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VISION

To produce ethical, socially conscious and innovative professionals
who would contribute to sustainable technological development of the
society.

MISSION

To impart quality engineering education with latest technological
developments and interdisciplinary skills to make students succeed in
professional practice.

To encourage research culture among faculty and students by
establishing state of art laboratories and exposing them to modern
industrial and organizational practices.

To inculcate humane qualities like environmental consciousness,
leadership, social values, professional ethics and engage in independent
and lifelong learning for sustainable contribution to the society.
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DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
VISION & MISSION

VISION

To become a leader in providing Computer Science & Engineering

education with emphasis on knowledge and innovation.

MISSION

e To offer flexible programs of study with collaborations to suit industry

needs.

e To provide quality education and training through novel pedagogical
practices.

e To expedite high performance of excellence in teaching, research and

innovations.

e To impart moral, ethical values and education with social responsibility.
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DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES

After 3-5 years of graduation, the graduates will be able to

PEO1: Apply technical concepts, Analyze, Synthesize data to Design and

create novel products and solutions for the real life problems.
PEO2: Apply the knowledge of Computer Science Engineering to pursue
higher education with due consideration to environment and

society.

PEO3: Promote collaborative learning and spirit of team work through

multidisciplinary projects

PEO4: Engage in life-long learning and develop entrepreneurial skills.
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DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAM OUTCOMES

Engineering graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modelling to complex
engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

P09: Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.



P010: Communication: Communicate effectively on complex engineering activities
with the Engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and
understanding of the engineering and management principles and apply these to one’s
own work, as a member and leader in a team, to manage projects and in
multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context of
technological change.

PROGRAM SPECIFIC OUTCOMES

At the end of 4 years, Computer Science and Engineering graduates at MCET will
be able to:

PSO1: Apply the knowledge of Computer Science and Engineering in various domains
like networking and data mining to manage projects in multidisciplinary

environments.

PS02: Develop software applications with open-ended programming environments.

PS03: Design and develop solutions by following standard software engineering

principles and implement by using suitable programming languages and

platforms



Faculty of Engineering, O.U CBCS Curriculum with effect fiom Academic Year 2019 - 2020

Course Code Course Title Core / Elective
PC 753 CS Data Mining Lab Core
Prerequusite Contact Hours per Week CIE SEE Credits
L T D p
- - - - 2 25 50 1
Course Objectives

~ To introduce the basic concepts of data Mimng and ifs applications
~ To understand different data mining like classification, clustering and Frequent Pattern mining
~ To introduce current trends in data nuning
Course Outcomes
After completing this course, the student will be able to
1. Orgamze and Prepare the data needed for data mining using prepreprocessing techniques
2. Implement the appropriate data mining methods like classification, clustering or Frequent Pattern
muning on a given data set
3. Define and apply metrics to measure the performance of various data mining algorithms

List of Experiments to be performed

1. Implement the following Multidimensional Data Models

a.  Star Schema

b. Snowflake Schema

c. Fact Constellation
Implement Aprion algorithm to generate frequent item sets.
3. Implement the following clustering algorithms

2

a. K-means
b. K-medians
4. Implement the followimng classification algorithms
a. Decision Tree Induction
b. KNN
Perform data preprocessing using WEKA
Perform discretization using WEKA
Classification of algorithms using WEKA
Aprion algorithm using WEKA
Perform data transformations using an ETL Tool
10. A small case study involving all stages of KDD (Datasets are available online like UCI Repository
etc.)

© e oo W
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DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course Outcomes (CO’s):

SUBJECT NAME : DATA MINING LAB CODE :PC753CS
SEMESTER : VII
CO No. Course Outcome Taxonomy
Level
PC 753 CS.1 | Apply data preprocessing techniques Applying
PC 753 CS.2 | Apply Frequent Item-set Mining methods to generate Applying

association rules

PC 753 CS.3 Identify and perform appropriate classification for given Applying
dataset.

PC 753 CS.4 | Categorize and apply appropriate clustering for given Analyzing
dataset.

PC 753 CS.5 | Evaluate models/algorithms with respect to their accuracy. | Evaluating

PC 753 CS.6 | Construct a data mining solution to a practical problem Creating
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GENERAL LABORATORY INSTRUCTIONS

Students are advised to come to the laboratory at least 5 minutes before (to
starting time), those who come after 5 minutes will not be allowed into the lab.
Plan your task properly much before to the commencement, come prepared to the
lab with the program / experiment details.

Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim,
Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab
session.

b. Laboratory Record updated up to the last session experiments.

c. Formal dress code and Identity card.

Sign in the laboratory login register, write the TIME-IN, and occupy the computer
system allotted to you by the faculty.

Execute your task in the laboratory, and record the results / output in the lab
observation note book, and get certified by the concerned faculty.

All the students should be polite and cooperative with the laboratory staff, must
maintain the discipline and decency in the laboratory.

Computer labs are established with sophisticated and high end branded systems,
which should be utilized properly.

Students / Faculty must keep their mobile phones in SWITCHED OFF mode during
the lab sessions. Misuse of the equipment, misbehaviours with the staff and systems
etc., will attract severe punishment.

Students must take the permission of the faculty in case of any urgency to go out. If
anybody found loitering outside the lab / class without permission during working
hours will be treated seriously and punished appropriately.

10. Students should SHUT DOWN the computer system before he/she leaves the lab after
completing the task (experiment) in all aspects. He/she must ensure the system / seat is

kept properly.

Head of the Department Principal
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CODE OF CONDUCT FOR THE L ABORATORY

All students must observe the dress code while in the laboratory

Footwear is NOT allowed

Foods, drinks and smoking are NOT allowed

All bags must be left at the indicated place

The lab timetable must be strictly followed

Be PUNCTUAL for your laboratory session

All programs must be completed within the given time

Noise must be kept to a minimum

Workspace must be kept clean and tidy at all time

All students are liable for any damage to system due to their own negligence
Students are strictly PROHIBITED from taking out any items from the laboratory

Report immediately to the lab programmer if any damages to equipment

BEFORE LEAVING L AB:

Arrange all the equipment and chairs properly.
Turn off / shut down the systems before leaving.

Please check the laboratory notice board regularly for updates.

Lab In —charge
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DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LIST OF EXPERIMENTS

SI. Name of the Experiment Date of Date of Page Faculty
No. Experiment | Submission | No | Signature
1. | Implement the following 1
Multidimensional Data Models
i. Star Schema
ii. Snowflake Schema
iii. Fact Constellation
2. | Implement Apriori algorithm to generate 5
frequent Item Sets
3. | Implement the following clustering 11
algorithms
i. K-means
Ii. K-mediods
4. | Implement the following classification 17
algorithms
i. Decision Tree Induction
ii. KNN
5. | Perform data Preprocessing using WEKA 25
6. | Perform Discritization of data using 29
WEKA
7. | Classification algorithms using WEKA 46
8. | Apriori algorithm using WEKA 58
9. | Perform data transformations using an 60
ETL Tool
10. | A small case study involving all stages of 66

KDD. (Datasets are available online like
UCI Repository etc.)




ADDITIONAL EXPERIMENTS

SI. Narme of the Experiment Date of Date of Page Faculty
No. P Experiment | Submission | No Signature
1 Data Manipulation in R 78

2. Classification in R 81




MCET DATA MINING LAB MANUAL
PROGRAM 1.

Aim : Implement the following Multidimensional Data Models
I. Star Schema
ii. Snowflake Schema
Iii. Fact Constellation

Schema is a logical description of the entire database. It includes the name and description of
records of all record types including all associated data-items and aggregates. Much like a database,
a data warehouse also requires to maintain a schema. A database uses relational model, while a data
warehouse uses Star, Snowflake, and Fact Constellation schema. In this chapter, we will discuss the
schemas used in a data warehouse.

Star Schema

« Each dimension in a star schema is represented with only one-dimension table.

o This dimension table contains the set of attributes.

o The following diagram shows the sales data of a company with respect to the four
dimensions, namely time, item, branch, and location.

time sales item

Dimension table Fact table Dimension table
time_key time_key item_key

day item_key item_name
day_of_the_week branch_key brand

month [ocation_key type

quarter dollars_sold supplier_typd
year units_sold

Branch Location
Dimension table Dimension table
branh_key location_key
branch_name street
branch_type city

province_or_state

country

o There is a fact table at the center. It contains the keys to each of four dimensions.
o The fact table also contains the attributes, namely dollars sold and units sold.

Note: Each dimension has only one dimension table and each table holds a set of attributes. For
example, the location dimension table contains the attribute set {location_key, street, city,
province_or_state,country}. This constraint may cause data redundancy. For example, "Vancouver"
and "Victoria" both the cities are in the Canadian province of British Columbia. The entries for such
cities may cause data redundancy along the attributes province_or_state and country.

Snowflake Schema

o Some dimension tables in the Snowflake schema are normalized.
e The normalization splits up the data into additional tables.

Page 1
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e Unlike Star schema, the dimensions table in a snowflake schema are normalized. For
example, the item dimension table in star schema is normalized and split into two dimension
tables, namely item and supplier table.

time sales item supplier
dimension table fact table dimension table dimension table
time_key time_key item_key supplier_key
day item_Key item_name | / |SUPPlier_typ
day_of_week branch_key brand
month Tocation_key type '
quarter dollars_sold | supplier_key
year units_sold
Branch Location
Dimension table Dimension table
branh_key _ location_key
ranch_name _city: street
branch_type dimension table City_key
City_key —|—
City
Province_or_statq
country I

« Now the item dimension table contains the attributes item_key, item_name, type, brand, and
supplier-key.

o The supplier key is linked to the supplier dimension table. The supplier dimension table
contains the attributes supplier_key and supplier_type.

<b<>Note: Due to normalization in the Snowflake schema, the redundancy is reduced and
therefore, it becomes easy to maintain and the save storage space.</b<>

Fact Constellation Schema

o A fact constellation has multiple fact tables. It is also known as galaxy schema.
« The following diagram shows two fact tables, namely sales and shipping.

time sales item shipping
dimension table fact table dimension table fact table
—{ time_key time_key item_key item_key
day item_key item_name Time key |
day_of_week _| branch_key brand shipper_key
month location_key. | type from_location
quarter dollars_sold supplier_key 30 location
year units_sold dollars_cost
units_s_hipped
branch location
dimension table dimension table shipper
l;ranhikey 7 location_key dimension table
ranch_name Street : [
shipper-key
branch_type City shipper_name
Province_or_state l[ocation_key
country shipper_type

Page 2
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e The sales fact table is same as that in the star schema.
e The shipping fact table has the five dimensions, namely item_key, time_key, shipper_key,
from_location, to_location.
« The shipping fact table also contains two measures, namely dollars sold and units sold.
o It is also possible to share dimension tables between fact tables. For example, time, item,
and location dimension tables are shared between the sales and shipping fact table.
Schema Definition
Multidimensional schema is defined using Data Mining Query Language (DMQL). The two
primitives, cube definition and dimension definition, can be used for defining the data warehouses
and data marts.
Syntax for Cube Definition
define cube < cube_name > [ < dimension-list > }: < measure_list >
Syntax for Dimension Definition
define dimension < dimension_name > as ( < attribute_or_dimension_list >)
Star Schema Definition
The star schema can be defined using Data Mining Query Language (DMQL) as follows:
define cube sales star [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)
define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier type)
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city, province or state, country)
Snowflake Schema Definition
Snowflake schema can be defined using DMQL as follows:
define cube sales snowflake [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)
define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier (supplier key, supplier type))
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city (city key, city, province or state, country))

Fact Constellation Schema Definition

Fact constellation schema can be defined using DMQL as follows:

Page 3
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define cube sales [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier type)
define dimension branch as (branch key, branch name, branch type)

define dimension location as (location key, street, city, province or state,country)
define cube shipping [time, item, shipper, from location, to location]:

dollars cost = sum(cost in dollars), units shipped = count(*)

define dimension time as time in cube sales

define dimension item as item in cube sales

define dimension shipper as (shipper key, shipper name, location as location in cube sales, shipper
type)

define dimension from location as location in cube sales

define dimension to location as location in cube sales

Viva Voce

1) Define Schema

2) Define dimension table and fact table

3) What is a star schema?

4) Define fact-less fact.

5) What is a data cube?

6) What is a snow flake schema?

7) What is the language that is used for schema definition?
8) What is a data warehouse?

9) What is a data mart?

10) What isa Fact Constellation schema?

Page 4
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PROGRAM 2.

Aim : Implement Apriori algorithm to generate frequent Item Sets

Introduction:

Apriori is an algorithm for frequent item set mining and association rule learning over transactional
databases. It proceeds by identifying the frequent individual items in the database and extending
them to larger and larger item sets as long as those item sets appear sufficiently often in the
database. The frequent item sets determined by Apriori can be used to determine association rules
which highlight general trends in the database: this has applications in domains such as market
basket analysis.

Working:

Apriori is designed to operate on databases containing transactions (for example, collections of
items bought by customers, or details of a website frequentation). Other algorithms are designed for
finding association rules in data having no transactions (Winepi and Minepi), or having no
timestamps (DNA sequencing). Each transaction is seen as a set of items (an itemset). Given a
threshold C', the Apriori algorithm identifies the item sets which are subsets of at least '
transactions in the database.

Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step
known as candidate generation), and groups of candidates are tested against the data. The algorithm
terminates when no further successful extensions are found.

Apriori uses breadth-first search and a Hash tree structure to count candidate item sets efficiently. It
generates candidate item sets of length Akfrom item sets of length & — 1. Then it prunes the
candidates which have an infrequent sub pattern. According to the downward closure lemma, the
candidate set contains all frequent k-length item sets. After that, it scans the transaction database to
determine frequent item sets among the candidates.

Page 5
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Low Level Design

Add to strong rules
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Program:

import java.io.*;
class apriori

{

public static void main(String [Jarg)throws IOException
{
inti,j,m=0;
int t1=0;
BufferedReader b=new BufferedReader(new InputStreamReader(System.in));
System.out.printIn("Enter the number of transaction :*);
int n=Integer.parselnt(b.readLine());
System.out.printin(“items :1--Milk 2--Bread 3--Coffee 4--Juice 5--Cookies 6--Jam");
int item[][]J=new int[n][6];
for(i=0;i<n;i++)
for(j=0;j<6;j++)

item[i][j]=0;
String[] itemlist={"MILK","BREAD","COFFEE","JUICE","COOKIES","JAM"};
int nt[]=new int[6];
int g[]=new int[6];
for(i=0;i<n;i++)
{ System.out.printin("Transaction "+(i+1)+" :");

for(j=0;j<6;j++)

{ /ISystem.out.printIin(itemlist[j]);

System.out.printin(ls Item "+itemlist[j]+" present in this transaction(1/0)? :");
item[i][j]=Integer.parselnt(b.readLine());

¥
for(j=0;j<6;j++)
{ for(i=0;i<n;i++)
{if(item[i][j]==1)
nthl=nt[j]+1;
¥

System.out.printin(*Number of Item "+itemlist[j]+" :"+nt[j]);

}

for(j=0;j<6;j++)
{if(((nt[j}/(float)n)*100)>=50)
abl=1;
else
alj]=o;

if(q[j]==1)
{tl++;
System.out.printIn("Item "+itemlist[j]+" is selected ");

}
}
for(j=0;j<6;j++)
{ for(i=0;i<n;i++)

{

Page 7
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if(q[i]==0)
{

item[i][j]=0;
}
}
}

int nt1[][]=new int[6][6];
for(j=0;j<6;j++)
{ for(m=j+1;m<6;m++)
{ for(i=0;i<n;i++)
{ if(item[i][j]==1 &&item[i][m]==1)
{ nt1fj][m]=nt1[j][m]+1;
}

}
if(nt1[j][m]'=0)
System.out.printin("Number of Items of "+itemlist[j]+"& "+itemlistim]+" :"+nt1[j][m]);

}

}
for(j=0;j<6;j++)
{ for(m=j+1;m<6;m++)

{
if(((ntL[j][m]/(float)n)*100)>=50)
qlil=1;
else
qli1=0;
{if(Q[i ==1)
System.out.printin("ltem "+itemlist[j]+"& "+itemlistim]+" is selected ");
}
}
}
}
}

Expected Output:
C:\>javac apriori.java

C:\>java apriori

Enter the number of transaction : 4

items :1--Milk 2--Bread 3--Coffee 4--Juice 5--Cookies 6--Jam
Transaction 1 :

Is Item MILK present in this transaction(1/0)? :1

Is Item BREAD present in this transaction(1/0)? :1

Is Item COFFEE present in this transaction(1/0)? :0

Is Item JUICE present in this transaction(1/0)? :1

Is Item COOKIES present in this transaction(1/0)? :1

Is Item JAM present in this transaction(1/0)? :0

Page 8
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Transaction 2 :

Is Item MILK present in this transaction(1/0)? :1

Is Item BREAD present in this transaction(1/0)? :0
Is Item COFFEE present in this transaction(1/0)? :0
Is Item JUICE present in this transaction(1/0)? :1

Is Item COOKIES present in this transaction(1/0)? :0
Is Item JAM present in this transaction(1/0)? :0
Transaction 3 :

Is Item MILK present in this transaction(1/0)? :1

Is Item BREAD present in this transaction(1/0)? :0
Is Item COFFEE present in this transaction(1/0)? :0
Is Item JUICE present in this transaction(1/0)? :0

Is Item COOKIES present in this transaction(1/0)? :0
Is Item JAM present in this transaction(1/0)? :1
Transaction 4 :

Is Item MILK present in this transaction(1/0)? :0

Is Item BREAD present in this transaction(1/0)? :1
Is Item COFFEE present in this transaction(1/0)? :1
Is Item JUICE present in this transaction(1/0)? :0

Is Item COOKIES present in this transaction(1/0)? :1
Is Item JAM present in this transaction(1/0)? :0
Number of Item MILK :3

Number of Item BREAD :2

Number of Item COFFEE :1

Number of Item JUICE :2

Number of Item COOKIES :2

Number of Item JAM :1

Item MILK is selected

Item BREAD is selected

Item JUICE is selected

Item COOKIES is selected

Number of Items of MILK& BREAD :1

Number of Items of MILK& COFFEE :0

Number of Items of MILK& JUICE :2

Number of Items of MILK& COOKIES :1
Number of Items of MILK& JAM :0

Number of Items of BREAD& COFFEE :0
Number of Items of BREAD& JUICE :1

Number of Items of BREAD& COOKIES :2
Number of Items of BREAD& JAM :0

Number of Items of COFFEE& JUICE :0

Number of Items of COFFEE& COOKIES :0
Number of Items of COFFEE& JAM :0

Number of Items of JUICE& COOKIES :1
Number of Items of JUICE& JAM :0

Number of Items of COOKIES& JAM :0

Item MILK& JUICE is selected

Item BREAD& COOKIES is selected

Page 9
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Viva Voce

1) Define Apriori property

2) What are the two steps of Apriori algorithm?

3) Define support and confidence in Association rule mining.
4) What is Association rule?

5) What are the Applications of Association rule mining?

6) How are association rules mined from large databases?

7) What is pruning

8) How is apriori property used in algorithm

9) Define frequent item set

10) What are the limitations of Apriori Algorithm

Page 10
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PROGRAM 3:
Aim : Implement the following clustering algorithms

i. K-means
ii. K-mediods

K-Means Clustering Algorithm

K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering
problems in machine learning or data science. In this topic, we will learn what is K-means
clustering algorithm, how the algorithm works, along with the Python implementation of k-means
clustering.

K-Means Clustering is an Unsupervised Learning algorithm, which groups the unlabeled dataset
into different clusters. Here K defines the number of pre-defined clusters that need to be created in
the process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so
on.

It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a way
that each dataset belongs only one group that has similar properties.

It allows us to cluster the data into different groups and a convenient way to discover the categories
of groups in the unlabeled dataset on its own without the need for any training.

It is a centroid-based algorithm, where each cluster is associated with a centroid. The main aim of
this algorithm is to minimize the sum of distances between the data point and their corresponding
clusters.

The algorithm takes the unlabeled dataset as input, divides the dataset into k-number of clusters,
and repeats the process until it does not find the best clusters. The value of k should be
predetermined in this algorithm.

The k-means clustering algorithm mainly performs two tasks:

o Determines the best value for K center points or centroids by an iterative process.

o Assigns each data point to its closest k-center. Those data points which are near to the
particular k-center, create a cluster.

Hence each cluster has datapoints with some commonalities, and it is away from other clusters.

The working of the K-Means algorithm is explained in the below steps:

Step-1: Select the number K to decide the number of clusters.
Step-2: Select random K points or centroids. (It can be other from the input dataset).

Step-3: Assign each data point to their closest centroid, which will form the predefined K
clusters.

Step-4: Calculate the variance and place a new centroid of each cluster.

Page 11
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Step-5: Repeat the third steps, which means reassign each datapoint to the new closest
centroid of each cluster.

Step-6: If any reassignment occurs, then go to step-4 else go to FINISH.
Step-7: The model is ready.
Program:

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;

import java.io.FileReader;
import java.io.FileWriter;
import java.io.lOException;
import java.util. ArrayL.ist;
import java.util.Collections;
import java.util.Random;

import java.util.StringTokenizer;

public class Kmeans {

public static class Instance {
ArrayList<Double> mAttributes = new ArrayList<>();
String mClass;

@Override
public String toString() {
return mAttributes.toString() + "\t" + mClass;

}
}
public static class Cluster {
String name;

ArrayList<Double> oldCentroid = new ArrayList<>();
ArrayList<Double> newCentroid = new ArrayList<>();

public boolean isStillMoving() {
double difference = 0.0;
for (int i = 0; i < oldCentroid.size(); i++) {
difference += Math.abs(oldCentroid.get(i) - newCentroid.get(i));
}

return (difference > 0.1);

¥
¥

private static String minputFilename;
private static String mOutputFilename;

private static ArrayList<Instance> instances = new ArrayList<>();
private static ArrayList<Cluster> clusters = new ArrayList<>();
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private static int clusterCount;
private static int iteration = 0;

public static void main(String[] args) throws IOException {
if (args.length < 3) {
System.out.printin("Arguments are incorrect. Try Application #inputfilename
#outputfilename #clusterCount");
System.exit(0);
¥

else {
minputFilename = args[0];
mOutputFilename = args[1];
clusterCount = Integer.parselnt(args[2]);
readData();
cluster();

ArrayList<String> output = new ArrayList<>();

output.add("ITERATIONS : " + iteration);

for (Instance i : instances) {
output.add(i.toString());

¥

PutFileData(output);

¥
¥

// random number generator in a range, upper bound not included
public static int randInt(int min, int max) {

Random random = new Random();

return random.nextInt((max - min)) + min;

}

public static void cluster() {
do {
System.out.printin(++iteration);

if (iteration == 1) {
// initialize clusters
for (inti =0; i < clusterCount; i++) {
Cluster ¢ = new Cluster();
c.name=i+""
c.oldCentroid.addAll(instances.get(i). mAttributes);
clusters.add(c);

¥
}else {
Il copy new mean to old
for (int i =0; i < clusterCount; i++) {
clusters.get(i).oldCentroid.clear();
clusters.get(i).oldCentroid.addAll(clusters.get(i).newCentroid);

}

/[ assign instances
for (Instance i : instances) {
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ArrayList<Double> distances = new ArrayList<>();

for (Cluster c : clusters) {
distances.add(getDistance(i.mAttributes, c.oldCentroid));

¥

i.mClass = clusters.get(distances.indexOf(Collections.min(distances))).name;

}

/ calc new mean
for (int j = 0; j < clusterCount; j++) {

ArrayList<Double> centroid = new ArrayList<>();
for (inti = 0; i < clusters.get(j).oldCentroid.size(); i++) {
double sum = 0.0;
int count = 0;
for (Instance inst : instances) {
if (inst. mClass.equals(clusters.get(j).name)) {
sum += inst.mAttributes.get(i);
count++;

}

centroid.add(sum / count);

}

clusters.get(j).newCentroid.clear();
clusters.get(j).newCentroid.addAll(centroid);

¥
} while (isStilIMoving()&& iteration < 10);
¥

public static boolean isStillMoving(){

for(int i=0;i<clusterCount;i++){
if(clusters.get(i).isStillMoving()){
return true;
¥
}

return false;

public static double getDistance(ArrayList<Double> a, ArrayList<Double> b) {

double distance = 0;

for (inti=0; i <asize(); i++) {
double x = a.get(i);
double y = b.get(i);
distance += (X - y) * (X - y);

¥

return Math.sqgrt(distance);
}
Il get data

public static void readData() throws I0Exception {
StringTokenizer st;
int size;
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ArrayList<String> line;
line = GetFileData();

for (String str : line) {
Instance value = new Instance();
st = new StringTokenizer(str, ",");
size = st.countTokens();
for (inti=0; i <size; i++) {
value.mAttributes.add(Double.parseDouble(st.nextToken()));
}

instances.add(value);

}

/I File read write functions
public static ArrayList<String> GetFileData() throws IOException {

}

String line;
ArrayList<String> fileData = new ArrayList<String>();
BufferedReader bufferedReader = new BufferedReader(new FileReader(
minputFilename));
while ((line = bufferedReader.readLine()) != null) {
fileData.add(line);
¥

bufferedReader.close();
return fileData;

public static void PutFileData(ArrayList<String> output) throws IOException {

File f = new File(mOutputFilename);
it (If.exists()) {

f.createNewFile();
¥

BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(
mOutputFilename, true));
bufferedWriter.newLine();
for (String line : output) {
bufferedWriter.write(line);
bufferedWriter.newLine();

}
bufferedWriter.close();
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Expected Output:

Training data output
1| train - Notepad B LSl F:“'::'h:‘:p: View Help ==
3,30 ITERATIONS : 3
8,57 [3.0, 30.0] 0
9,64 (8.0, 57.0] 1
13,72 [9.0, 64.0] 1
3,36 [13.0, 72.0] 2
6,43 (3.0, 36.0] 0
11.59 [6.0, 43.0] (0]
21’90 ;11-0, 59.0] 1
1 iO [21.0, 90.0] 2
16783 (1.0, 20.0] 0

’ [16.0, 83.0] 2

___ _ = IL _ =

Viva Voce

1) What is Clustering?

2) What are different types of clustering?
3) How does the K mean algorithm work
4) Define unsupervised Learning

5) How to determine the number of clusters in k-means clustering algorithm?
6) What are the fields in which clustering techniques are used?

7) What are the different types of data used for cluster analysis?
8) What are the requirements of cluster analysis?

9) What do you mean by partitioning method?

10) What are the requirements of cluster analysis?
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PROGRAM 4.

Aim : Implement the following classification algorithms

I. Decision Tree Induction

ii. KNN
I. Decision Tree Induction
Decision tree learning, used in data mining and machine learning, uses a decision tree as a
predictive model which maps observations about an item to conclusions about the item's target
value. More descriptive names for such tree models are classification trees or regression trees. In
these tree structures, leaves represent classifications and branches represent conjunctions of features
that lead to those classifications.
In decision analysis, a decision tree can be used to visually and explicitly represent
decisions and decision making. In data mining, a decision tree describes data but not decisions;
rather the resulting classification tree can be an input for decision making.

e Basic steps

e Building tree

e Applying the tree to database

Internal node-test on attribute

Branch-outcome of test

Leaf node-class

Topmost-root node

Algorithm: Generate decision tree. Generate a decision tree from the training tuples of data
partition, D.

Input:

» Data partition, D, which is a set of training tuples and their associated class labels;

» attribute list, the set of candidate attributes;

» Attribute selection method, a procedure to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This criterion consists of a splitting
attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method / Algorithm:
(1) create a node N;
(2) if tuples in D are all of the same class, C, then
(3) return N as a leaf node labeled with the class C;
(4) if attribute list is empty then

Page 17



MCET DATA MINING LAB MANUAL

(5) return N as a leaf node labeled with the majority class in D; // majority voting

(6) apply Attribute selection method(D, attribute list) to find the “best” splitting criterion;
(7) label node N with splitting criterion;

(8) if splitting attribute is discrete-valued and multiway splits allowed then // not restricted to
binary trees

(9) attribute list attribute list [] splitting attribute; // remove splitting attribute

(10) for each outcome j of splitting criterion

/I partition the tuples and grow subtrees for each partition

(11) let Dj be the set of data tuples in D satisfying outcome j; // a partition

(12) if Dj is empty then

(13) attach a leaf labeled with the majority class in D to node N;

(14) else attach the node returned by Generate decision tree(Dj , attribute list) to node N;
Endfor

(15) return N;

ii. KNN
K-nearest neighbors (KNN) algorithm is a type of supervised ML algorithm which can be used for
both classification as well as regression predictive problems. However, it is mainly used for
classification predictive problems in industry. The following two properties would define KNN
well —
o Lazy learning algorithm — KNN is a lazy learning algorithm because it does not have a
specialized training phase and uses all the data for training while classification.
e Non-parametric learning algorithm — KNN is also a non-parametric learning algorithm
because it doesn’t assume anything about the underlying data.
Working of KNN Algorithm
K-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of new
datapoints which further means that the new data point will be assigned a value based on how
closely it matches the points in the training set. We can understand its working with the help of
following steps —
Step 1 — For implementing any algorithm, we need dataset. So during the first step of KNN,
we must load the training as well as test data.
Step 2 — Next, we need to choose the value of K i.e. the nearest data points. K can be any
integer.

Step 3 — For each point in the test data do the following —
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e 3.1 — Calculate the distance between test data and each row of training data with the
help of any of the method namely: Euclidean, Manhattan or Hamming distance. The
most commonly used method to calculate distance is Euclidean.

e 3.2 — Now, based on the distance value, sort them in ascending order.

e 3.3 — Next, it will choose the top K rows from the sorted array.

e 3.4—Now, it will assign a class to the test point based on most frequent class of these
rows.

Step 4 — End

Program:
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.lOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import java.util.StringTokenizer;

public class KNNClassifier {
private static class Instance {
ArrayList<Double> mAittributes = new ArrayList<>();
String mClass;
@Override
public String toString() {
return mAttributes.toString() + "\t" + mClass;

¥

private static class Predictinstance extends Instance {
ArrayList<Double> mDistances = new ArrayList<>();
ArrayList<integer> mNeighbours = new ArrayList<>();
ArrayList<Double> mVote = new ArrayList<>();

¥

private static String minputFilename;
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private static String minputTestFilename;

private static String mOutputFilename;

private static int K;

private static String[] classNames = { "iris-setosa", "iris-versicolor”,"iris-virgnica" };
private static List<Instance> mTrainData;

private static List<Predictinstance> mPredictData;

public static void main(String[] args) throws I0Exception {
if (args.length < 4) {
System.out.printin("Arguments are incorrect. Try Application #inputfilename
#testfilename #outputfilename #k-value");
System.exit(0);
}else {
minputFilename = args[0];
minputTestFilename = args[1];
mOutputFilename = args[2];
K = Integer.parselnt(args[3]);
readData();
classify();
ArrayList<String> output = new ArrayList<>();
for (PredictInstance t : mPredictData) {
output.add(t.toString());

}
PutFileData(output);

}
public static void classify() {

/I compute distances for all test instances
for (PredictInstance t : mPredictData) {
for (Instance i : mTrainData) {

t.mDistances.add(getDistance(t. mAttributes, i.mAttributes));

¥

/1 sorting the distances and getting k-nearest class frequency

for (PredictInstance t : mPredictData) {
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t.mNeighbours.addAll(getNearestNeighbours(t. mDistances));

for (Integer i : t.mNeighbours) {
if(mTrainData.get(i).mClass.equalsignoreCase(classNames[0])) {

t.mVote.set(0, t.mVVote.get(0) + (1 / t. mDistances.get(i)));
} else if (mTrainData.get(i).mClass.equalsignoreCase(classNames[1])) {
t.mVote.set(1, tmVVote.get(1) + (1 / t. mDistances.get(i)));

}else {
t.mVote.set(2, t.mVVote.get(2) + (1 / t. mDistances.get(i)));
}

¥

¥

// comparing weights and selecting a class
for (PredictInstance t : mPredictData) {

t.mClass = classNames[t. mVote.indexOf(Collections.max(t.mVote))];

¥
public static ArrayList<Integer> getNearestNeighbours(ArrayList<Double> distances) {

ArrayList<Integer> indexes = new ArrayL.ist<>(K);

ArrayList<Double> values = new ArrayList<>();

values.addAll(distances);

Collections.sort(values);

for (inti=0;i<K;i++){
indexes.add(distances.indexOf(values.get(i)));

}

return indexes;
}
public static double getDistance(ArrayList<Double> a, ArrayList<Double> b) {
double distance = 0;
for (inti=0; i <asize(); i++) {
double x = a.get(i);
double y = b.get(i);
distance += (X -y) * (X - y);
}

return Math.sqgrt(distance);
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/I get data
public static void readData() throws IOException {
StringTokenizer st;
mTrainData = new ArrayList<>();
mPredictData = new ArrayList<>();
int size;
ArrayList<String> line;
line = GetFileData();
for (String str : line) {
Instance value = new Instance();
st = new StringTokenizer(str, ",");
size = st.countTokens();
for (inti=0;i<size-1;i++){
value.mAttributes.add(Double.parseDouble(st.nextToken()));
¥
value.mClass = st.nextToken();
mTrainData.add(value);
}
line = GetTestFileData();
for (String str : line) {
Predictinstance value = new Predictinstance();
st = new StringTokenizer(str, ",");
size = st.countTokens();
for (inti=0; i <size; i++) {
value.mAttributes.add(Double.parseDouble(st.nextToken()));
}
value.mClass = "unknown";
for (int j = 0; j < classNames.length; j++) {
value.mVote.add(0.0);
}

mPredictData.add(value);

¥

/I File read write functions
public static ArrayList<String> GetFileData() throws IOException {
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String line;
ArrayList<String> fileData = new ArrayList<String>();
BufferedReader bufferedReader = new BufferedReader(new FileReader(
minputFilename));
while ((line = bufferedReader.readLine()) = null) {
fileData.add(line);
¥
bufferedReader.close();
return fileData;
b
public static ArrayList<String> GetTestFileData() throws IOException {
String line;
ArrayList<String> fileData = new ArrayList<String>();
BufferedReader bufferedReader = new BufferedReader(new FileReader(
minputTestFilename));
while ((line = bufferedReader.readLine()) !'= null) {
fileData.add(line);
}
bufferedReader.close();
return fileData;
}
public static void PutFileData(ArrayList<String> output) throws IOException {
File f = new File(mOutputFilename);
if (If.exists()) {
f.createNewFile();
}
BufferedWriter bufferedWriter = newBufferedWriter(new FileWriter(
mOutputFilename, true));
bufferedWriter.newLine();
for (String line : output) {
bufferedWriter.write(line);
bufferedWriter.newLine();

}
bufferedWriter.close();
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}
Expected Output:

Training Data

ile Edit Format View Help
,0.2,Iris-5etosa
.1,Iris-setosa
.2,Iris-setosa
0.2,Iris-setosa
0.2,Iris-setosa
1.5,Iris-versicolor
1

1

-versicolor

testtdt - Notepad

File Edit Format View Help

,Iris-versicolor
-versicolor
rirginica

is-virginica
is-virginica

Testing Data

Output.txt

outputtxt - Notepad
File Edit Format View

a
-
|

o

[5.0, 3.2, 1.2, 0.2] iris-setosa
(4.9, 3.1, 1.5, 0.1] iris-setosa
(6.7, 3.1, 4.7, 1.5] i versicolor
[5.6, 2.7, 4.2, 1.3] iris-versicolor
[(e.7, 3.3, 5.7, 2.1] iris-virgnica
[6.4, 3.1, 5.5, 1.8] iris-wirgnica

Viva Voce
1) Define classifier
2) How does classification work
3) When do we classify the data

4)
5)
6)
7)
8)
9
10)
11)

what are the applications of KNN Classifier

How to select the value of K in the K-NN Algorithm?

what are the advantages of KNN Algorithm ?

what are the design issues of Decision Tree Induction

How to build a decision Tree
How should the training records be split
How should the splitting procedure stops

Define classification
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PROGRAM 5 & 6.

Aim : Perform data preprocessing and discretization using WEKA.
Description (for Programs 5, 6, 7 and 8):

WEKA - an open source software provides tools for data preprocessing, implementation of several
Data Mining and Machine Learning algorithms, and visualization tools so that you can develop
Data Mining and Machine Learning techniques and apply them to real-world data mining
problems. What WEKA offers is summarized in the following diagram —

Raw data
\d
Preprocessor
\ 4
. - Attributes
Classify Cluster Associate Selection
¥ v Y v
Linear Regression SimpleKMeans Apriori, ClassifierSubsetEval
Logistic Regression FilteredClusterer FilteredAssociator PrinicipalComponents
Support Vector Machines HierarchicalClustere FPGrowth e
Decision Trees A
RandomTree
RandomForest
NaiveBayes
Visualize > Output

If you observe the beginning of the flow of the image, you will understand that there are many
stages in dealing with Data to make it suitable for Data Mining and Machine Learning

First, you will start with the raw data collected from the field. This data may contain several null
values and irrelevant fields. You use the data preprocessing tools provided in WEKA to cleanse
the data.

Then, you would save the preprocessed data in your local storage for applying Data Mining and
Machine Learning algorithms.

Next, depending on the kind of Data Mining that you are trying to develop you would select one of
the options such as Classify, Cluster, or Associate. The Attributes Selection allows the
automatic selection of features to create a reduced dataset.
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Note that under each category, WEKA provides the implementation of several algorithms. You
would select an algorithm of your choice, set the desired parameters and run it on the dataset.

Then, WEKA would give you the statistical output of the model processing. It provides you a
visualization tool to inspect the data.

The various models can be applied on the same dataset. You can then compare the outputs of
different models and select the best that meets your purpose.

Thus, the use of WEKA results in a quicker development of Data Mining and Machine Learning
models on the whole.

Program 5 & 6:
1. ADD
1. Start Weka — you get the Weka GUI chooser window.

{# Weka GUI Chooser

Program  VWisualization Tools  Help

'WEKA

The University
of Waikato Experimenter

Applications

W aik ako Environment for Knowledge snalysis kKnowviledgeFlow
Wersion 2.7 .4

{c) 1933 - 2011
The University of wailato Simple CLI
Hamilkon, Mew Zealand
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Click on the Explorer button and you get the Weka Knowledge Explorer window.

[ Cpen file, .. ] [ Cpen URL... ] [ Cpen DE... ] [ Generate. .. Undo Edit. .. Save. ..
Filker
Current relation Selected attribute
Relation: Mone Attributes: Mone Mame: Mone Type: MNone

Instances: Maone Sum of weights: Mone Missing: Mone Distinct: None Unigque: None

aktribukes
&l Mone Irevett Pattern
v|[ Visualize All
Remove

Status

‘\Welcame ko the Weka Explorer -m ‘W x0

3. Click on the “Open File.” button and open an ARFF file (try it first with an example
supplied in Weka-3-6/data, e.g. Weather.arff). You get the following:

' o Weka Explorer

S

| = e

Preprocess | Classify l Cluster l Associate I Select attributes I Visualize|

[ Open fi... ] [ Open ... ] [ Open ... ] [ Genera... ] Undo [ Edit. ] [ Save... ]
Filter
Crosse one
Current relation Selected attribute
Relation: weather Attributes: 5 Name: outlook Type: Nominal
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
Attributes No. Label Count Weight
[ All ] [ None ] [ Invert ] [ Patt... ] Ly < 5.0
2|overcast 4 4.0 |
3|rainy S 5.0
No. Name |
L [ ook Clos: lay (Nom) .
| |temperature ¥ - |
3| Jhumidity
4{[ windy g
s/ Iplay
Remove
|
Status |
fol’s |

Page 27



MCET

DATA MINING LAB MANUAL

4. VALIDATION : Click on Choose and select filters/unsupervised/attribute/Add.

Preprocess | Classify | Cluster | Associate | Select attributes | visualize |

[ Open fi... ] [ Open ... ] [ Open ... ] [ Genera... ] Undo [ Edit... ] [ Save... ]
Filter
i :
[35 weka B ,
1| i e lelected attribute
~- @ AlFilter cecieg atinsl _
. & MultiFilter MName: outlook Type: Nominal
3 X Missing: 0 {0%) Distinct: 3 Unique: 0 (0%)
- |, supervised
= . unsupervised | No. Label Count Weight
- ) attribute 3 1|sunny 5 5.0
o [EE 2|overcast 4 4.0
- 3| rainy 5 5.0
- ¥ AddExpression f = -
- @ AddID ass: play (Nom) v || visualize All
- 4 AddNoise T .
- 4% AddValues
- 4 Center 3 5
- @ ChangeDateFormat
- 4% ClassAssigner
o
- 4 Copy
1 - @ Discretize
|
- 4% FirstOrder
L x0
’ - 4@ InterquartileRange “
- -

Then click on the area right of the Choose button. You get the following:

&3 weka.gui.GenericObjectEdi

weka. filters.unsupervised. attribute. Add

About

An instance filter that adds a new attribute to the dataset.

attributeIndex |last

attributeName | unnamed

attributeType jNumeric attribute

dateFormat yyyy-MM-ddTHH:mm:ss

nominalLabels |

You see here the default parameters of this filter. Click on More to get more information about
these parameters.

5. Click on the Apply button to do the Addition and see how it is Added in the Selected
attribute window.
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Preprocess | Classify | Cluster | Assodate | Select attributes | visualize |

1
|
Filter =
;Add -M unnamed -C last ‘
Current relation Selected attribute
Relation: weathe... Attributes: 6 Name: unnamed Type: N...
Instances: 14 Sum of weights: 14 Missing: 14 (1... Distinct:  Unique: 0 ...
Attributes Statistic value
Minimum NaN -
All N... B Pi.s
S T e A e = =
Mean NaN >
No. Name :
2|E temperature - | | Class: unnamed (Num) - ‘M
3| |humidity =i =
4| jwindy =
5| lplay
& [l unnamed
Remove o
T T 1
NaN NaN NaN
Status
OK

> <°

6. Try other parameters for the filter and see how the Addition changes. Don’t forget to
reload the original (numeric) relation or Undo the Addition before applying another one.

2. Discretization

1. Start Weka — you get the Weka GUI chooser window.

{#1 Weka GUI Chooser

Program  Visualization Toaols  Help
Applications
WEKA
The University
y of Waikato Experimenter

W aik ato Ervvironment For Knowledge Analysis KnowledgeFlow
Wersion 3.7.4
(c) 1999 - 2011
The University of waik.abo Simnple CLI
Harniltan, Maw Zealand
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2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

Weka Explorer,

[ Open file, ., ] [ Cpen URL... ] [ Cpen DB, .. ] [

Generate. ..

Filker

Currenk relation
Relation: Mone
Instances: Mone

Attributes

Attributes: Mone
Sum of weights: Mone

Selected attribute
Mame: Mone

Missing: Mone Diskinck: Mone

Type: MNone
Unigue: Mone

v" Wisualize Al ”

Skatus
‘Welcome to the Weka Explorer

Log

"

VALIDATION : on the “Open File.” button and open an ARFF file (try it first with an

example supplied in Weka-3-6/data, e.g. Wether.arff). You get the following:

Weka Explorer

PrEPVUEESS|'CIass|Fy Cluster | Associate | Select attributes || Yisualize

] Open File. .. | [ Open URL. .. ] [ Open DE... ] [ Generate... ] [ Undao ] [ Edit. .. ] [ Save... ]
Filter
Current relation Selected attribute
Relation: labar-neg-data Attributes: 17 Mame: duration Type: Mumeric
Instances: 57 Sum of weights: 57 Missing: 1 (2%) Distinck: = Unique: O {0%)
Attributes Statistic Walue
Finirnur 1
[ All ] [ Mone ] [ Inverk ] [ Pattern ] Masirmarn El
Mean 2,161
Lol L= StdDev 0.708
u -~
2| Jwage-increase-first-wear i
[y 3|[_Jwage-increase-second-year
4| |wage-increase-third-year
5 [ Jcost-of-living-adjostment —
&|[Jworking-hours |Class. class {Mom) S |[ visualize all ]
7 [Jpension
& &|_|standby-pay
9 [[_Ishift-differential
10| Jeducation-allowance
5 11| Jstatutory-holidays —
12 |[Jwacation
13| Jlongterm-disability-assistance

14 contribution-to-dental-plan

Skatus
(o4
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4. VALIDATION : Click on Choose and select filters/unsupervised/attribute/Discretize.

Weka Explorer

Preprocess | Classify | Cluster | Associate || Seleck attributes | Wisualize
[ Open file. .. ] [ Open URL. .. ] [ Open DE... ] [ Genarate. .. ] [ Unda ] [ Edit... ] [ Save... ]
Filker
S v -
=) Filters
Lo BlIFiker Selected attribute
Lo MulkiFilker sthributes: 17 Mame: duration Type: Mumeric
hi'l supervised [ weights: 57 Missing: 1 (2% Distinct: 3 Unique: 0 (0%}
=+(5) unsupervised Statistic Yalue
(=) attribute Minirum 1
- # Add RIS TMadmum 3
oy Mean Z.161
- @ AddExpression StdDew 0708
e adan B
- 4 AddMoise = 3
- AddValues
- Cenker
- % ChangeDateFormat
- # Classhssigner |Class: class (Mom) £ |[ Visualize Al
- 4 FirstOrder
- 4 InkterguartileRr.ange —
B
- 4 MakeIndicatar
- 4 MathExpression b’
- % MergeManyalues ™
Filter ... ] [ Remove filker ] [ Close ]
Status
04

5. Then click on the area right of the Choose button. You get the following:

- weka.gui.GenericObjectEditor

weka. filters.unsupervised. attribute. Discretize
About

(] |

An instance filter that discretizes a range of numeric
| Capabiities |

-

-

-

-

-

attributes in the dataset into nominal attributes. P

attributeIndices | firstdast

bins |10
desiredWeightOfInstancesPerInterval |-1.0
findMumBins :False
ignoreClass :False
invertSelection :False
makeBinary :False

useEqualFrequency 'False

[ open... ] [ Save... ] [ QK ] [ Cancel ]

You see here the default parameters of this filter. Click on More to get more information about
these parameters.
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6. VALIDATION : Click on the Apply button to do the discretization. Then select one of the
original numeric attributes (e.g. temperature) and see how it is discretized in the Selected

attribute window.

() Weka Explorer

i Preprocess |CIassiFy Cluster || Associate || Select attributes | Wisualize
i

| [ Open file. .. ] [ Open URL. ., ] [

Cpen D Determine relevance of attributes |

Unidio

J [

J [

Filter

Discretize -B 10 -M -1.0 R First-last

Current relation

Relation: labor-neg-data-weka.filters.unsuper... Attributes: 17

Selected attribute
Mame: duration

Twpe: Mominal

Instances: 57 sum of weights: 57 Missing: 1 (2% Distinck: 3 Unique: 0O {0%:)
Atkributes Mo, Label Count Weight
1|'-inf-1.27" 10 10.0
[ All ] [ Mone ] [ Invert ] [ Pattern ] Z[W1.21.47 a .0
3(M1.4-1.6] o 0.0
o Gans 4["1.6-1.67 0 0.0
[] -~ 51827 27 27.0
2 |[Jwags-increase-first-year &|'(z-2.2] i} .o
3|[Jwage-increase-second-year HEEEEEN 1] 0.0
4|[Jwage-increase-third-year g2 51 n n.n
5 cost-of-living-adjustment - .
Am working-hours |Class: class {Mom) £ |[ wisualize all
7|[Jpension
5[ |standby-pay 27
9|[]shift-differential
10|[Jeducation-allowance
11|[ Jstatutory-holidays = k]
1z|[Jwvacation
13|[Jlongterm-disability-assistance
14 [ Jcontribution-to-dental-plan b ]

Staktus

als o

7. Try other parameters for the filter and see how the discretization changes. Don’t forget to reload
the original (numeric) relation or Undo the discretization before applying another one.
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3. Normalize

1. Start Weka — you get the Weka GUI chooser window.

{# Weka GUI Chooser

Program  Wisualization

Tools  Help

WEKA

The University
™ of Waikato

Wersion 3.7.4

(<) 1339 - 2011
The University of Waikata
Harniltan, MHew Zealand

Wiaik ata Environment For Knowledge Analysis

Applications

Experimenter

KnowledgeFlow

Simple CLI

2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

5=)ES

i Preprocess;

[ Cpen File, .. ] ’ Open URL,., ] [ COpen DE... ] ’

Generate...

Filker

Current relation
Relation: Mone
Instances: None

Attributes

Attributes: Mone
Surn of weights: Mone

Selected attribute
Mame: Mone
Missing: Mone

Type: Mone

Diskinck: Mone Urnique: Mome

v |[ Wisualize All

Skatus
‘Welcome ko the Wweka Explorer

Log

a3
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3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in
Weka-3-6/data, e.g. whether.arff). You get the following:

e
>
-

Preprocess | Classify | Cluster | Assodiate | Select attr;utes] Visualize |

V O Weka Explorer

[ Open fi... ] [ Open ... ] [ Open ... ] [ Genera... ] Undo [ Edit... ] [ Save... ]
Filter
Choose |None
Current relation Selected attribute
Relation: weather Attributes: 5 Name: outlook Type: Nominal
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
Attributes No. Label Count Weight
[ All ] [ None ] [ Invert ] [ Patt... ] 1sunny 5 50
2|overcast 4 4.0
3|rainy 5 5.0 |
’ No. Name |
| Woutock Closs: iy o) -
2|[ jtemperature ; - |
3| Jhumidity
4{[windy 5 3
5[ Iplay 5
Remove -
Status
OK

4. Click on Choose and select filters/unsupervised/attribute/Normalize.

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize |

[ Open file... ][ Open UR... ][ Open DB... ][ Generate... ] Undo [

Filgr

Ao

AddExpression
AddID
AddNoise #
AddValues [
Center
ChangeDateFormat
ClassAssigner

Copy

Discretize
FirstOrder
InterquartileRange

[EEEN

MakelIndicator
MathExpression
MergeManyValues
MergeTwoValues
NominalToBinary
NominalToString
NumericCleaner
NumericToBinary

0000000000000 000000000808(

NumericToNominal

[- Filter... ][ Remove filter ][ Close ]

Selected attribute
Name: outlook
Missing: 0 (0%)

Distinct: 3

Type: Nominal
Unique: 0 (0%)

No. Label

sunny

[

Count

5

Weight
5.0

N

overcast

3

4.0

W

rainy

5

5.0

:Class: play (Nom)

5 5

- Visualize All
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L] Viewer S
Relation: weather
1: outlook | 2: temperature | 3: humidity | 4: windy | 5: play
Nominal Numeric Numeric Nominal | Nominal
1 sunny 85.0 85.0|FALSE no
2 sunny 80.0 S0.0[TRUE no
3 overcast 83.0 86.0|FALSE yes
4 rainy 70.0 96.0|FALSE yes
15 rainy 68.0 80.0|FALSE ves
l6  rainy 65.0 70.0({TRUE no
7 overcast 64.0 65.0[TRUE yes
8 sunny 72.0 95.0|FALSE no
] sunny 69.0 70.0|FALSE yes
10 |rainy 75.0 80.0|FALSE yes
11 |sunny 75.0 70.0TRUE yes
12 |overcast 72.0 S0.0[TRUE yes
13 |overcast 81.0 75.0|FALSE ves
14 |rainy 71.0 S1.0TRUE no

weka. filters.unsupervised. attribute. Normalize

About

Normalizes all numeric values in the given dataset (apart from

the class attribute, if set). Capabilities

scale :71.0

translation 00

You see here the default parameters of this filter. Click on More to get more information about
these parameters.

6. VALIDATION : Click on the Apply button to do the normalization. Then select edit tab to
view data and see how it is normalized in the data window.
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B

elation: weather-weka. filters. unrvised .attribute.Normalize-51.0-T0.0

1: outlook | 2: temperature | 3: humidity | 4: windy | 5: play
" | Nominal Numeric Numeric | Nominal | Nominal
1 sunny 1.0/ 0.645161...|FALSE no
2 |sunny 0.761904761...| 0.806451...TRUE no
3 overcast | 0.904761904...|0.677419...|FALSE yes
4 rainy 0.285714285... 1.0|FALSE yes
5 rainy 0.190476190...| 0.483870...|FALSE yes
6 rainy 0.047619047...| 0.161290...[TRUE no
7 overcast 0.0 0.0[TRUE yes
8 sunny 0.380952380...|0.967741...|FALSE no
g sunny 0.238095238...|0.161290...|FALSE yes
10 jrainy 0.523809523...| 0.483870...|FALSE yes
i1 |[sunny 0.523809523...| 0.161290... TRUE yes
12 |overcast 0.380952380...| 0.806451...[TRUE yes
13 |overcast | 0.809523809...|0.322580...FALSE yes
14 rainy 0.333333333...| 0.838709...[TRUE no

7. Try other parameters for the filter and see how the normalization changes. Don’t forget to reload
the original (numeric) relation or Undo the normalization before applying another one.

4. Remove

1. Start Weka — you get the Weka GUI chooser window.

| Weka GUI Chooser,

Program  Visualization Tools Help
Applications
WEKA
The University
y of Waikato Experimentear
Ty
ifaik ata Environnent far Knowledge Anabysis KnowledgeFlow
Wersion 3.7 .4
(c) 1333 - 2011
The University of railata Simple CLI
Hamiltan, Mew Zealand
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2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

[ Cpen file. .. ] [ Open URL. .. ] [ Open DE... ] [ Generate...

Filter

Current relation Selected attribute

Relation: MNone Atkributes: Mone Mame: Mone Type: Mane
Instances: Mone Surm of weights: Mone Missing: Mone Distinck: Mone Unigque: Mone

Attributes

R |[ Wisualize all

Status
Welcome to the Weka Explorer w. x 0

3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied
in Weka-3-6/data, e.g. weather.arff). You get the following:

O Weka Explorer ]-7' 7ﬁlii — I = |l ]

Preprocess | Classify | Cluster | Associate | Select attributes | visualize |

[ Open fi... ] [ Open ... ] [ Open ... ] [ Genera... ] Undo [ Edit... ] [ Save... ]
Filter
Current relation Selected attribute
Relation: weather Attributes: 5 Name: outlook Type: Nominal
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unigue: 0 (0%)
Attributes No. Label Count Weight
[ All J [ None ] [ Invert ] [ Patt... ] L] sy = 5:0
2|overcast 4 4.0
3|rainy S 5.0
’ No. Name
| ook Cless: ply (tiom -
2| |temperature - -
3| Ihumidity
4[]
5{[C]

Status
OK

windy 5 g
E - | -
Remove
- |
- °

=4

4. Click on Choose and select filters/unsupervised/attribute/Remove.
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MCET
3 Weka Explorer”
Preprocess | Classify | Cluster | Assodate | Select attributes | visualize |

[ Open file... 1 [ Open UR... 1 [ Open DB... } [ Generate... ] Undo [ Edit... 1 [ Save... ]
Filter
o [ — )
FirstOrder i |
InterquartileRange Selected attribute
: [ Name: outlook Type: Nominal
MakeIndicator 4 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
MathExpression
MergeManyValues [ No. Label Count Weight
MergeTwoValues :] 1|sunny 5 5.0
NominalToBinary ‘ 2|overcast 4 4.0
NominalToString = 3| rainy 5 5.0

Normalize
NumericCleaner
NumericToBinary
NumericToNominal

NumericTransform
Obfuscate
PartitionedMultiFilter
PKIDiscretize
PrincipalComponents
RandomProjection
RandomSubset
RemoveByName
RemoveType

m

‘Class: play (Nom)

5

AR R R R R R R R R R R R R R R R R R R

SECTn

5

5. Then click on the area right of the Choose button. You get the following:

weka. filters.unsupervised. attribute.Remove

About

A filter that removes a range of attributes from the dataset.

attributeIndices |5

invertSelection ‘False

Capabilities
hd

Save...

J

Open...

|

You see here the default parameters of this filter. Enter the Indices of attribute to be remove Click

on more to get more information about these parameters.

6. VALIDATION : Click on the Apply button to do the remove.
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3 Weka Explorer S L
Preprocess | Classify | Cluster | Associate | Select attributes | Visualize
[ Open file... ] [ Open UR... ] [ Open DB... ] [ Generate... ] [ Undo ] [ Edit... ] [ Save... ]
Filter
Current relation Selected attribute
Relation: weather-weka.filters.un... Attributes: 4 Name: outlook Type: Nominal
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unigue: 0 (0%)
Attributes No. Label Count Weight
[ All ] [ None } [ Invert ] [ Pattern ] Ll unny 3 20
2|overcast 4 4.0
3|rainy 5 5.0
No. Name
1 [l outlook
2|[ Jtemperature
3| Jhumidity
4| jwindy
Class: windy (Nom) v | Visualize All
— —

7. Try other parameters for the filter and see how the remove changes. Don’t forget to reload the
original (numeric) relation or Undo the remove before applying another one.

5. Replace Missing VValues

1. Start Weka — you get the Weka GUI chooser window.

i# Weka GUI Chooser

Program Visualization Tools Help

WEKA

The University
of Waikato

Wiaik ata Environment For Knowledge Analysis
Wersion 3.7.4

(c) 1999 - 2011

The University of Wiaikata

Harniltan, MHew Zealand
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2. Click on the Explorer button and you get the Weka Knowledge Explorer window.

Weka Explorer

55

’ Open file... ] [ Open URL... ] [ Open DE. .. ] ’ Generate. ..

Filker

Current relation Selected attribute
Relation: Mone Attributes: Mone Mame: Mone Type: Mone
Instances: Mone Sum of weights: Mone Missing: Mone Distinck: Mone Unique: Mone

atbributes

v ” Visualize all

Status
w'eloome ko the Weka Explorer Log ‘W x0

3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in
Weka-3-6/data, e.g. weather.arff). You get the following:

Preprocess | Classify | Cluster | Assodiate | Select attributes | visualize|

[ Open file... ] [ Open URL... ] [ Open DB... ] [ Generate... ] [ Undo ] i Edit... i [ Save... ]
Filter
ReplaceMissingYalues -unset-class-temporarily
Current relation Selected attribute
Relation: marks-weka.filters.unsupervised.attri... Attributes: 2 Name: Name Type: Nominal
Instances: 7 Sum of weights: 7 Missing: 0 (0%) Distinct: 7 Unique: 7 (100%)
Attributes No. Label Count Weight
Al } [ None ] [ Invert ] { Pattern ] 1]rahul 1 1.0 2
2|roy 1 1.0
3|rohit 1 1.0 =
No. Name ’ Al < <n

| this Class: marks {(Num) v [ Visualize Al
2{[ " |marks . 4

‘ [ Remove
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Relation: marks

.| 1: Name | 2: marks
Nominal Numeric
1 rahul
2 roy 55.0
3 rohit 22.0
4 ajay 87.0
5 asad
6 asha 65.0
7 seema

Undo [ OK ][ Cancel ]

4. Click on Choose and select filters/unsupervised/attribute/ReplaceMissingValues.

Preprocess assif ] | | lectott = | z 1

[ Open fie... ][ openurL... ][ openDB... ] [ cenerate... | Undo Edit... Save...

Filter

~® NumericCleaner = |[ Apply
- 4 NumericToBinary

® NumericToNominal Selected attribute

butes: None Name: None Type: None

# NumericTransform L. See — =
zights: None Missing: None Distinct: None Unique: None

# Obfuscate
# PartitionedMultiFilter

- 4 PKIDiscretize

- # PrincpalComponents Pattern

-- # RandomProjection
# RandomSubset
# Remove
# RemoveByName
# RemoveType
- # RemoveUseless —

- % RenameAttribute r 3 -

- ® Reorder = YT
‘.
# SortLabels
# Standardize
# StringToNominal

m

- #® StringToWordVector
- @ SwapValues

5. Then click on the area right of the Choose button. You get the following:

weka. filters.unsupervised. attribute . ReplaceMissingValues

About

Replaces all missing values for nominal and numeric attributes

in a dataset with the modes and means from the training data. Capabilties

ignoreClass | True v |

[ Open... | | Save... | [ oK ] Cancel |

- v

You see here the default parameters of this filter. Click on more to get more information about these
parameters.
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6. VALIDATION : Click on the Apply button to do the Replace Missing Values. Then select edit

tab to view data and see how it Replaced missing values in the data window.

{[/No. | 1: Name | 2: marks
Nominal Numeric
1 jrahul 57.25
2 roy 55.0
3  Jrohit 22.0
4 ajay 87.0
5 |asad 57.25
6 asha 65.0
7 seema 57.25

Relation: marksweka.ﬁlhers.unsupervied.at‘h’ibute.Repla. e

7. Try other parameters for the filter and see how the replace values changes. Don’t forget to
reload the original (numeric) relation or Undo the replaced before applying another one.

6. Standardize

1. Start Weka — you get the Weka GUI chooser window.

{# Weka GUI Chooser

Program  Wisualization

Help

'WEKA

The University
of Waikato

Toaols

wiaik ata Environnent For Knowledge Anabysis
Wersion 2.7.4

(c) 1333 - 2011

The Uniwersity of W aik ato

Hamilton, MHew Zealand

Applications

Explorer

Experimnenter

KnowledgeFlow

Simple CLI
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2.

[ Open file... ] [ Open URL... ] [ Cpen DB... ] [ Generate. ..
Filker
Current relation Selected attribute
Relation: Mone Attributes: Mone Marne: MNone Type: Mone

Instances: Mone Surn of weights: Mone Miszing: MNone Diskinct: Mone Unigque: Mone

Atkribukes
v" Wisualize All

Skatus

‘Welcome ko the Weka Explarer w %0

3. Click on the “Open File.” button and open an ARFF file (try it first with an example supplied in

Weka-3-6/data, e.g. weather.arff). You get the following:

&# Weka Explorer ]-? L: — s | &1 =
Preprocess | Classify | Cluster | Associate | Select attributes | visualize |
[ Open fi... ] [ Open ... ] [ Open ... ] [ Genera... ] Undo [ Edit... ] [ Save... ]
Filter
Choss=Jene
Current relation Selected attribute
Relation: weather Attributes: 5 MName: outlook Type: Nominal
Instances: 14 Sum of weights: 14 Missing: 0 (0%) Distinct: 3 Unique: 0 (0%)
Attributes No. Label Count Weight
[ All J [ None ] [ Invert ] [ Patt... J 1} sunny = 5-0
2| overcast .l 4.0
3|rainy S 5.0
No. Name
© W outiook Class: piay (iom) =
2| jtemperature - =
3| Jhumidity
3| |windy 3 s
S| lplay -
Re ve
- |
Status i
ox o ||
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s

>

elation: weather

1: outook | 2: temperature | 3: humidity | 4: windy | 5: play
Nominal Numeric Numeric Nominal Nominal
1 sunny 85.0 85.0|FALSE no
2 sunnNy 80.0 S0.0{TRUE no
3 overcast 83.0 86.0|FALSE ves
=3 rainy 70.0 S6.0|FALSE ves
S rainy &68.0 80.0|FALSE yes
S rainy &65.0 70.0[TRUE no
7 overcast 54.0 65.0TRUE yes
8 sunny 72.0 S5.0|FALSE no
=l sunny 59.0 70.0|FALSE ves
10 rainy 75.0 80.0|FALSE ves
3 ¥ sunny 75.0 70.0TRUE ves
12 overcast 72.0 S0.0[TRUE ves
i3 overcast 81.0 75.0|FALSE ves
14 rainy 71.0 91.0TRUE no
Undo [ OK ] [ Cancel ]

4. Click on Choose and select filters/unsupervised/attribute/Standardize.

Preprocess! f l | l elect 1 l ¥ |

[ oOpenfie.. || opentRL.. |[ OpenDB.. |[ Generate... Undo Edit... Save...

Filter

# NumericCleaner - Apply
# NumericToBinary

- @ NumericToNominal

- @ NumericTransform
# Obfuscate

# PartitionedMultiFilter
- @ PKIDiscretize

- @ PrincipalComponents Pattern
# RandomProjection

- ® RandomSubset

# Remove

# RemoveByName

# RemoveType

- @ RemoveUseless -

. oetecieile)
# ReplaceMissingValues
- @ SortLabels
2 Mstandardize
# StringToNominal
i - @ StringToWordVector

Selected attribute
butes: None Name: None Type: None
zights: None Missing: None Distinct: None Unigue: None

m

5. Then click on the area right of the Choose button. You get the following:

weka, filters. unsupervised. attribute. Standardize
About

Standardizes all numeric attributes in the given dataset to have
ieert()) mean and unitvariance (apart from the class attribute, if Capabiities

ignoreClass :False

You see here the default parameters of this filter. Click on more to get more information about these
parameters.
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6. VALIDATION : Click on the Apply button to do the Standardization. Then select edit tab to
view data and see how it standard the values in the data window.

Relation: weather—weka.ﬁlter.unsupervised.attribute.standardize-weka.ﬁl. -

No. | 1: outlook | 2: temperature | 3: humidity | 4: windy | 5: play
h}l = Nominal Numeric Numeric Nominal | Nominal
1 sunny 1.739067215...| 0.326404... |FALSE no

2 sunny 0.978225308...| 0.812539...TRUE no

3 overcast 1.434730452...|0.423631... |[FALSE yes

4 rainy -0.543458504...| 1.395900... [FALSE yes

5 rainy -0.847795267...| -0.15972...|FALSE yes

53 rainy -1.304300411...| -1.13199...[TRUE no

7 overcast -1.456468792...| -1.61813...[TRUE yes

8 sunny -0.239121742...| 1.298673... [FALSE no

9 sunny -0.695626886...| -1.13199... [FALSE yes

10  jrainy 0.217383401...| -0.15972...|FALSE yes

11  |sunny 0.217383401...| -1.13199...[TRUE yes

12 |overcast -0.239121742...|0.812539...[TRUE yes

13 |overcast 1.130393690...| -0.64586...|FALSE yes

14 jrainy -0.391290123...| 0.909766...[TRUE no

Undo [ OK ] [ Cancel ]

7. Try other parameters for the filter and see how the standardize changes. Don’t forget to reload
the original (numeric) relation or Undo the standardize before applying another one.

Page 45



MCET

PROGRAM 7. Classification of algorithms using WEKA

DATA MINING LAB MANUAL

7.1. Aim : Obtain decision tree for different data sets using WEKA

Explorer

teprocess | Classify|| Cluster | Assaciate | Select attributes | Visualize

[__Grenfie. ] [ OpenURL ][ OpenDE

) [ Gonmate. ]

Filer

Choose | Mone

Cunent relation
Relatior: weather

Selected attibute
Name: outlook.

[ Edit ][ Save ]

Apply

Tupe: Nominal

Instances: 14 Attributes: 5 Missing: O [0%) Distinet: 3 Unique: 0 [0%)
Attributes Mo Label Count
1] sunny |5
[ All ][ None | Invert J [ Pattem | 2| overcast IE3
3| rainy I3
Mo Name
2| termperaturs.
3 rumidity
A windy
Class: play [Mom) ~ Wisualize Al
e I |
s
[ Remave |
Status
oK

Click on classify, then choose

Click on start

Preprocess| Classify | Cluster || Associate || Select attibutes || Wisualize

Fiter .| [ Removefiter | [ Closs |

Classifier
) weka -~
=] classifiers 1
L] bayes ier output
1 functions
ApthanClassitier
) lazy
) meta
Sami
mise
-] les
-] wees
“-@ ADTree
| ® BFTiee
#® DecisionStump
a .
-
| -
» Jaggraft
® LaDTiee
® LMT
-
® NETwes B
® RandomForest
® RandomTres
® REPTree ~
[

Status

Weka Explorer.
Preprocess| Classify | Cluster || Assosiate | Select atributes | Visualize.

Classifier

Test options

Classifier output

() Use training set
) Supplied test set
(@ Crossvalidation  Folds
© Percentage spii B |

[ More options ]

(Mom) play ~

Fesult list [iight-click for options)

Status
0K
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Weka Explorer

Freprocess| Classify | Cluster | Associate || Select attibutes | Wisualize!
Classifier
Test options Classitir autput
O Use training sst Pun information A
© Supplied test set Set
Scheme: weks.classifiers.trees.J4s -C 0.25 - 2
© Crossvattstion  Foids rimriom: e
© Percaniags spit [© | |mnstances: 14
” Attribute s
[ ore options. ] utlock
temperature
(Hom) play . humidity =
windy
Test mode: lo-fold cress-validation
Fiesult list [right-click for options)
Classifier model [Full training set)
748 pruned tree
outlook = sunny
| mmidity <= 75: yes (2.0)
| humidity > 75: no (3.0)
outlook = overcast: yes (4.0} ~
< | >
Status
oK

Click on percentage split

Click on 102415-treesJ48

Preprocess | Classify | Cluster | Associate | Select attibutes

Classifier
Test options Classifier output
g ~
(@) WD UfiE) 2 Incorrectly Classified Instances 5 35.7143 % .
O Supplied test set Set Keppa staristic o186
Mean absolute error 0.2857
- e
© Erossevalidation Root mean sequared error 0.4818
® Percentage split % Relative absolute error &0 %
[ e e | |Foor zelavive squared error 87.6586 %
Total Number of Instances 14
(Nomj play v Detailed Accuracy By Class ===
Stop TP Rate FP Rate Precision Recall F-Measure ROC dre
FResult list [right-click for options) 0.778 0.8 0.7 0.778 0.737 0.789
o.a o0.z22 o.s o.a 0.44a 0.789
View in main windows 543 0. 465 0.529 0.643 0.53z 0.789
Viswr in separats window
x

Save result buffer

Delete result buffer
ed as

Load model

Save madel

Re-evaluate model on current test sst

ualize classifier errors

>
Status wisuslize margin curve
oK wisualizs threshold curve »
Cost/Bensfit analysis »

| | isial; b cur >

Tree ¥isualizer

= sunmny = overcast = rainy

== 75 =75 TRUE = FALSE
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=" Weka Explorer

PfEDIOCESS‘ Clagsify | Cluster | Associate | Select attibutes | Visualize
l Open file... 1 [ Open URL... ] [ Open DE... ] [ Generate.. l [ Unda l [ Edi... ] [ Save.. ]
Filter
Current relation Selected attribute
Relation: bank_predicted Name: Instance_number Type: Humeric
Instances: 300 Attributes: 11 Missing: 0 [0%) Distinct: 300 Unique: 300 [100%)
Attributes Statistic: Value
Minirnumn o
[ Al ] [ Mone ] [ Invvert l [ Pattemn l Mauimum 233
Mean 1495
No. Marne StdDev 86.747
2 lage
I sex
4[ Jregion | Class: pep (Nom) [ Viuazar ||
5§ [income
B[] maried
7] children 4 43 a3 £} 43 43
B[ Jear
[ morigage
10 predictedpep
11 eep
Remaove
] 149.5 99
Status
o -

Click on classify

Then click on choose and in trees choose j48

= Weka Explorer

PIEDIECESS‘ C‘GSS\’JJl Cluster|| &ssociste | Select athibutes | Visualize:

Classifier

| weka

(=] classifiers

-] bayes

-] functions

& JpthanClassifier

ADTree
BFTiee
DecisionStump
FT

JABgiaft
LADTree
LMT

NETree
RandomForest
FiandomTres
REPTree

~

Ier output

(e s st sesasess

Filer... H Remove fiter l

Status
0K,

Log

-’

Click on start
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Weka Explorer
F’lspruuessl C\assifyl Cluster | Associate| Select attibutes | Visualize
Classifier
J48-CO25-M2
Test options Clazsifier output
O Use training set === Run information === &
() Supplied test set
dchene: weka.clagsifiers.trees.J45 -C 0.25 -0 2
@) Cross-validation  Folds Relation: hank_predicted
() Percentage spit l:l Instances: 300
” ; Adttributes: 11
[ Ore oplians. ] Instance_nuwber H
age
[Mam) pep £ SEX
region
warried
Result list [right-click for apt
esult list [nght-click for aptions) ohildren
car
nortgage
predictedpep
pep
Test made: 10-fold cross-wvalidation
Classifier model (full training set] ===
J45 pruned tree "
< >
Status
0K

Click on percentage split

Weka Explorer
Prepmcessl C\asslfyl Cluster | Associate | Select attributes | Visualize
Classifier
48 -C0.25M2
Test options Classifier output
X TLCCTIY GIMeeIiIc LISToT 0
-~
OUsellammg e Incorrectly Classified Instances 62 20.6667 % =
() Supplied test set Kappa statistic 0.5804
Mean abaolute error 0.3117
Cross-validati
O ossvaldaton l:l Root mean squared error 0.40%6
(%) Percentage splt % Relative ahsolute error 62,7394 %
[ " Root relatiwve squared error 82.1827 %
ore options. ]
Total Muuber of Instances 300
[Nom) pep i~ === Detailed dccuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC ire
S S, 0.717 0.142 0.811 0.717 0.762 0.76
0.858 0.263 0.781 0.856 0.818 0.76
View in main windovs 13 0.218 0.795 0.793 0.792 0.76
Wiew in separate window
Save resulk buffer ===
Delete result buffer
fied as
Load model
Save model
Visualize classifier ervars \E
»
Yisualize margin curve
Status X
i Visualize threshold curve 3
CostjBenefit analysis »
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Tree Wiew

= ‘r‘!! |!D
== 29!&!94.1

:YE! L]

= SUBUREBAMN

=%E

L] == 90
== 25!&!05.? == !l!

= MALE™= FEMALE

NO@0) YES @) o (. YES (401 0

Weka Classifier Tree Visualizer: 11:23:34 - trees.J48 [bank_... |:||E||E|

=

Third data set:

Sleep data set

“~ Weka Explorer

[E((=1{ed
[ Open file. .. ] [ Open URL... ] [ Open DE... ] [ Generate. .. ] Undao [ Edit... ] [ Save... ]
Filter
[ cChoose | Mone (==
Current relation Selected attribute
Relation: iris Mame: sepallsngth Tupe: Mumeric
Instances: 150 Attributes: 5 Missing: O [032) Distinct: 35 Unique: 9 [5X)
Attributes Statistic alue
Minimum 4.3
[ All ] [ Mone ] [ Irveert ] [ Pattern ] M aximum 7.9
kean 5.843
Mo, M ame StdDew 0.828
2|[Js=palwidth
3] petallenath
4L Ipstalvidth [ Class: class (Nom) [ visumiz=an |
& class
34
30
[ Remove ]
Status
oK
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Click on classify and choose from trees choose j48 algorithm

Explorer

Preprocess | Classify | Cluster || Associate | Select attibutes | Visualize

Classifier

=[] classifiers
) bayes
-1 functions

ier output

- JythonClaszifier
1ty

BFTree
DecisionSturnp

FT

J4Ggraft
LADTre=
LMT

METree
RandomForest
RandomTree
REFTree

impleCart L

R LRI E NS

Fiter.. | [ Remove fiter | [ Close |

Status
ok

Click on start and then click on percentage split

= Weka Explorer

Preprocess| Classity | Cluster || Associate || Select attibutes | Visualize
Classifier
Test options Classifier output
» Use traiming sst Mean absolute error 0.035 Lo
(> Supplied test set Root mean sScuared error 0.1586
Relative absolute error 7.8705 %
© Cross-validation [0 ] Root relative sguared error 33.6353 =
O FrsereEs = Total Mumber of Instances 150
[ More options... ] Detailed Accuracy By Class -
[Mom) class 3 TP Rate FP Rate Precision  Recall F-Measure ROC Are
0.98 0.9s8 o.99 o.99
0.96 0.03 0.941 0.9a6 0.ss5 0.961
et oo Jrorontion ) Weighted Ave. 0.98 0.0z 0.98 0.96 0.95 o.o68
10:20:57 - trees. )48
Wigw in main window .
iews in separate window pris ===
Save result buFfer liasoificd as
Delste result buFfer
Iris-setosa
Load model Iris-wersicolor
Save madel Iris-wirginica
isualize classifier errors =
| >
Status visualize threshold curve »
oK CostiBenefit analysis »
visualize cost curve »

VALIDATION :
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7.2. Aim: Classification algorithms using WEKA.

Bank prediction data set using nb tree:

= Weka Explorer

[ Opsnfie ][ OpenURL. J[  0OpenDB. ][  Genests || Urido il Edit ) | Save ]
Filter
[ crosse |none [ #eele ]
Current relation Selected attribute
Relation: bark_predicted Name: Instance_number Type: Numeric
Instances: 300 Attributes: 11 Missing: 0 (0%) Distinct: 300 Unique: 300 [100%)
Attributes Statistic WValue
Mirirnurn o
[ Al J[[ Mome  J[ nwet  |[ Pattem | [Madmum ]
Mean 14395
Mo, Name [fnwerts the current attribute selection |, 747
2[Jage
3[sex
4L Iregion [ Class: pep (Mo o [ visuaean |
5[ Jincame
B[ Jmanied
7[Clchidren 43 43 43 43 43 43
8 Jcar
3 Jmortgags
10 predictedpep
11| ]pep
Remove
a 1405 200
Status
oK Log _ﬁa. 0
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= Weka Explorer

Freprocess | Classify | Cluster | Associate | Select attributes | Visualize
Classifier
) weka ~
) classifiers 3
+-- ) bapes
1 fumctions . - =
& JythonClassifier ¥ Classified Instances &2 20.6667 %
ey istic 0.5304
£33 meta Lte error 0.3117
5y mi cquared error 0.4096
5] misc hsolute error 62,7394 %
—J' {:":z ive scquared error 82,1827 %
e ADTies or of Instances =00
1l : gz:;:nskump =d Accuracy By Class
- FT
[ —rY TP Rate FP Rate Precision Recall F-Measure ROC Are
1 - J48 0.717 0.14z 0.811 0.717 0.782 0.76
® Jasgiaft 0.858 0.283 0,781 0.858 0.818 0.76
® LADTres . 0,793 0.218 0.795 0.793 0.792 0.76
- LMT
- ion Matrix
- —
- @ RandomForest <-- classified as
® FandomTres J—
® REFTiee S| [ —.
[ Filter ] [ Fiemove filker ] [ Close L3
s
e >
Status
oK

Weka Explore
Preprocess C\asswly\c\uster Aezociate| Select attibutes | Visualize

Classifier
Test options Classifier output
O Use training set Incorrectly Classified Instances zz Z1.E686 % 25
© Supplied test set Kappa statistic 0.5584
Mean absolute error 0.3211
& Cross-validation o] Root mean squared error 0.4105
@ Percentage spit % Relative absolute error 64,6668 %
Root relative squared error 8z.5z8 =
[ loisonlion ] Total Number of Instances 10z
(Hom) pep 3 Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Are
— N . 0,711 0.158 0.7a 0.711 0.744 0.816
Fiesult fist (right-click for options) o sas P o aam o saz 0osla o318
11:23:34 - hrees.J48 Weighted Awg. 0,784 0.231 0,784 0.7684 0.783 0.816
Confusion Matrix =
a b <-- classified as
32 13 | a = YES
948 | b = N0
v
< >
Status
oK

Weka Explore

Preprocess| Classify | Cluster | Associate | Select attributes | Visualize

Classifier
Test options Classifier output
O Use training set Incorrectly Classified Instances 2z 21.5686 % L
3 Supplied test sat Happa statistic 0.5584
Mean absolute error 0.3211
& Cross-validation o] oot mean squared error 0.4105
(&) Percentage split = Relative absolute srror 64.6668 %
Foot relative squared error 52.528 %
[ ooty ] Total Number of Instances 10z
(Mo pep + | === Derailea accuracy By Class
TP Rate FP Rate Precision Recall F-Measure ROC Are
0.711 0.158 0.78 0.711 0.744 0.816
Result list [right-click for options) 0.84z2 0.z89 a.787 0. 54z a.s14 0.818
11:23:34 - iees.J43 Weighted Avy. 0.784 0.231 0.784 0,784 0.783 0.8186

“iews in main window

wiew In separate window fon Matrix =

Save result buffer
- classified as

Delete result buffer L vES
)

Load model
Save model

||

Wisualize classifier errors

Status

Visualize margin curve
oK

wisualize threshold curve »
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Weka Explorer,

Bank prediction data set using j48graft:

F'reuloces‘slclassify Cluster | #ssociate | Select attributes | Visualize

Open/Edit/Save instances
Dpen ... e UFL

][ OpenDB.. ][ Generate. || Unda ][ Edit... | [ Save... |
Filter
Current relation Selected athibute
Rielation: bank_predicted Hame: Instance_number Type: Mumeric
Instances: 300 Attributes: 11 Missing: 0 [0%) Distinat: 300 Unique: 300 (100%)
Adtributes Statistic Yalue
Minimurm 0
[ ] J[[ Nere [ wet | [ Patem | [Maxdmum 259
Mean 1435
No Hame StdDev 86,747
2[ag=
3 sex
A Jregion [ Class: pep (Nam) [ visualize a1
5[ Jincome
B[ maried
7 [l ehidren 43 43
B[ ]ear
S mortgage
10 Jpredictedper
[ rer
[ Remove
Status
oK

Weka Explore

Preprocess| Classily | Cluster

(=[] classifiers
1 ] bapes
1 functions

Associate | Select attributes || Visualize
Classifier
|| weka -

Ok
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d 0.405
") misc szolute error . &
1 £3.0032
] e ive squared error 81.4272 %
=] trees =r of Instances 102
® ADTres
1l - BFTree =d Accuracy By Class ===
# DecisionStump
[ : FT TF Rate FP Rate FPrecision FRecall F-Measure ROC Are
* Ji8 0,588 0.123 0.816 0,588 0.747 0.783
| o 0.877 0.311 0.781 0.877 0.826 0.783
i & LADTree . 0.794 0.228 0.796 0.794 0.791 0.783
® LMT
it ion Matrix
* METree B
# RandomForest —— classified as
-4 RandomTres a = YES
# REPTres ~h = 1o
[ Fiker | [ Removefiter | [ Closs | B
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Weka Explorer

| Preprncessl Classify | Cluster | Assaciate | Select attibutes | Visualize|
Classifier
[ Choose JJ4Bgraft-C025 M2
Test options Classifier output
() Use training set Incorrectly Classified Instances 21 20.5382 % L]
O Supplied test set Set Eappa statistic 0.5755
Mean absolute error 0.3128
O Cross-validation o/ Root mean scguared error 0.405
(@ Percentage split % Relative absolute error 63.0032 %
Root relative squared error 8l.4272 %
[ D E o ] Total Nuwmber of Instances 10z
[Mam) pep w === Detailed Accuracy By Class ===
Stop TP Rate FP Rate Precision Recall F-Measure ROC ire
0.659 0.123 0.818 0.689 0.747 0.783
Result list [right-click for options) 0,877 0.311 0.781 0.877 0.826 0.783
11:23:34 - iees )48 Weighted Avg. 0.794 0.2z8 0.795 0.794 0.781 0.783
113071 - trees. MBTree
11:37:30 - hiees.) 48 gralt === Confusion Matrix ===
Wiew in main windaw
g —-- classified as
Wigwy in separate window @ = vES
Save result buffer b = NO
Delete result buffer
Load model |
Save model | 3
Re-evaluate model on current: kest set
Status : "
Wisualize dassifier errors
oK

Weka Classifier Tree Visualizer: 11:32:49 - trees.

Tree View

= SLUBURBAM

= MALE = FEMALE
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Bank prediction data set using nb tree:

Bankpred dataset: using NBtree

Weka Explorer
F‘reprocess| C|533if.'r'|Cluster Azsociate | Select attibutes || Yisualize
Classifier
Test options Claszifier output
(O Use training set Mean absolute error 0.0475 =
O Supplied test set Root wean squared error 0.1621
Relative absolute error 10.7474 %
(& Crossvalidation  Folds - Root relative squared error 34.3807 %
() Percentage spli l:l Total Number of Instances 150
[ More optiars... ] === Detailed Accuracy By Class ===
[Nam) pep I TP Rate FP Rate  Precision Recall F-Measure ROC Are
1 1] 1 1 1 1
0.92 0.05 0.902 0.92 0.911 0.991
— ) 0.9 0.04 0.918 0.9 0.909 0.983
Resultlst [right-click for options) Ueighted Avy.  0.94 0.03 0.94 0.94 0.94 0.001
=== Confusion Matrix ===
a b o <-- claszified as
S0 0 0] a= Iris-setosa
045 4 | b = Iriz-wersicolor
0 545 | ¢ = Iris-wirginica
v
< | >
Status
ox -~

Weka Explorer
Preprocessl C|a$3if}'|CIuster Azzociate | Select attributes | Wisualize
Clagsifier
Test options Classifier output
(O Use training set Mean absolute error 0.0478 2
O Supplied test set Foot mean squared error 0.1621
Relatiwve ahsolute error 10.7474 %
@ Crossvalidation  Folds - Root relative squared error 34,3807 %
) Percentage spit l:l Total Mumber of Instances 150
[ Mare options. . ] === Detailed Accuracy By Class ===
[Maom) pep w TP Rate FP Rate Precision  Recall F-Heasure ROC Are
1 u] 1 1 1 1
0.92 0.05 0.902 0.92 0.911 0.931
- ) 0.9 0.04 0.918 0.9 0,909 0,083
Resultlist [5rores the dassification Weighted Avg.  0.94 0.03 0.94 0.94 0.94 0.951
BTree
=== Confusion Matrix ===
a b ¢ <-- claszified a=
50 0 0] a=Iris-setosa
046 4| b = Iris-versicolor
0 545 | c = Iris-virginica
W
< >
Status
: o
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PROGRAM 8.

Aim: Obtain the association rules using WEKA

Choose a data set

Iris data set

*= Weka Explorer

PTBDIUCESS|CIasswfy Cluster | Associate | Select attributes | Visualize

[ Open file... 1 I Open UAL... ] [ OpenDB... ] [ Generate... Edi.. ] [ Save.. l
Filter
Current relation Selected attibute
Felation: inis Mame: sepalength Type: Numeric
Instances: 150 Attributes: & Missing: 0 [0%) Distinct: 35 Unique: 9[E%)
Attributes Statistic Yalue
MinirmLirm 4.3
[ Al ] [ Wane ] [ Invert ] [ Pattemn ] Maxirnum 74
Mean 5843
Ho. Name StdDey 0828
2| ] sepabuidth
3 petallength
4" petalwidth - —
5[ Jclass ‘Class. class (Nom) v‘[ Visualize Al ]I
Remaove
Status
oK

Click on classify and choose ZeroR

= Weka Explorer

Preprocess| Classily | Cluster|| Associste | Select attributes || Visualize

EEX

Classifier
™) weka

=[] classifiers
1 @[] bayes

iier oLtpLt

) functions

@ JythonClassifier

] ey

] meta

-] i

) mise

=[] rules
Lo.#s ConjunctiveRule

DecisionT able

DTHE

JRip

tseves

NMNge
OneR
PART

- oR
.

[ Fiter ][ Remowe fiter

=

Status
aK
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Weka Explorer (=

Preprocess| Clesty | Clustes| Associdle| Select abutes | Visuaize

Classifer
Choose | ZeroR
Test options Cssslier ouiput
(O Use taning =t R inforxstion 2
(O Suppled test set Set
———— schene: weka,classifiers. rules, Zerck
© Cosswabdhon  Foés | 10 Relemiom:  iris
() Percentage spit Instances: 150
m Attributes: 5
sepaienen
sepalwidta
Hom) lass v petallength
petalwidta
Stat Sip class

Test mode:  10-fold cross-validation

Fesult o i ik orcptions]

Classifier model [full training set]

ZexoR predicts class valus: Iris-sstoss

Tixe taken to build model: 0 seconds

Stratified cross-validstion
Sumnary

Correctly Classified Instances s0 33333 &

Incorrectly Classified Instances 100 66.5667 &

Kappa statistic o

Hean hsolute error 0,444

Root mean squared error 0.4714

Relstive ahsolute error 100 3

Root relative squared errox 100 E

Total Humher of Instances 150

Detailed Accuracy By Cle; 3|

Status
o

VALIDATION :

Weka Explorer

Preprocess| Clesiy | Clustes| Associdle| Select abutes | Visuaize

Clssier
Checse | ZeraR
Testoptcns Claslier utput
O Use raning et TeroR predicts class valuer ITis-setosa 3
O Suppled test et £ Tine taken to build madel: 0 seconds
@) Crosevaiion Folés [ 10
o i Stratified cross-validation
) Percenizge spit [ | Sianary
Correctly Classified Instances 50 33.3333 %
" Incorrectly Clessified Instences 100 66.6667 %
o cass ¥ Heppa stavistic ]
St Mean shsolute error 0.4444
Root mean squared error 0.4714
Fesut o il or cpions] Relative sbsalute error w s
Root zelative squazed erzox w s
Total Mmber of Instances 150

Detailed Accuracy By Cless

TF Rate FP Rate Precision Recall F-Neasure BOC ires Class

L 1 0.333 1 0.5 0.5 Iris-setose

0 0 0 0 0 0.5 Iris-versicolor

0 0 0 0 0 0.5 Iris-virginica
Weighted dvg. 0,331 0.333 0.111 0.333  0.167 0.5

Confusion Matrix =

&b classified a5
50 0 0 == lIris-setoss

50 0 0 b= Iris-versicolor
50 0 0 c=Iris-virginica

Status
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PROGRAM 9.
Aim: Perform Data Transformations using an ETL Tool.

Description: Overview of ETL in Data Warehouses

You need to load your data warehouse regularly so that it can serve its purpose of facilitating
business analysis. To do this, data from one or more operational systems needs to be extracted and
copied into the data warehouse. The challenge in data warehouse environments is to integrate,
rearrange and consolidate large volumes of data over many systems, thereby providing a new
unified information base for business intelligence.

The process of extracting data from source systems and bringing it into the data warehouse is
commonly called ETL, which stands for extraction, transformation, and loading. Note that ETL
refers to a broad process, and not three well-defined steps. The acronym ETL is perhaps too
simplistic, because it omits the transportation phase and implies that each of the other phases of the
process is distinct. Nevertheless, the entire process is known as ETL.

The methodology and tasks of ETL have been well known for many years, and are not necessarily
unique to data warehouse environments: a wide variety of proprietary applications and database
systems are the IT backbone of any enterprise. Data has to be shared between applications or
systems, trying to integrate them, giving at least two applications the same picture of the world.
This data sharing was mostly addressed by mechanisms similar to what we now call ETL.

ETL Tools for Data Warehouses

Designing and maintaining the ETL process is often considered one of the most difficult and
resource-intensive portions of a data warehouse project. Many data warehousing projects use ETL
tools to manage this process. Oracle Warehouse Builder, for example, provides ETL capabilities
and takes advantage of inherent database abilities. Other data warehouse builders create their own
ETL tools and processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other tasks that are
important for a successful ETL implementation as part of the daily operations of the data warehouse
and its support for further enhancements. Besides the support for designing a data warehouse and
the data flow, these tasks are typically addressed by ETL tools such as Oracle Warehouse Builder.

Oracle is not an ETL tool and does not provide a complete solution for ETL. However, Oracle does
provide a rich set of capabilities that can be used by both ETL tools and customized ETL solutions.
Oracle offers techniques for transporting data between Oracle databases, for transforming large
volumes of data, and for quickly loading new data into a data warehouse.

Introduction to Extraction Methods in Data Warehouses

The extraction method you should choose is highly dependent on the source system and also from
the business needs in the target data warehouse environment. Very often, there is no possibility to
add additional logic to the source systems to enhance an incremental extraction of data due to the
performance or the increased workload of these systems. Sometimes even the customer is not
allowed to add anything to an out-of-the-box application system.
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Logical Extraction Methods

There are two types of logical extraction:

o Full Extraction
e Incremental Extraction

Full Extraction

The data is extracted completely from the source system. Because this extraction reflects all the data
currently available on the source system, there's no need to keep track of changes to the data source
since the last successful extraction. The source data will be provided as-is and no additional logical
information (for example, timestamps) is necessary on the source site. An example for a full
extraction may be an export file of a distinct table or a remote SQL statement scanning the complete
source table.

Incremental Extraction

At a specific point in time, only the data that has changed since a well-defined event back in history
will be extracted. This event may be the last time of extraction or a more complex business event
like the last booking day of a fiscal period. To identify this delta change there must be a possibility
to identify all the changed information since this specific time event. This information can be either
provided by the source data itself such as an application column, reflecting the last-changed
timestamp or a change table where an appropriate additional mechanism keeps track of the changes
besides the originating transactions. In most cases, using the latter method means adding extraction
logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the extraction process.
Instead, entire tables from the source systems are extracted to the data warehouse or staging area,
and these tables are compared with a previous extract from the source system to identify the
changed data. This approach may not have significant impact on the source systems, but it clearly
can place a considerable burden on the data warehouse processes, particularly if the data volumes
are large.

Physical Extraction Methods

Depending on the chosen logical extraction method and the capabilities and restrictions on the
source side, the extracted data can be physically extracted by two mechanisms. The data can either
be extracted online from the source system or from an offline structure. Such an offline structure
might already exist or it might be generated by an extraction routine.

There are the following methods of physical extraction:

e Online Extraction
o Offline Extraction

Online Extraction

The data is extracted directly from the source system itself. The extraction process can connect
directly to the source system to access the source tables themselves or to an intermediate system
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that stores the data in a preconfigured manner (for example, snapshot logs or change tables). Note
that the intermediate system is not necessarily physically different from the source system.

With online extractions, you need to consider whether the distributed transactions are using original
source objects or prepared source objects.

Offline Extraction

The data is not extracted directly from the source system but is staged explicitly outside the original
source system. The data already has an existing structure (for example, redo logs, archive logs or
transportable tablespaces) or was created by an extraction routine.

You should consider the following structures:

o Flat files

Data in a defined, generic format. Additional information about the source object is
necessary for further processing.

e Dump files

Oracle-specific format. Information about the containing objects may or may not be
included, depending on the chosen utility.

e Redo and archive logs
Information is in a special, additional dump file.
o Transportable tablespaces

Extracting into Flat Files Using SQL*Plus

The most basic technique for extracting data is to execute a SQL query in SQL*Plus and direct the
output of the query to a file. For example, to extract a flat file, country_city.log, with the pipe sign
as delimiter between column values, containing a list of the cities in the US in the

tables countries and customers, the following SQL script could be run:

SET echo off SET pagesize 0 SPOOL country_city.log

SELECT distinct t1.country_name [|'||| t2.cust_city

FROM countries t1, customers t2 WHERE t1.country_id = t2.country_id
AND tl.country_name="United States of America’;

SPOOL off

The exact format of the output file can be specified using SQL*Plus system variables.
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This extraction technique offers the advantage of storing the result in a customized format. Note
that, using the external table data pump unload facility, you can also extract the result of an
arbitrary SQL operation. The example previously extracts the results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent SQL*Plus sessions,
each session running a separate query representing a different portion of the data to be extracted.
For example, suppose that you wish to extract data from an orders table, and that the orders table
has been range partitioned by month, with partitions orders_jan1998, orders_feb1998, and so on. To
extract a single year of data from the orders table, you could initiate 12 concurrent SQL*Plus
sessions, each extracting a single partition. The SQL script for one such session could be:

SPOOL order_jan.dat
SELECT * FROM orders PARTITION (orders_jan1998);

SPOOL OFF

Even if the orders table is not partitioned, it is still possible to parallelize the extraction either based
on logical or physical criteria. The logical method is based on logical ranges of column values, for
example:

SELECT ... WHERE order_date

BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary, it is possible to
identify the Oracle Database data blocks that make up the orders table. Using this information, you
could then derive a set of rowid-range queries for extracting data from the orders table:

SELECT * FROM orders WHERE rowid BETWEEN valuel and value2;

Parallelizing the extraction of complex SQL queries is sometimes possible, although the process of
breaking a single complex query into multiple components can be challenging. In particular, the
coordination of independent processes to guarantee a globally consistent view can be difficult.
Unlike the SQL*Plus approach, using the external table data pump unload functionality provides
transparent parallel capabilities.

Note that all parallel techniques can use considerably more CPU and 1/O resources on the source
system, and the impact on the source system should be evaluated before parallelizing any extraction
technique.

Transformation Flow

From an architectural perspective, you can transform your data in two ways:

o Multistage Data Transformation
o Pipelined Data Transformation
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Multistage Data Transformation

The data transformation logic for most data warehouses consists of multiple steps. For example, in
transforming new records to be inserted into a sales table, there may be separate logical
transformation steps to validate each dimension key.

new_sales_stepl Validate customer
Load into staging | keys {lookup in -
table > > customer
dimension table)
Flat Files Table
new sales step2 Convert source new sales step3
| product keys |
— =P {0 warehouse >
product keys
Table Table
sales
Insert into sales ]
> warehouse table —
Table

When using Oracle Database as a transformation engine, a common strategy is to implement each
transformation as a separate SQL operation and to create a separate, temporary staging table (such
as the tables new_sales_stepl and new_sales_step2 to store the incremental results for each step.
This load-then-transform strategy also provides a natural checkpointing scheme to the entire
transformation process, which enables the process to be more easily monitored and restarted.
However, a disadvantage to multistaging is that the space and time requirements increase.

It may also be possible to combine many simple logical transformations into a single SQL statement
or single PL/SQL procedure. Doing so may provide better performance than performing each step
independently, but it

Loading a Data Warehouse with SQL*Loader

SQL*Loader is used to move data from flat files into an Oracle data warehouse. During this data
load, SQL*Loader can also be used to implement basic data transformations. When using direct-
path SQL*Loader, basic data manipulation, such as datatype conversion and

simple NULL handling, can be automatically resolved during the data load. Most data warehouses
use direct-path loading for performance reasons.

The conventional-path loader provides broader capabilities for data transformation than a direct-
path loader: SQL functions can be applied to any column as those values are being loaded. This
provides a rich capability for transformations during the data load. However, the conventional-path
loader is slower than direct-path loader. For these reasons, the conventional-path loader should be
considered primarily for loading and transforming smaller amounts of data.
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The following is a simple example of a SQL*Loader controlfile to load data into the sales table of
the sh sample schema from an external file sh_sales.dat. The external flat file sh_sales.dat consists
of sales transaction data, aggregated on a daily level. Not all columns of this external file are loaded
into sales. This external file will also be used as source for loading the second fact table of

the sh sample schema, which is done using an external table:

The following shows the control file (sh_sales.ctl) loading the sales table:

LOAD DATA INFILE sh_sales.dat APPEND INTO TABLE sales
FIELDS TERMINATED BY "|"

(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID, QUANTITY_SOLD,
AMOUNT_SOLD)

It can be loaded with the following command:

$ sqlldr control=sh_sales.ctl direct=true
Username:

Password:

Viva Voce

1) Define ETL

2) Define Data Warehouse
3) Define Staging Area

4) Define tablespace

5) What is SQL * Loader
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PROGRAM 10.
Aim: A small case study on involving all stages of KDD

Description:

KDD Process is the process of using data mining methods (algorithms) to extract (identify) what is
deemed knowledge according to the specifications of measures and thresholds, using database F
along with any required preprocessing, subsampling, and transformation of F.”

KDD:

¢ In a multistep process many decisions are made by the user (domain expert):

e lterative and interactive — loops between any two steps are possible

e Usually the most focus is on the DM step, but other steps are of considerable importance
for the successful application of KDD in practice

e Verification of user’s hypothesis (this against the EDA principle...)
e Autonomous discovery of new patterns and models

e Prediction of future behavior of some entities

e Description of interesting patterns and models

STEPS OF DM:

Domain understanding and goal setting

Creating a target data set

Data cleaning and preprocessing

Data reduction and projection

Data mining
e Choosing the data mining task
e Choosing the data mining algorithm(s)
e Use of data mining algorithms

6. Interpretation of mined patterns

7. Utilization of discovered knowledge

oW e

Interpretation/
evaluation

20%,, /
Data mining } 207 S Knowledge

=2y 20% 207 4B
Transformation - /\

P.
Prepr: ing Tran;af?;med atterns and models
— Preprocessed
o = =
Data
Target data
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Domain analysis
e Development of domain understanding
e Discovery of relevant prior knowledge
o Definition of the goal of the knowledge discovery
Data selection
Selection and integration of the target data from possibly many different and heterogeneous
sources
Interesting data may exist, e.g., in relational databases, document collections, e-mails,
photographs, video clips, process database, customer transaction database, web logs etc.
Focus on the correct subset of variables and data samples
= E.g., customer behavior in a certain country, relationship between items purchased
and customer income and age
Data cleaning and preprocessing
Dirty data can confuse the mining procedures and lead to unreliable and invalid outputs
Complex analysis and mining on a huge amount of data may take a very long time
Preprocessing and cleaning should improve the quality of data and mining results by
enhancing the actual mining process
The actions to be taken includes
= Removal of noise or outliers
= Collecting necessary information to model or account for noise
= Using prior domain knowledge to remove the inconsistencies and duplicates from
the data
= Choice or usage of strategies for handling missing data fields
Data reduction and projection
Data transformation techniques
e Smoothing (binning, clustering, regression etc.)
e Aggregation (use of summary operations (e.g., averaging) on data)
e Generalization (primitive data objects can be replaced by higher-level concepts)
e Normalization (min-max-scaling, z-score)
e Feature construction from the existing attributes (PCA, MDS)
Data reduction techniques are applied to produce reduced representation of the data (smaller
volume that closely maintains the integrity of the original data)
Aggregation
e Dimension reduction (Attribute subset selection, PCA, MDS,...)
e Compression (e.g., wavelets, PCA, clustering,...)
e Numerosity reduction
= parametric models: regression and log-linear models
* non-parametric models: histograms, clustering, sampling...
e Discretization (e.g., binning, histograms,cluster analysis,...)
e Concept hierarchy generation (numeric value of age” to a higher level concept
”young, middle-aged, senior”)
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5) Choice of data mining task

e Define the task for data mining
e Exploration/summarization

= Summarizing statistics (mean, median, mode, std,..)

= Class/concept description

= Explorative data analysis

e Graphical techniques, low-dimensional plots,...
e Predictive
= Classification or regression

e Descriptive
= Cluster analysis, dependency modelling, change and outlier detection

6) Choosing the DM algorithm(s)
e Select the most appropriate methods to be used for the model and pattern search
e Matching the chosen method with the overall goal of the KDD process (necessites
communication between the end user and method specialists)
¢ Note that this step requires understanding in many fields, such as computer science,
statistics, machine learning, optimization, etc.
7) Use of data mining algorithms
e Application of the chosen DM algorithms to the target data set
e Search for the patterns and models of interest in a particular representational form or a set of
such representations
e C(lassification rules or trees, regression models, clusters, mixture models...
e Should be relatively automatic
e Generally DM involves:
e Establish the structural form (model/pattern) one is interested
e Estimate the parameters from the available data
e Interprete the fitted models
8) Interpretation/evaluation
e The mined patterns and models are interpreted
e The results should be presented in understandable form
e Visualization techniques are important for making the results useful — mathematical models
or text type descriptions may be difficult for domain experts
e Possible return to any of the previous step
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ADDITIONAL PROGRAMS

Introduction and Basics of R Programming:

How to install R Packages?
The sheer power of R lies in its incredible packages. In R, most data handling tasks can be

performed in 2 ways: Using R packages and R base functions. In this tutorial, I’ll also introduce you
with the most handy and powerful R packages. To install a package, simply type:

install.packages("package name")

As a first time user, a pop might appear to select your CRAN mirror (country server), choose
accordingly and press OK.

Note: You can type this either in console directly and press ‘Enter’ or in R script and click ‘Run’.

Basic Computations in R

Let’s begin with basics. To get familiar with R coding environment, start with some basic
calculations. R console can be used as an interactive calculator too. Type the following in your
console:

>2+3
>5

>6/3
> 2

> (3*8)/(2*3)
>4

> log(12)
> 1.07

> sqrt (121)
>11

Similarly, you can experiment various combinations of calculations and get the results. In case, you
want to obtain the previous calculation, this can be done in two ways. First, click in R console, and
press ‘Up / Down Arrow’ key on your keyboard. This will activate the previously executed
commands. Press Enter.

But, what if you have done too many calculations ? It would be too painful to scroll through every
command and find it out. In such situations, creating variable is a helpful way.

In R, you can create a variable using <- or = sign. Let’s say I want to create a variable x to compute
the sum of 7 and 8. I’ll write it as:
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>X<-8+7
> X
> 15

Once we create a variable, you no longer get the output directly (like calculator), unless you call the
variable in the next line. Remember, variables can be alphabets, alphanumeric but not numeric. You
can’t create numeric variables.

2. Essentials of R Programming

Understand and practice this section thoroughly. This is the building block of your R programming
knowledge. If you get this right, you would face less trouble in debugging.

R has five basic or ‘atomic’ classes of objects. Wait, what is an object ?

Everything you see or create in R is an object. A vector, matrix, data frame, even a variable is an
object. R treats it that way. So, R has 5 basic classes of objects. This includes:

Character

Numeric (Real Numbers)
Integer (Whole Numbers)
Complex

Logical (True / False)

arONE

Since these classes are self-explanatory by names, I wouldn’t elaborate on that. These classes have
attributes. Think of attributes as their ‘identifier’, a name or number which aptly identifies them. An
object can have following attributes:

names, dimension names
dimensions

class

length

NS

Attributes of an object can be accessed using attributes() function. More on this coming in
following section.

Let’s understand the concept of object and attributes practically. The most basic object in R is
known as vector. You can create an empty vector using vector(). Remember, a vector contains
object of same class.

For example: Let’s create vectors of different classes. We can create vector using ¢() or concatenate
command also.

>a<-c(1.8,4.5) #numeric

> b <-c(1 + 2i, 3 - 6i) #complex
>d <-¢(23,44) #integer

> e <- vector("logical”, length = 5)

Similarly, you can create vector of various classes.
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Data Typesin R

R has various type of ‘data types’ which includes vector (numeric, integer etc), matrices, data
frames and list. Let’s understand them one by one.

Vector: As mentioned above, a vector contains object of same class. But, you can mix objects of
different classes too. When objects of different classes are mixed in a list, coercion occurs. This
effect causes the objects of different types to ‘convert’ into one class. For example:

> gt <- ¢("Time", 24, "October”, TRUE, 3.33) #character

> ab <- ¢(TRUE, 24) #numeric

> cd <- ¢(2.5, "May") #character
To check the class of any object, use class(“‘vector name ) function.

> class(qt)

"character"
To convert the class of a vector, you can use as. command.

> bar <- 0:5

> class(bar)

> "integer"

> as.numeric(bar)

> class(bar)

> "numeric”

> as.character(bar)

> class(bar)

> "character”
Similarly, you can change the class of any vector. But, you should pay attention here. If you try to
convert a “character” vector to “numeric” , NAs will be introduced. Hence, you should be careful to
use this command.

List: A list is a special type of vector which contain elements of different data types. For example:

> my_list <- list(22, "ab", TRUE, 1 + 2i)

> my_list

[[1]]

[1] 22

[[2]]

[1] "ab"

[[31]

[1] TRUE

[[41]

[1] 1+2i
As you can see, the output of a list is different from a vector. This is because, all the objects are of
different types. The double bracket [[1]] shows the index of first element and so on. Hence, you can
easily extract the element of lists depending on their index. Like this:

> my_list[[3]]

> [1] TRUE
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You can use [] single bracket too. But, that would return the list element with its index number,
instead of the result above. Like this:

> my_list[3]

> [[1]]

[1] TRUE

Matrices: When a vector is introduced with row and column i.e. a dimension attribute, it becomes
a matrix. A matrix is represented by set of rows and columns. It is a 2 dimensional data structure. It
consist of elements of same class. Let’s create a matrix of 3 rows and 2 columns:

> my_matrix <- matrix(1:6, nrow=3, ncol=2)

> my_matrix

[11[2]

[1]14

[2,]25

[3,]36

> dim(my_matrix)

[1]32

> attributes(my_matrix)

$dim

[1]32
As you can see, the dimensions of a matrix can be obtained using
either dim() or attributes() command. To extract a particular element from a matrix, simply use the
index shown above. For example(try this at your end):

> my_matrix[,2] #extracts second column

> my_matrix[,1] #extracts first column

>my_matrix[2,] #extracts second row

>my_matrix[1,] #extracts first row
As an interesting fact, you can also create a matrix from a vector. All you need to do is, assign
dimension dim() later. Like this:

> age <- ¢(23, 44, 15, 12, 31, 16)

> age

[1] 2344151231 16

> dim(age) <- ¢(2,3)
> age
[ L2][3]
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[1,]231531
[2]44 12 16
> class(age)
[1] "matrix"

You can also join two vectors using cbind() and rbind() functions. But, make sure that both vectors
have same number of elements. If not, it will return NA values.

>x<-¢(1,2,3,4,5,6)
>y <-¢(20, 30, 40, 50, 60)
> cbind(X, y)

> cbind(x, y)

Xy

[1,]120

[2,]230

[3,] 340

[4,] 450

[5,]560

[6,]6 70

> class(cbind(x, y))

[1] “matrix”

Data Frame: This is the most commonly used member of data types family. It is used to store
tabular data. It is different from matrix. In a matrix, every element must have same class. But, in a
data frame, you can put list of vectors containing different classes. This means, every column of a
data frame acts like a list. Every time you will read data in R, it will be stored in the form of a data
frame. Hence, it is important to understand the majorly used commands on data frame:

> df <- data.frame(name = c("ash","jane","paul","mark"), score = ¢(67,56,87,91))
> df

name score

1 ash 67

2 jane 56

3 paul 87

4 mark 91

> dim(df)
[1] 4 2
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> str(df)

‘data.frame': 4 obs. of 2 variables:

$ name : Factor w/ 4 levels "ash","jane","mark"”,... 124 3

$ score: num 67 56 87 91

> nrow(df)

[1]14

> ncol(df)

[1] 2
Let’s understand the code above. df is the name of data frame. dim() returns the dimension of data
frame as 4 rows and 2 columns. str() returns the structure of a data frame i.e. the list of variables
stored in the data frame. nrow() and ncol() return the number of rows and number of columns in a
data set respectively.
Here you see “name” is a factor variable and “score” is numeric. In data science, a variable can be
categorized into two types: Continuous and Categorical.
Continuous variables are those which can take any form such as 1, 2, 3.5, 4.66 etc. Categorical
variables are those which takes only discrete values such as 2, 5, 11, 15 etc. In R, categorical
values are represented by factors. In df, name is a factor variable having 4 unique levels. Factor or
categorical variable are specially treated in a data set. Similarly, you can find techniques to deal
with continuous variables here.
Let’s now understand the concept of missing values in R. This is one of the most painful yet crucial
part of predictive modelling. You must be aware of all techniques to deal with them. The complete
explanation on such techniques is provided here.
Missing values in R are represented by NA and NaN. Now we’ll check if a data set has missing
values (using the same data frame df).

> df[1:2,2] <- NA #injecting NA at 1st, 2nd row and 2nd column of df

> df

name score

1 ash NA

2 jane NA

3 paul 87

4 mark 91

> is.na(df) #checks the entire data set for NAs and return logical output

name score

[1,] FALSE TRUE

[2,] FALSE TRUE
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[3,] FALSE FALSE
[4,] FALSE FALSE
> table(is.na(df)) #returns a table of logical output
FALSE TRUE
6 2
> dff!complete.cases(df),] #returns the list of rows having missing values
name score
1ash NA
2 jane NA
Missing values hinder normal calculations in a data set. For example, let’s say, we want to compute
the mean of score. Since there are two missing values, it can’t be done directly. Let’s see:
mean(df$score)
[1] NA
> mean(df$score, na.rm = TRUE)
[1] 89
The use of na.rm = TRUE parameter tells R to ignore the NAs and compute the mean of remaining
values in the selected column (score). To remove rows with NA values in a data frame, you can
use na.omit:
> new_df <- na.omit(df)
> new_df
name score
3 paul 87
4 mark 91

Control Structures in R
As the name suggest, a control structure ‘controls’ the flow of code / commands written inside a
function. A function is a set of multiple commands written to automate a repetitive coding task.
For example: You have 10 data sets. You want to find the mean of ‘Age’ column present in every
data set. This can be done in 2 ways: either you write the code to compute mean 10 times or you
simply create a function and pass the data set to it.
Let’s understand the control structures in R with simple examples:
if, else — This structure is used to test a condition. Below is the syntax:

if (<condition>){

##do something
}else {
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##do something

Iy
Example

#initialize a variable

N <- 10

#check if this variable * 5 is > 40

if (N*5>40){

print("This is easy!")
}else {
print ("It's not easy!")

b

[1] "This is easy!"
for — This structure is used when a loop is to be executed fixed number of times. It is commonly
used for iterating over the elements of an object (list, vector). Below is the syntax:

for (<search condition>){

#do something

s
Example

#initialize a vector

y <- ¢(99,45,34,65,76,23)

#print the first 4 numbers of this vector

for(i in 1:4){

print (y[i])

b

[1] 99

[1] 45

[1] 34

[1] 65
while — It begins by testing a condition, and executes only if the condition is found to be true. Once
the loop is executed, the condition is tested again. Hence, it’s necessary to alter the condition such
that the loop doesn’t go infinity. Below is the syntax:

#initialize a condition

Age <-12

#check if age is less than 17

while(Age < 17){
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print(Age)
Age <- Age + 1 #Once the loop is executed, this code breaks the loop
by
[1] 12
[1] 13
[1] 14
[1] 15
[1] 16
There are other control structures as well but are less frequently used than explained above. Those
structures are:
1. repeat — It executes an infinite loop
2. break — It breaks the execution of a loop
3. next — It allows to skip an iteration in a loop
4. return — It help to exit a function
Note: If you find the section ‘control structures’ difficult to understand, not to worry. R is
supported by various packages to compliment the work done by control structures.
Useful R Packages
Out of ~7800 packages listed on CRAN, I've listed some of the most powerful and commonly used
packages in predictive modeling in this article. Since, I’ve already explained the method of

installing packages, you can go ahead and install them now. Sooner or later you’ll need them.

Importing Data: R offers wide range of packages for importing data available in any format such
as .txt, .csv, .json, .sgl etc. To import large files of data quickly, it is advisable to install and
use data.table, readr, RMySQL, sqldf, jsonlite.

Data Visualization: R has in built plotting commands as well. They are good to create simple
graphs. But, becomes complex when it comes to creating advanced graphics. Hence, you should
install ggplot2.

Data Manipulation: R has a fantastic collection of packages for data manipulation. These
packages allows you to do basic & advanced computations quickly. These packages
are dplyr, plyr, tidyr, lubridate, stringr. Modeling / Machine Learning: For modeling, caret
package in R is powerful enough to cater to every need for creating machine learning model.

However, you can install packages algorithms wise such as randomForest, rpart, gbm etc
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PROGRAM 11.
Aim : Data Manipulation in R.

Description:

Let’s call it as, the advanced level of data exploration. In this section we’ll practically learn about
feature engineering and other useful aspects.

Feature Engineering: This component separates an intelligent data scientist from a technically
enabled data scientist. You might have access to large machines to run heavy computations and
algorithms, but the power delivered by new features, just can’t be matched. We create new variables
to extract and provide as much ‘new’ information to the model, to help it make accurate predictions.

If you have been thinking all this time, great. But now is the time to think deeper. Look at the data
set and ask yourself, what else (factor) could influence Item_Outlet_Sales ? Anyhow, the answer is
below.

1. Count of Outlet Identifiers — There are 10 unique outlets in this data. This variable will give us
information on count of outlets in the data set. More the number of counts of an outlet, chances are
more will be the sales contributed by it.

> library(dplyr)

> a <- combi%>%
group_by(Outlet_Identifier)%>%
tally()

> head(a)

Source: local data frame [6 X 2]
Outlet_Identifier n

(fctr) (int)

1 0UTO010 925

2 0UT013 1553
30UT017 1543

4 OUT018 1546
50UT019 880

6 OUT027 1559

> names(a)[2] <- "Outlet_Count"
> combi <- full_join(a, combi, by = "Outlet_ldentifier")

As you can see, dplyr package makes data manipulation quite effortless. You no longer need to
write long function. In the code above, I’ve simply stored the new data frame in a variable a. Later,
the new column Outlet_Count is added in our original ‘combi’ data set..

2. Count of Item Identifiers — Similarly, we can compute count of item identifiers too. It’s a good
practice to fetch more information from unique 1D variables using their count. This will help us to
understand, which outlet has maximum frequency.
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> b <- combi%>%
group_by(Item_ldentifier)%>%
tally()

> names(b)[2] <- "Item_Count"
> head (b)

Item_Identifier Item_Count
(fctr) (int)
1 DRA12

2 DRA24

3 DRA59

4 DRB0O1

5 DRB13

6 DRB24

00 O 0K - O

> combi <- merge(b, combi, by = “Item_Identifier”)

3. Outlet Years — This variable represent the information of existence of a particular outlet since
year 2013. Why just 2013? You’ll find the answer in problem statement here. My hypothesis is,
older the outlet, more footfall, large base of loyal customers and larger the outlet sales.

> ¢ <- combi%>%
select(Outlet_Establishment_Year)%>%
mutate(Outlet_Year = 2013 - combi$Outlet_Establishment_Year)

> head(c)

Outlet_Establishment_Year Outlet Year
11999 14

2 2009 4

31999 14

41998 15

51987 26

6 2009 4

> combi <- full_join(c, combi)
This suggests that outlets established in 1999 were 14 years old in 2013 and so on.

4. Item Type New — Now, pay attention to Item_ldentifiers. We are about to discover a new
trend. Look carefully, there is a pattern in the identifiers starting with “FD”,”DR”,”NC”. Now,
check the corresponding Item_Types to these identifiers in the data set. You’ll discover, items
corresponding to “DR”, are mostly eatables. Items corresponding to “FD”, are drinks. And, item
corresponding to “NC”, are products which can’t be consumed, let’s call them non-consumable.
Let’s extract these variables into a new variable representing their counts.

Here I'1l use substr(), gsub() function to extract and rename the variables respectively.
> ( <- substr(combi$ltem_Identifier,1,2)
> <- gsub("FD","Food",q)

> ( <- gsub("DR","Drinks",q)
> ( <- gsub("NC","Non-Consumable",q)
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> table(q)
Drinks Food Non-Consumable
1317 10201 2686

Let’s now add this information in our data set with a variable name ‘Item Type New.
> combi$ltem_Type_New <-q

I’ll leave the rest of feature engineering intuition to you. You can think of more variables which
could add more information to the model. But make sure, the variable aren’t correlated. Since, they
are emanating from a same set of variable, there is a high chance for them to be correlated. You can
check the same in R using cor() function.
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PROGRAM 12. Classification in R.
Aim: Decision Trees

Description:

Before you start, I’d recommend you to glance through the basics of decision tree algorithms. To
understand what makes it superior than linear regression, In R, decision tree algorithm can be
implemented using rpart package. In addition, we’ll use caret package for doing cross validation.

Cross validation is a technique to build robust models which are not prone to overfitting.

In R, decision tree uses a complexity parameter (cp). It measures the tradeoff between model
complexity and accuracy on training set. A smaller cp will lead to a bigger tree, which might overfit
the model. Conversely, a large cp value might underfit the model. Underfitting occurs when the
model does not capture underlying trends properly. Let’s find out the optimum cp value for our
model with 5 fold cross validation.

Program:

#loading required libraries

> library(rpart)

> library(e1071)

> library(rpart.plot)

> library(caret)

#setting the tree control parameters

> fitControl <- trainControl(method = "cv", number = 5)
> cartGrid <- expand.grid(.cp=(1:50)*0.01)

#decision tree

> tree_model <- train(Item_Outlet_Sales ~ ., data = new_train, method = "rpart", trControl =
fitControl, tuneGrid = cartGrid)

> print(tree_model)

The final value for cp = 0.01. You can also check the table populated in console for more
information. The model with cp = 0.01 has the least RMSE. Let’s now build a decision tree with
0.01 as complexity parameter.

> main_tree <- rpart(ltem_Outlet_Sales ~ ., data = new_train, control = rpart.control(cp=0.01))
> prp(main_tree)
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Item_MRP = 144
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Here is the tree structure of our model. If you have gone through the basics, you would now
understand that this algorithm has marked Item_MRP as the most important variable (being the root

node).

Let’s check the RMSE of this model and see if this is any better than regression.

> pre_score <- predict(main_tree, type = "vector")
> rmse(new_train$ltem_Outlet_Sales, pre_score)
[1] 1102.774
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