANICS -II	L	Т	P/D	Credits	CIE	SEE
2ES202CE		3	0	0	3	40	60
Prerequisite: Engineering Mechanics 1							
Course Obje	tives: The objective of this course i	s to m	ake tl	ne stude	ent		
> Kii	ematics of rigid bodies modelled	as pa	article	es: Rec	tilinear an	d curv	ilinear
mo	ion						
> Co	cepts of dynamic equilibrium an	d app	licati	ions to	problems	on dy	namic
mo	ion of rigid bodies						
> Wo	k-energy principle for solving	g un	know	n kin	nematic a	nd dy	namic
par	meters in rigid body motion.						
≻ Im	ulse and Momentum principle to s	olve p	oroble	ems inv	volving col	lisions	
> Co	cepts of simple harmonic motion a	nd m	echar	nical vi	bration		
Course Out							
After comple	on of the course, the student will be	able (to				
	1 Solve for the kinematic parameter	s of r	ectili	near an	d curviline	ar trans	lations
	gid bodies modelled as particles						
> CO.2 Solve for the unknown forces and kinetic parameters for particles and							
connected bodies using dynamic equilibrium equations							
	CO.3 Apply the work-energy principle for solving problems on dynamics for						
1	cles and connected bodies				41	·	- 1:
	4 Apply the linear impulse moment	num	prine	iple for	the proble	ems inv	olving
-	act and collisions of rigid bodies	1	c c	,			. ,
> CC	5 Formulate dynamic equations ar	a solv	ve foi	unkno	wn parame	ters in	simple

harmonic motion of solid bodies

Unit-I: (10 Hrs)

Kinematics: Rectilinear and curvilinear translation (uniform and variable acceleration). Rectangular, normal and tangential components of acceleration.

Unit-II: (10 Hrs)

Kinetics: General Principles of kinetics, D' Alembert's principle and its application to particle motion, angle of banking and connected bodies.

Unit-III: (06 Hrs)

Work-Energy Method: Work done by a force and kinetic energy of a particle. Equation of work energy for translation - applied to particle motion and connected bodies.

Unit-IV: (08 Hrs)

Impulse and Momentum: Introduction to linear impulse-momentum, principle of conservation of linear momentum and its applications. Elastic impact and coefficient of restitution.

Unit-V: (06 Hrs)

Mechanical Vibrations: Introduction, amplitude, time period, frequency, simple harmonic motion, free vibrations, simple pendulum

T Text Books

T1. Engineering Mechanics: Principles of Statics and Dynamics, R. C. Hibbler, Pearson Education; Fourteenth edition, 2017

T2. Engineering Mechanics S.S. Bhavikatti et al, New Age International Publishers, 2017 (Unit 1-5)

References/ Suggested Reading

R1. Engineering Mechanics (In SI Units), by S.P. Timoshenko,D.H. Young, J.V. Rao, Sukumar Pati, McGraw Hill International,5th edition, 2017

R2. A Textbook of Engineering Mechanics, R.S. Khurmi and N. Khurmi, S. Chand Publications, 22nd Edition, 2018 (Unit1-5)

R3. Engineering Mechanics - Statics and Dynamics, by N H Dubey, McGraw Hill Education, 2017

R4. Singer's Engineering Mechanics Statics and Dynamics, by K. Vijay Kumar Reddy and J. Suresh Kumar, B.S. Publishers, 2011

R5. Engineering Mechanics Statics and Dynamics, A. K. Tayal, 14th Edition, Umesh Publishers, 2010.

Course code	Course Title	Core/ Elective					
	Elements of Electrical and	Core					
2ES202EE	Electronics Engineering	L	Т	P/D	Credits	CIE	SEE
		3	0	0	3	40	60

Prerequisite: Basics of Oscillations, Crystals, magnetic materials..

Course Objectives: The objective of this course is to make the student

- Familiarize with electrical networks, circuits and different Laws used to solve electrical circuits.
- Understand various network reduction techniques to analyze electrical circuits.
- Understand the concept of network theorems for reducing complex networks.
- > Understand the characteristics of diodes and transistor configurations.
- > Understand the design concepts of biasing of BJT and FET.

Course Outcomes:

After completion of the course, the student will be able to

- CO.1 Understand the concepts of electrical circuits and Analyze complex electrical circuits with the help of different network theorems.
- > CO.2 Understand the basic concepts of Electrical DC Machines.
- CO.3Understand the basic concepts of transformers and three phase induction motors.
- > CO.4Analyze the rectifiers and regulator circuits.
- CO.5Analyze the performance of BJTs, FETs on the basis of their operation and working

Unit-I: (08 Hrs)

Introduction to Electrical Circuits: Circuit Concept, R-L-C Parameters, Voltage and Current Sources, Source Transformation, Voltage – Current relationship for Passive Elements, Ohm's Law, Kirchhoff's Laws, Series, Parallel, Series Parallel Combinations, Superposition, Thevenin's, Norton's theorems.

Unit-II: (08 Hrs)

DC Machines: Principle of operation of Generator and Motor-construction of DC machine- EMF equation-Torque equation- Armature circuit equation for motoring and generation, Types of field excitations. Open circuit characteristic of separately excited DC generator. Speed control methods, Losses and Efficiency. **Unit-III: (09 Hrs)**

Introduction to AC fundamentals, Transformers: Principle of operation, construction and operation of single-phase transformers, ideal and practical transformers, equivalent circuit, phasor diagram, voltage regulation, losses and efficiency. Autotransformers - construction, principle of operation applications,

Three-phase transformer - construction, types of connection and their comparative features.

Three-phase induction motors: Three-phase induction motors–Construction, types, production of a rotating magnetic field-principle of operation. Losses and efficiency.

Unit-IV: (07 Hrs)

P-N Junction Diode: Characteristics, Half wave rectifier, Full wave rectifier, filters, ripple, regulation, TUF and efficiency, Zener diode and Zener diode regulators. CRT construction and CRO applications.

Unit-V: (07 Hrs)

Transistors: BJT construction and working, modes of operation, configurations of BJT (CB, CE, CC), small signal h-parameter model of CE, CE amplifier analysis. Construction and working of JFET, V-I characteristics of JFET.

Introduction to Oscillators: LC oscillators, RC oscillators (Qualitative Treatment only).

Text Books:

- T1. Electrical Circuit Analysis, William H Hayt and Jack Kemmerly, 8th Edition, 2014 (Unit 1-3)
- T2. Electronic Devices, Floyd, Pearson Publications, Seventh Edition, 2019. (Unit 4-5)

References/ Suggested Reading:

R1. "Basic Electrical Engineering", N. K. De, Universities Press, 2015.

R2. "Fundamentals of Electrical Engineering and Electronics", J.B. Gupta, S. K. Kataria& Sons Publications, 2002.

R3. "Electronic Devices and Circuits", Theodore F Bogart, Pearson Publications,2004.

R4. "Electronics Devices and Circuits", J B Gupta, Katson Educational Series, 6^{th} Edition.

R5. Circuit Theory Analysis and Synthesis by Abhijit Chakrabarti ,Dhanpat Raj & Co., 2018.(Unit 1-3). MCET, Hyderabad

w. e. f Academic Year 2021-22

MCET, Hyderabad		w. e. f Academic Year 2021-22						
Course code	Course Title	Core/ Elective						
	С	Core						
2MC201CE Enviror	mental Science		P/D	Credits	SEE	CIE		
	2	0	0	2	40	60		
Prerequisite:								
Course Objectives: The objective of this course is to make the student								
Describe various	types of natural resource	es ava	ilable o	n the earth	n surfac	e.		
Explain the cond	epts of an ecosystem and	d the	biotic a	nd abiotic	compo	nents		
of various aquati	c ecosystems.							
Identify the value	es, threats of biodiversity	y, end	langere	d and end	emic sp	pecies		
	th the conservation of bio							
➢ Explain the ca	uses, effects and control	ol m	easures	of vario	us typ	es of		
environmental p					21			
1	thods for water conserva-	ation	the ca	uses, effe	cts of s	lobal		
	te change, acid rain, c					·		
explosion.	te enange, dela fam, e	20110	iuyei	depiction	, popu	ation		
Course Outcomes After	completion of the course	the s	tudent s	vill be abl	e to			
	ne various types of natura				0.10			
	ate between various b			biotic cor	nponen	ts of		
ecosystem.					I.			
➢ CO.3 Examine	the values, threats of	of bi	odivers	ity, the	method	ls of		
	langered and endemic spe							
	causes, effects, contro	ol me	easures	of vario	us type	es of		
environmental p				22				
	> CO.5 Explain the methods of water conservation, causes, effects of climate							
• •	warming, acid rain and	ning, acid rain and ozone layer depletion, population						
explosion. Unit-I: (08 Hrs)								
The Multidisciplinary Nature of Environmental Studies: Definition, scope and								
importance, need for public awareness.								

Natural Resources: Water Resources – Use and over utilization of surface and ground water, flood, drought, conflicts over water, Dams: Benefits and Problems. Food Resources –World Food Problems, effects of modern agriculture, fertilizer-pesticides problems, water logging, salinity, Forest Resources –Use and over exploitation, deforestation & its effect on tribal people. Land Resources –Land Degradation, environmental effect of mining, man induced landslides, soil erosion and desertification. Energy Resources –Growing energy needs, Renewable and Non-renewable energy resources.

Unit-II: (06 Hrs)

Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in ecosystem, food chains,

ecological pyramids, ecological succession, types of ecosystems (marine, pond, river, forest, grassland, desert)

Unit-III: (06 Hrs)

Biodiversity: Levels of Biodiversity, Bio-geographical classification of India, Value of biodiversity, Threats to biodiversity, endangered and endemic species of India, Conservation of biodiversity, global and national efforts.

Unit-IV: (07 Hrs)

Environmental Pollution: Definition, Causes, effects and control measures of air pollution, water pollution, soil pollution, noise pollution, thermal pollution, solid waste management.

Environment Protection Act: Air, water, forest and wildlife Acts, issues in the enforcement of environmental legislation

Unit-V: (06 Hrs)

Social Issues and the Environment: Watershed management and environmental ethics. Climate change, global warming, acid rain, ozone layer depletion.

Environmental Disaster Management: Types of disasters, impact of disasters on environment, infrastructure, and development. Basic principles of disaster mitigation, disaster management, and methodology. Disaster management cycle and disaster management in India.

Field Work:

- Visit to a local area to document
- Visit to a local polluted area- market/slum area/Industrial area/traffic area

Text Books:

- T1. Deswal S. and Deswal A., A Basic Course on Environmental studies, Dhanpat Rai & Co Pvt. Ltd. 2018. (Unit 1-5)
- T2. Perspectives In Environmental Studies, Anubha Kaushik & C.P Kaushik, New Age International Publishers, 6th Edition 2018). (Unit 1–5).

References/ Suggested Reading

R1. Benny Joseph, —Environmental Studies", Tata McGraw Hill (3rd Edition, 2017).

R2. Suresh K. Dhameja, Environmental Studies, S.K. Kataria & Sons, 2010.R3. Rajagopalan R., Environmental Studies, Second Edition, Oxford University Press, 2013.

R4. V.K. Sharma, Disaster Management, National Centre for Disaster Management, IIPE, 1999.

R5. Environmental studies by Erach Bharucha 2005, University Grants Commission, University Press.

MCET, Hyderabad

Course code	Course Title			Co	re/ Electiv	ve	
	ENGINEERING PHYSICS	Co	re	1	n	1	
2BS251HS	LAB	L	Т	P/D	Credits	CIE	SEE
		0	0	3	1.5	40	60
	Higher secondary level Physics				_		
	tives: The objective of this cou						
	y the theoretical knowledge in d		g prac	ctical e	xperiment	ts	
	ire skills to handle instruments.			. 1	1		
	rstand the behavior of semicond	lucto	ors ai	nd opto	o-electroni	c devic	ces.
	yze errors in experimental data.	o1 n o	rom	tora			
	graphs between different physics omes After completion of the co				t will be a	bla to	
	velop analytical/experimental s						de on
	e for engineering laboratories.	KIIIS	anu	mpart	i prerequis	site nan	us-011
	nderstand the need for preci	se i	meas	ureme	nt practic	es for	data
recording			meus	arenie	in practic	05 101	uutu
	derstand the principle, concept,	woi	king	and a	pplication	s of re	levant
	ies and comparison of results w						
	alyze the techniques and skills a						tools
	sers and fiber optics.						
CO. 5 D	evelop basic communication	skill	s thr	ough	working i	n grou	ips in
performin	g the laboratory experiments an				g the resu	lts	
	LIST OF EXP						
	mination of wavelength of laser						
	mination of Numerical Apertu	re (l	NA)	and A	cceptance	angle	of an
	al fiber			• •			
	nd the dielectric constant of a gi				1. 1. (°1	1.6	
	aw the I-V characteristics of sol						
	raw the I-V characteristics of s resistance in forward and rever					to ev	aiuate
	etermine the rigidity modulus o					n wira	usina
	onal Pendulum.	1 unc	, mai		i ule give	ii wiic	using
	udy the Thermistor characteristi	cs d	leteri	nine th	ne constan	ts A an	d B
	lraw the curve between the						
	etization for a given specimen a						
	and Hysteresis loss of the specimen.						
10. Deter	mination of carrier concentration	on, n	nobil	lity and	l Hall co-	efficier	nt in a
semio	semiconductor using Hall Effect experiment.						
	Note: A minimum of eight experiments to be done.						
References:							
-	and Dr.V.Kumar, "Practical phys	sics	with	viva vo	oice", Prag	ati Pral	kashan
	, Revised Edition, 2009				. E		:.,,
	R2. M.N.Avadhanulu, A.A.Dani and Pokely P.M, "Experiments in Engineering Physics", S Chand & Co 2008						

S.Chand & Co,2008

MCEI, Hyder		w. e. j Academic Tear 2021-22					
Course code	Course Title	Core/ Elective					
00000000	Elements of Electrical and	Co		D/D	0 1	CIE	OPP
2ES252EE	Electronics Engineering Lab	L	T	P/D	Credits	CIE	SEE
Duono antata D		0	0	3	1.5	40	60
	asics of networks, circuits, and Se ives: The objective of this course is						
						erimen	ts and
, , , , , , , , , , , , , , , , , , ,	acquire skills to handle instru			115 pru	eneur enp	ernnen	to und
Understand the behavior of semiconductors and electronic devices.							
\succ							
>	_					t laws	and
Course Oute	omes After completion of the cours	e the	e etu	lont wil	l be able to		
	. Explain common electrical con						
	2. Analyze performance of DC an	-			-	5.	
	B.Analyze performance of electri				encuns.		
	Design diode circuit and under				n of zener	diode	
	Analyze characteristics of BJTs					aroue	
)- applications, measurements				ing LCR	meter	
	or coding method.		, _	,			7
	-						
2. Veri	fication of KVL, KCL, Super	rposi	ition	Theo	rem.		
3. Veri	fication of Thevenin's and No	ortoi	n's t	heorei	n.		
	ling of transformer- measurer tages and currents and power.		t of j	prima	ry and see	condai	y
5. Three phase transformers- star and delta connections. Voltage and current relations.							
6. OCC	6. OCC characteristics of DC Generator.						
7. Load	7. Load test on DC shunt Motor.						
	8. Measurement of phase voltage/ current, line voltage/current and power in a balanced three phase circuit connected in star and delta.						
	9. V-I Characteristics of silicon and Germanium diodes and measurement of static and dynamic resistances.						
10.V-I	Characteristics of silicon and	Ger	man	ium d	iodes of 2	Zener	

diode and measurement of static and dynamic resistances.

11.Zener diode application as regulator.

12. Input and output Characteristics of BJT in CB configuration.

13. Input and output V-I Characteristics of BJT in CB configuration.

14. Transfer Characteristics of JFET in CS configuration.

15. Hartley and Collpits oscillator (LC Oscillator).

16.RC Phase shift oscillator (RC oscillator).

Note: A minimum of ten experiments to be done.

References:

R1.J.B. Gupta, —Fundamentals of Electrical Engineering and Electronics S.K. Kataria & Sons Publications, 2002.

R2. Satish Kumar Peddapelli, G. Sridhar, —Electrical Machines – A Practical Approachl, De Gruyter Publications, 2020.

R3. Hughes, —Electrical Technology", VII Edition, International Student - on, Addison Welsey Longman Inc., 1995

R4. Maheshwari and Anand, Laboratory Experiments and PSPICE Simulations in Analog Electronics, 1st edition, Prentice Hall of India, 2006.

R5. David Bell A., Laboratory Manual for Electronic Devices and Circuits, Prentice Hall of India, 2001.

MCET, Hyderabad

MCE1, Hyde		w. e. j Actuernic Teur 2021-22						
Course code	e Course Title			C0	re/ Electiv	e		
2ES251CE	Engineering Graphics Lab	T	т	D/D	Core	CIE	OFF	
2E5251CE		L 2	T 0	P/D 4	Credits 2	CIE	SEE	
Prerequisite	•	Z	0	4	3	40	60	
	 ectives: The objective of this cou	rse i	e to i	make f	he studen	t		
	inculcate a good understanding of						ons &	
	r significance.	1 0112	5	1111 <u>6</u> 4		i v entr	\sim	
 To impart skills to make technical drawings. 								
 To impart skins to make technical drawings. To impart capability to identify and draw engineering curves to scale. 								
≻ To	develop skills of drafting proje	ction	s of	standa	ard geome	etric e	ntities	
(poi	nts, lines, planes, solids with sect	on).						
> To	develop 3D visualization skills to	und	ersta	nd 2D	drawings	in 3D	space	
	ice versa.							
	comes: After completion of the							
	1. Use appropriate instruments ar						ions	
	raw engineering objects to scale of			-				
	2. Make use of Drawing Sheets to	o drat	tt eng	gineeri	ng curves	ike co	nics,	
	olutes & cycloids. (PO1, PO5)	duci	ft	insting	a of lines	mlana		
	3. Make use of Drawing Sheets to ds and determine unknown length						8,	
	4. Make use of AutoCAD softwa		-					
	elopment of surfaces. (PO1, P05)	10 10	ururt	seeno	115 01 50110	5 und		
	5. Convert isometric views to ort	hogra	aphic	& vice	e versa. (P	01,PC)5)	
			·					
Sheet	Description of the To	nia			Cont	act H	ours	
No	Description of the 10	pic			Lectur	e Di	rawing	
1. sig	nciples of Engineering Graphi nificance, Usage of drawing ir ttering				1		2	
2.Conic Sections – I Construction of ellipse, parabola and hyperbola given focus and eccentricity.12						2		
3 Co	nic Sections – II nstruction of ellipse (given ma is), parabola (given base and h							
	tangular hyperbola.						2	

MCET, Hyderabad

	(involute of triangle, square & circle)		
5.	Scales (plain & diagonal scales)	1	2
6.	Orthographic Projections - Projections of points placed in different quadrants.	1	2
7.	Projections of straight lines. Lines parallel to both the planes, line perpendicular to or inclined to one reference plane, Line inclined to both the reference planes.	1	2+2
8.	Projections of planes – I: Orthographic projection of planes in different positions	1	2+2
9.	Projections of solids – I: Regular Prism/Pyramids, cylinders & cones, Projections of solids in simple positions.	1	2
10.	Projection of solids – II: Projections of solids when the axes inclined to one or both the reference planes.	1	2
11.	Introduction to AutoCAD Basic commands and simple drawings	1	2+2
12.	Section of solids – I: When the sectional plane is parallel or perpendicular to one reference plane.	1	2
13.	Section of solids – II: When the sectional plane is inclined to one reference plane.	1	2
14.	Development of surfaces-I Prism and Cylinders	1	2
15.	Development of Surfaces-II Pyramids and Cones	1	2
16.	Isometric projection – I: Conversion of 3D Isometric/oblique views of compound solids to	1	2

	2D Orthographic views		
17.	Isometric projection – II: Isometric projection of Stacked regular solids" regular solids being prisms, pyramids, spheres & their frustum	1	2

Note: A minimum of Fourteen Drawing Work Sheets to be completed. Text Books:

- T1. Engineering Drawing, ND Bhatt, Charotar Publication, 53rd Edition, 2014 (All sheets)
- T2. Engineering Drawing, KL Narayana & P Kannaiha, Scitech publications, 3rd Edition, 2013 (All sheets).

References:

- R1. Engineering Drawing and Graphics Technology, T.E French et al, Mc Graw Hill International.
- R2. Engineering Drawing Graphics & Auto cad, K Venugopal, New Age International.
- R3: Engineering Drawing with a primer on Auto cad, AN Siddique et al, Prentice Hall of India Ltd.
- R4: Engineering Drawing, Basant Agrawal & C M Agrawal, McGraw Hill Publications, Third edition 2019.