
UNIT-I

INTRODUCTION OF IOT

IoT comprises things that have unique identities and are connected to internet. By 2020 there will

be a total of 50 billion devices /things connected to internet. IoT is not limited to just connecting

things to the internet but also allow things to communicate and exchange data.

Definition:
A dynamic global n/w infrastructure with self configuring capabilities based on standard and

interoperable communication protocols where physical and virtual ―things‖ have identities,

physical attributes and virtual personalities and use intelligent interfaces, and are seamlessly

integrated into information n/w, often communicate data associated with users and their

environments.

Characteristics:
1) Dynamic & Self Adapting: IoT devices and systems may have the capability to

dynamically adapt with the changing contexts and take actions based on their operating

conditions, user‘s context or sensedenvironment.

Eg: the surveillance system is adapting itself based on context and changing conditions.

2) Self Configuring: allowing a large number of devices to work together to provide certain

functionality.

3) Inter Operable Communication Protocols: support a number of interoperable

communication protocols ans can communicate with other devices and also with

infrastructure.

4) Unique Identity: Each IoT device has a unique identity and a unique identifier(IP

address).

5) Integrated into Information Network: that allow them to communicate and exchange

data with other devices andsystems.

Applications of IoT:

1) Home

2) Cities
3) Environment

4) Energy

5) Retail

6) Logistics

7) Agriculture

8) Industry

9) Health & LifeStyle

Physical Design Of IoT
1) Things inIoT:

The things in IoT refers to IoT devices which have unique identities and perform remote sensing,

actuating and monitoring capabilities. IoT devices can exchange dat with other connected

devices applications. It collects data from other devices and process data either locally or

remotely.

An IoT device may consist of several interfaces for communication to other devices both wired

and wireless. These includes (i) I/O interfaces for sensors, (ii) Interfaces for internet connectivity

(iii) memory and storage interfaces and (iv) audio/videointerfaces.

2) IoTProtocols:

a) Link Layer : Protocols determine how data is physically sent over the network‘s

physical layer or medium. Local network connect to which host is attached. Hosts on the

same link exchange data packets over the link layer using link layer protocols. Link layer

determines how packets are coded and signaled by the h/w device over the medium to

which the host isattached.

Protocols:
 802.3-Ethernet: IEEE802.3 is collection of wired Ethernet standards for the link layer.

Eg: 802.3 uses co-axial cable; 802.3i uses copper twisted pair connection; 802.3j uses

fiber optic connection; 802.3ae uses Ethernet overfiber.

 802.11-WiFi: IEEE802.11 is a collection of wireless LAN(WLAN) communication

standards including extensive description of link layer. Eg: 802.11a operates in 5GHz

band, 802.11b and 802.11g operates in 2.4GHz band, 802.11n operates in 2.4/5GHz

band, 802.11ac operates in 5GHz band, 802.11ad operates in 60Ghzband.

 802.16 - WiMax: IEEE802.16 is a collection of wireless broadband standards including
exclusive description of link layer. WiMax provide data rates from 1.5 Mb/s to 1Gb/s.

 802.15.4-LR-WPAN: IEEE802.15.4 is a collection of standards for low rate wireless
personal area network(LR-WPAN). Basis for high level communication protocols such as

ZigBee. Provides data rate from 40kb/s to250kb/s.

 2G/3G/4G-Mobile Communication: Data rates from 9.6kb/s(2G) to up to100Mb/s(4G).

B) Network/Internet Layer: Responsible for sending IP datagrams from source n/w to

destination n/w. Performs the host addressing and packet routing. Datagrams contains

source and destinationaddress.

Protocols:
 IPv4: Internet Protocol version4 is used to identify the devices on a n/w using a

hierarchical addressing scheme. 32 bit address. Allows total of 2**32addresses.

 IPv6: Internet Protocol version6 uses 128 bit address scheme and allows 2**128

addresses.

 6LOWPAN:(IPv6overLowpowerWirelessPersonalAreaNetwork)operatesin

2.4 GHz frequency range and data transfer 250 kb/s.

C) Transport Layer: Provides end-to-end message transfer capability independent of the

underlying n/w. Set up on connection with ACK as in TCP and without ACK as in UDP.

Provides functions such as error control, segmentation, flow control and congestion control.

Protocols:
 TCP: Transmission Control Protocol used by web browsers(along with HTTP and

HTTPS), email(along with SMTP, FTP). Connection oriented and stateless protocol. IP

Protocol deals with sending packets, TCP ensures reliable transmission of protocols in

order. Avoids n/w congestion and congestioncollapse.

 UDP: User Datagram Protocol is connectionless protocol. Useful in time sensitive

applications, very small data units to exchange. Transaction oriented and stateless

protocol. Does not provide guaranteeddelivery.

D) Application Layer: Defines how the applications interface with lower layer protocols to

send data over the n/w. Enables process-to-process communication usingports.
Protocols:

 HTTP: Hyper Text Transfer Protocol that forms foundation of WWW. Follow request-
response model Statelessprotocol.

 CoAP: Constrained Application Protocol for machine-to-machine(M2M) applications

with constrained devices, constrained environment and constrained n/w. Uses client-
server architecture.

 WebSocket: allows full duplex communication over a single socketconnection.

 MQTT: Message Queue Telemetry Transport is light weight messaging protocol based

on publish-subscribe model. Uses client server architecture. Well suited for constrained

environment.

 XMPP: Extensible Message and Presence Protocol for real time communication and

streaming XML data between network entities. Support client-server and server-server

communication.

 DDS: Data Distribution Service is data centric middleware standards for device-to-device
or machine-to-machine communication. Uses publish-subscribemodel.

 AMQP: Advanced Message Queuing Protocol is open application layer protocol for
business messaging. Supports both point-to-point and publish-subscribemodel.

LOGICAL DESIGN of IoT
Refers to an abstract represent of entities and processes without going into the low level

specifies of implementation.

1) IoT Functional Blocks 2) IoT Communication Models 3) IoT Comm. APIs

1) IoT Functional Blocks: Provide the system the capabilities for identification,
sensing, actuation, communication andmanagement.

http://www/

 Device: An IoT system comprises of devices that provide sensing, actuation, monitoring
and controlfunctions.

 Communication: handles the communicationfor IoTsystem.

 Services: for device monitoring, device control services, data publishing services and
services for devicediscovery.

 Management: Provides various functions to govern the IoTsystem.

 Security: Secures IoT system and priority functions such as authentication,authorization,

message and context integrity and datasecurity.

 Application: IoT application provide an interface that the users can use to control and

monitor various aspects of IoTsystem.

2) IoT CommunicationModels:

1) Request-Response 2) Publish-Subscibe 3)Push-Pull 4) ExclusivePair

1) Request-ResponseModel:

In which the client sends request to the server and the server replies to requests. Is a

stateless communication model and each request-response pair is independent of others.

2) Publish-SubscibeModel:

Involves publishers, brokers and consumers. Publishers are source of data. Publishers send data

to the topics which are managed by the broker. Publishers are not aware of the consumers.

Consumers subscribe to the topics which are managed by the broker. When the broker receives

data for a topic from the publisher, it sends the data to all the subscribedconsumers.

3) Push-Pull Model: in which data producers push data to queues and consumers pull

data from the queues. Producers do not need to aware of the consumers. Queues help in
decoupling the message between the producers andconsumers.

4) Exclusive Pair: is bi-directional, fully duplex communication model that uses a

persistent connection between the client and server. Once connection is set up it remains
open until the client send a request to close the connection. Is a stateful communication

model and server is aware of all the open connections.

3) IoT CommunicationAPIs:

a) REST based communication APIs(Request-Response BasedModel)
b) WebSocket based Communication APIs(Exclusive PairBasedModel)

a) REST based communication APIs: Representational State Transfer(REST) is a set of

architectural principles by which we can design web services and web APIs that focus on a

system‘s resources and have resource states are addressed andtransferred.

The REST architectural constraints: Fig. shows communication between client server with

REST APIs.

Client-Server: The principle behind client-server constraint is the separation of concerns.

Separation allows client and server to be independently developed and updated.

Stateless: Each request from client to server must contain all the info. Necessary to understand

the request, and cannot take advantage of any stored context on the server.

Cache-able: Cache constraint requires that the data within a response to a request be implicitly

or explicitly labeled as cache-able or non-cacheable. If a response is cache-able, then a client

cache is given the right to reuse that response data for later, equivalentrequests.

Layered System: constraints the behavior of components such that each component cannot see

beyond the immediate layer with which they are interacting.

User Interface: constraint requires that the method of communication between a client and a

server must be uniform.

Code on Demand: Servers can provide executable code or scripts for clients to execute in their

context. This constraint is the only one that is optional.

Request-Response model used by REST:

RESTful webservice is a collection of resources which are represented by URIs. RESTful web

API has a base URI(e.g: http://example.com/api/tasks/). The clients and requests to these URIs

using the methods defined by the HTTP protocol(e.g: GET, PUT, POST or DELETE). A

RESTful web service can support various internet media types.

b) WebSocket Based Communication APIs: WebSocket APIs allow bi-directional, full

duplex communication between clients and servers. WebSocket APIs follow the

exclusive pair communicationmodel.

IoT Enabling Technologies
IoT is enabled by several technologies including Wireless Sensor Networks, Cloud

Computing, Big Data Analytics, Embedded Systems, Security Protocols and architectures,

Communication Protocols, Web Services, Mobile internet and semantic search engines.

1) Wireless Sensor Network(WSN): Comprises of distributed devices with sensors which

are used to monitor the environmental and physical conditions. Zig Bee is one of the most

popular wireless technologies used byWSNs.

WSNs used in IoT systems are described as follows:

 Weather Monitoring System: in which nodes collect temp, humidity and other

data, which is aggregated and analyzed.

 Indoor air quality monitoring systems: to collect data on the indoor air quality and

concentration of various gases.

 Soil Moisture Monitoring Systems: to monitor soil moisture at variouslocations.

 Surveillance Systems: use WSNs for collecting surveillance data(motiondata
detection).

 Smart Grids : use WSNs for monitoring grids at variouspoints.

http://example.com/api/tasks/

 Structural Health Monitoring Systems: Use WSNs to monitor the health of
structures(building, bridges) by collecting vibrations from sensor nodes deployed

at various points in thestructure.

2) Cloud Computing: Services are offered to users in differentforms.

 Infrastructure-as-a-service(IaaS):provides users the ability to provision computing
and storage resources. These resources are provided to the users as a virtual

machine instances and virtualstorage.

 Platform-as-a-Service(PaaS): provides users the ability to develop and deploy

application in cloud using the development tools, APIs, software libraries and

services provided by the cloud serviceprovider.

 Software-as-a-Service(SaaS): provides the user a complete software application or

the user interface to the applicationitself.

3) Big Data Analytics: Some examples of big data generated by IoTare

 Sensor data generated by IoTsystems.

 Machine sensor data collected from sensors established in industrial and energy
systems.

 Health and fitness data generated IoTdevices.

 Data generated by IoT systems for location and trackingvehicles.

 Data generated by retail inventory monitoringsystems.

4) Communication Protocols: form the back-bone of IoT systems and enable network

connectivity and coupling toapplications.

 Allow devices to exchange data overnetwork.

 Define the exchange formats, data encoding addressing schemes for device and

routing of packets from source todestination.

 It includes sequence control, flow control and retransmission of lostpackets.

5) Embedded Systems: is a computer system that has computer hardware and software

embedded to perform specific tasks. Embedded System range from low cost miniaturized

devices such as digital watches to devices such as digital cameras, POS terminals,

vending machines, appliancesetc.,

IoT Levels and Deployment Templates
1) IoT Level1: System has a single node that performs sensing and/or actuation, stores data,

performs analysis and host the application as shown in fig. Suitable for modeling low

cost and low complexity solutions where the data involved is not big and analysis

requirement are not computationally intensive. An e.g., of IoT Level1 is Home

automation.

2) IoT Level2: has a single node that performs sensing and/or actuating and local analysis

as shown in fig. Data is stored in cloud and application is usually cloud based. Level2 IoT

systems are suitable for solutions where data are involved is big, however, the primary

analysis requirement is not computationally intensive and can be done locally itself. An

e,g., of Level2 IoT system for SmartIrrigation.

3) IoT Level3: system has a single node. Data is stored and analyzed in the cloud

application is cloud based as shown in fig. Level3 IoT systems are suitable for solutions

where the data involved is big and analysis requirements are computationally intensive.

An example of IoT level3 system for tracking packagehandling.

4) IoT Level4: System has multiple nodes that perform local analysis. Data is stored in the

cloud and application is cloud based as shown in fig. Level4 contains local and cloud

based observer nodes which can subscribe to and receive information collected in the

cloud from IoT devices. An example of a Level4 IoT system for NoiseMonitoring.

5) IoT Level5: System has multiple end nodes and one coordinator node as shown in fig.

The end nodes that perform sensing and/or actuation. Coordinator node collects data from

theendnodesandsendstothecloud.Dataisstoredandanalyzedinthecloudand

application is cloud based. Level5 IoT systems are suitable for solution based on wireless

sensor network, in which data involved is big and analysis requirements are

computationally intensive. An example of Level5 system for Forest Fire Detection.

6) IoT Level6: System has multiple independent end nodes that perform sensing and/or

actuation and sensed data to the cloud. Data is stored in the cloud and application is cloud

based as shown in fig. The analytics component analyses the data and stores the result in

the cloud data base. The results are visualized with cloud based application. The

centralized controller is aware of the status of all the end nodes and sends control

commands to nodes. An example of a Level6 IoT system for Weather Monitoring

System.

DOMAIN SPECIFIC IoTs
1) Home Automation:

a) Smart Lighting: helps in saving energy by adapting the lighting to the ambient

conditions and switching on/off or diming the light whenneeded.

b) Smart Appliances: make the management easier and also provide status information

to the usersremotely.

c) Intrusion Detection: use security cameras and sensors(PIR sensors and door sensors)

to detect intrusion and raise alerts. Alerts can be in the form of SMS or email sent to

theuser.

d) Smoke/Gas Detectors: Smoke detectors are installed in homes and buildings to

detect smoke that is typically an early sign of fire. Alerts raised by smoke detectors

can be in the form of signals to a fire alarm system. Gas detectors can detect the

presence of harmful gases such as CO, LPGetc.,

2) Cities:

a) Smart Parking: make the search for parking space easier and convenient for drivers.

Smart parking are powered by IoT systems that detect the no. of empty parking slots

and send information over internet to smart application backends.

b) Smart Lighting: for roads, parks and buildings can help in savingenergy.

c) Smart Roads: Equipped with sensors can provide information on driving condition,

travel time estimating and alert in case of poor driving conditions, traffic condition

andaccidents.

d) Structural Health Monitoring: uses a network of sensors to monitor the vibration

levels in the structures such as bridges and buildings.

e) Surveillance: The video feeds from surveillance cameras can be aggregated in cloud

based scalable storagesolution.

f) Emergency Response: IoT systems for fire detection, gas and water leakage

detection can help in generating alerts and minimizing their effects on the critical

infrastructures.

3) Environment:

a) Weather Monitoring: Systems collect data from a no. of sensors attached and send

the data to cloud based applications and storage back ends. The data collected in

cloud can then be analyzed and visualized by cloud basedapplications.

b) Air Pollution Monitoring: System can monitor emission of harmful gases(CO2, CO,

NO, NO2 etc.,) by factories and automobiles using gaseous and meteorological

sensors. The collected data can be analyzed to make informed decisions on pollutions

controlapproaches.

c) Noise Pollution Monitoring: Due to growing urban development, noise levels in

cities have increased and even become alarmingly high in some cities. IoT based

noise pollution monitoring systems use a no. of noise monitoring systems that are

deployed at different places in a city. The data on noise levels from the station is

collected on servers or in the cloud. The collected data is then aggregated to generate

noise maps.

d) Forest Fire Detection: Forest fire can cause damage to natural resources, property

and human life. Early detection of forest fire can help in minimizingdamage.

e) River Flood Detection: River floods can cause damage to natural and human

resources and human life. Early warnings of floods can be given by monitoring the

water level and flow rate. IoT based river flood monitoring system uses a no. of

sensor nodes that monitor the water level and flow ratesensors.

4) Energy:

a) Smart Grids: is a data communication network integrated with the electrical grids

that collects and analyze data captured in near-real-time about power transmission,

distribution and consumption. Smart grid technology provides predictive information

and recommendations to utilities, their suppliers, and their customers on how best to

manage power. By using IoT based sensing and measurement technologies, the health

of equipment and integrity of the grid can beevaluated.

b) Renewable Energy Systems: IoT based systems integrated with the transformers at

the point of interconnection measure the electrical variables and how much power is

fed into the grid. For wind energy systems, closed-loop controls can be used to

regulate the voltage at point of interconnection which coordinate wind turbine outputs

and provides powersupport.

c) Prognostics: In systems such as power grids, real-time information is collected using

specialized electrical sensors called Phasor Measurment Units(PMUs) at the

substations. The information received from PMUs must be monitored in real-time for

estimating the state of the system and for predictingfailures.

5) Retail:

a) Inventory Management: IoT systems enable remote monitoring of inventory using

data collected by RFIDreaders.

b) Smart Payments: Solutions such as contact-less payments powered by technologies

such as Near Field Communication(NFC) and Bluetooth.

c) Smart Vending Machines: Sensors in a smart vending machines monitors its

operations and send the data to cloud which can be used for predictivemaintenance.

6) Logistics:

a) Route generation & scheduling: IoT based system backed by cloud can provide first

response to the route generation queries and can be scaled upto serve a large

transportationnetwork.

b) Fleet Tracking: Use GPS to track locations of vehicles inreal-time.

c) Shipment Monitoring: IoT based shipment monitoring systems use sensors such as

temp, humidity, to monitor the conditions and send data to cloud, where it can be

analyzed to detect foodspoilage.

d) Remote Vehicle Diagnostics: Systems use on-board IoT devices for collecting data

on Vehicle operaions(speed, RPMetc.,) and status of various vehicle subsystems.

7) Agriculture:

a) Smart Irrigation: to detemine moisture amount insoil.
b) Green House Control: to improveproductivity.

8) Industry:

a) Machine diagnosis andprognosis
b) Indoor Air QualityMonitoring

9) Health and LifeStyle:

a) Health & FitnessMonitoring
b) WearableElectronics

M2M:

UNIT-II

IoT and M2M

Machine-to-Machine (M2M) refers to networking of machines(or devices) for the purpose

of remote monitoring and control and dataexchange.

 Term which is often synonymous with IoT is Machine-to-Machine (M2M).

 IoT and M2M are often usedinterchangeably.

Fig. Shows the end-to-end architecture of M2M systems comprises of M2M area networks,

communication networks and application fomain.

 An M2M area network comprises of machines(or M2M nodes) whiach have embedded

network modules for sensing, actuation and communicating various communiction

protocols can be used for M2M LAN such as ZigBee, Bluetooth, M-bus, Wireless M-Bus

etc., These protocols provide connectivity between M2M nodes within an M2M area

network.

 The communication network provides connectivity to remote M2M area networks. The

communication network provides connectivity to remote M2M area network. The

communication networkcan use either wired or wireless network(IP based). While the

M2M are networks use either properietorary or non-IP baed communication protocols,

the communication network uses IP-based network. Since non-IP based protocols are

used within M2M area network, the M2M nodes within one network cannot

communicate with nodes in an externalnetwork.

 To enable the communication between remote M2M are network, M2M gateways are
used.

Fig. Shows a block diagram of an M2M gateway. The communication between M2M nodes and

the M2M gateway is based on the communication protocols which are naive to the M2M are

network. M2M gateway performs protocol translations to enable Ip-connectivity for M2M are

networks. M2M gateway acts as a proxy performing translations from/to native protocols to/from

Internet Protocol(IP). With an M2M gateway, each mode in an M2M area network appears as a

virtualized node for external M2M area networks.

Differences between IoT and M2M

1) Communication Protocols:

 Commonly uses M2M protocols include ZigBee, Bluetooth, ModBus, M-Bus,

WirelessM-Bustec.,

 In IoT uses HTTP, CoAP, WebSocket, MQTT,XMPP,DDS,AMQPetc.,

2) Machines in M2M Vs Things inIoT:

 Machines in M2M will be homogenous whereas Things in IoT will be

heterogeneous.

3) Hardware Vs SoftwareEmphasis:

 the emphasis of M2M is more on hardware with embedded modules, the emphasis

of IoT is more onsoftware.

4) Data Collection &Analysis

 M2M data is collected in point solutions and often in on-premises storage

infrastructure.

 The data in IoT is collected in the cloud (can be public, private or

hybrid cloud).

5) Applications

 M2M data is collected in point solutions and can be accessed by on-premises
applications such as diagnosis applications, service management applications, and
on- premisis enterpriseapplications.

 IoT data is collected in the cloud and can be accessed by cloud applications such

as analytics applications, enterprise applications, remote diagnosis and
management applications,etc.

SDN and NVF for IoT

Software Defined Networking(SDN):
• Software-DefinedNetworking (SDN) isanetworking architecture that separates the

control plane from the data plane and centralizes the networkcontroller.

• Software-based SDN controllers maintain a unified view of thenetwork

• Theunderlying infrastructure in SDN uses simple packet forwarding hardware as
opposed to specialized hardware in conventionalnetworks.

SDN Architecture

Key elements of SDN:

1) Centralized NetworkController

With decoupled control and data planes and centralized network controller, the

network administrators can rapidly configure the network.

2) Programmable OpenAPIs

SDN architecture supports programmable open APIs for interface between the

SDN application and control layers (Northbound interface).

3) Standard Communication Interface(OpenFlow)

SDN architecture uses a standard communication interface between the control

and infrastructure layers (Southbound interface). OpenFlow, which is defined by

the Open Networking Foundation (ONF) is the broadly accepted SDN protocol

for the Southboundinterface.

Network Function Virtualization(NFV)

• Network Function Virtualization (NFV) is a technology that leverages virtualization to

consolidate the heterogeneous network devices onto industry standard high volume

servers, switches andstorage.

• NFV is complementary to SDN as NFV can provide the infrastructure on which SDN

canrun.

Key elements of NFV:

NFV Architecture

1) Virtualized Network Function(VNF):

VNF is a software implementation of a network function which is capable of

running over the NFV Infrastructure (NFVI).

2) NFV Infrastructure(NFVI):

NFVI includes compute, network and storage resources that are virtualized.

3) NFV Management andOrchestration:

NFV Management and Orchestration focuses on all virtualization-specific

management tasks and covers the orchestration and life-cycle management of

physical and/or software resources that support the infrastructure virtualization,

and the life-cycle management of VNFs.

Need for IoT Systems Management

Managing multiple devices within a single system requires advanced management capabilities.

1) Automating Configuration : IoT system management capabilities can helpin

automating the systemconfiguration.

2) Monitoring Operational & Statistical Data : Management systems can help in

monitoring opeartional and statistical data of a system. This data can be used for fault

diagnosis orprognosis.

3) Improved Reliability: A management system that allows validating the system

configurations before they are put into effect can help in improving the systemreliability.

4) System Wide Configurations : For IoT systems that consists of multiple devices or

nodes, ensuring system wide configuration can be critical for the correct functioning of

thesystem.

5) Multiple System Configurations : For some systems it may be desirable to have

multiple valid configurations which are applied at different times or in certainconditions.

6) Retrieving & Reusing Configurations : Management systems which have the capability

of retrieving configurations from devices can help in reusing the configurations for other

devices of the sametype.

IoT Systems Management with NETCONF-YANG

YANG is a data modeling language used to model configuration and state data manupulated

by the NETCONF protocol.

The generic approach of IoT device management weith NETCONF-YANG. Roles of

various componentsare:

1) ManagementSystem
2) ManagementAPI

3) TransactionManager

4) RollbackManager

5) Data ModelManager

6) ConfigurationValidator

7) ConfigurationDatabase

8) ConfigurationAPI

9) Data ProviderAPI

1) Management System : The operator uses a management system to send NETCONF

messages to configure the IoT device and receives state information and notifications

from the device as NETCONFmessages.

2) Management API : allows management application to start NETCONFsessions.

3) Transaction Manager: executes all the NETCONF transactions and ensures that ACID

properties hold true for thetrasactions.

4) Rollback Manager : is responsible for generating all the transactions necessary to

rollback a current configuration to its original state.

5) Data Model Manager : Keeps track of all the YANG data models and the corresponding

managed objects. Also keeps track of the applications which provide data for each part of

a datam,odel.

6) Configuration Validator : checks if the resulting configuration after applying a

transaction would be a validconfiguration.

7) Configuration Database : contains both configuration and operastionaldata.

8) Configuration API : Using the configuration API the application on the IoT device can

be read configuration data from the configuration datastore and write opeartional data to

the opearationaldatastore.

9) Data Provider API: Applications on the IoT device can register for callbacks for various

events using the Data Provider API. Through the Data Provider API, the applications can

report statistics and opeartionaldata.

Steps for IoT device Management with NETCONF-YANG

1) Create a YANG model of the system that defines the configuration and state data of the

system.

2) Complete the YANG model with the ‗Inctool‘ which comes withLibnetconf.

3) Fill in the IoT device mangement code in the TransAPImodule.

4) Build the callbacks C file to generate the libraryfile.

5) Load the YANG module and the TransAPImodule into the Netopeer server using

Netopeer managertool.

6) The operator can now connect from the management system to the Netopeer server using

the NetopeerCLI.

7) Operator can issue NETCONF commands from the Netopeer CLI. Command can be

issued to changew the configuration dsta, get operational dat or execute an RPC on the

IoTdevice.

UNIT-III

IOT ARCHITECTURE AND PYTHON

State of the art

IoT architecture varies from solution to solution, based on the type of solution which we

intend to build. IoT as a technology majorly consists of four main components, over which

an architecture is framed.

1) Sensors

2) Devices

3) Gateway

4) Cloud

Stages of IoT Architecture

Stage 1:-

Sensors/actuators
Sensors collect data from the environment or object under measurement and turn it into

useful data. Think of the specialized structures in your cell phone that detect the directional pull

of gravity and the phone's relative position to the ―thing‖ we call the earth and convert it into data

that your phone can use to orient the device.

Actuators can also intervene to change the physical conditions that generate the data. An

actuator might, for example, shut off a power supply, adjust an air flow valve, or move a robotic

gripper in an assembly process.

The sensing/actuating stage covers everything from legacy industrial devices to robotic

camera systems, water level detectors, air quality sensors, accelerometers, and heart rate

monitors. And the scope of the IoT is expanding rapidly, thanks in part to low-power wireless

sensor network technologies and Power over Ethernet, which enable devices on a wired LAN to

operate without the need for an A/C power source.

Stage 2:-

The Internet gateway
The data from the sensors starts in analog form. That data needs to be aggregated and

converted into digital streams for further processing downstream. Data acquisition systems

(DAS) perform these data aggregation and conversion functions. The DAS connects to the sensor

network, aggregates outputs, and performs the analog-to-digital conversion. The Internet

gateway receives the aggregated and digitized data and routes it over Wi-Fi, wired LANs, or the

Internet, to Stage 3 systems for further processing. Stage 2 systems often sit in close proximity to

the sensors andactuators.

For example, a pump might contain a half-dozen sensors and actuators that feed data into a data

aggregation device that also digitizes the data. This device might be physically attached to the

pump. An adjacent gateway device or server would then process the data and forward it to the

Stage 3 or Stage 4 systems. Intelligent gateways can build on additional, basic gateway

functionality by adding such capabilities as analytics, malware protection, and data management

services. These systems enable the analysis of data streams in real time.

Stage 3:-

Edge IT
Once IoT data has been digitized and aggregated, it's ready to cross into the realm of IT.

However, the data may require further processing before it enters the data center. This is where

edge IT systems, which perform more analysis, come into play. Edge IT processing systems may

be located in remote offices or other edge locations, but generally these sit in the facility or

location where the sensors reside closer to the sensors, such as in a wiring closet. Because IoT

data can easily eat up network bandwidth and swamp your data center resources, it's best to have

systems at the edge capable of performing analytics as a way to lessen the burden on core IT

infrastructure. You'd also face security concerns, storage issues, and delays processing the data.

With a staged approach, you can preprocess the data, generate meaningful results, and pass only

those on. For example, rather than passing on raw vibration data for the pumps, you could

aggregate and convert the data, analyze it, and send only projections as to when each device will

fail or need service.

Stage 4:-

The data center and cloud
Data that needs more in-depth processing, and where feedback doesn't have to be immediate,

gets forwarded to physical data center or cloud-based systems, where more powerful IT systems

can analyze, manage, and securely store the data. It takes longer to get results when you wait

until data reaches Stage 4, but you can execute a more in-depth analysis, as well as combine your

sensor data with data from other sources for deeper insights. Stage 4 processing may take place

on-premises, in the cloud, or in a hybrid cloud system, but the type of processing executed in this

stage remains the same, regardless of theplatform.

REFERENCE MODEL AND ARCHITECTURE

Reference Architecture that describes essential building blocks as well as design choices

to deal with conflicting requirements regarding functionality, performance, deployment and

security. Interfaces should be standardised, best practices in terms of functionality and

information usage need to be provided.

The central choice of the IoT-A project was to base its work on the current state of the

art, rather than using a clean-slate approach. Due to this choice, common traits are derived to

form the base line of the Architectural Reference Model (ARM). This has the major advantage

of ensuring backward compatibility of the model and also the adoption of established, working

solutions to various aspects of the IoT. With the help of end users, organised into a stakeholders

group, new requirements for IoT have been collected and introduced in the main model building

process. This work was conducted according to established architecturemethodology.

AReference Architecture (RA) can be visualised asthe ―Matrix‖that eventuallygives birth

ideally to all concrete architectures. For establishing such a Matrix, based on a strong and

exhaustive analysis of the State of the Art, we need to envisage the superset of all possible

functionalities, mechanisms and protocols that can be used for building such concrete

architecture and to show how interconnections could take place between selected ones (as no

concrete system is likely to use all of the functional possibilities). Giving such a foundation

along with a set of design-choices, based on the characterisation of the targeted system w.r.t.

various dimensions (like distribution, security, real-time, semantics) it becomes possible for a

system architect to select the protocols, functional components, architectural options, needed to

build their IoT systems.

As any metaphoric representation, this tree does not claim to be fully consistent in its

depiction; it should therefore not be interpreted too strictly. On the one hand, the roots of this

tree are spanning across a selected set of communication protocols (6LoWPAN, Zigbee,

IPv6,…) and device technologies (sensors, actuators, tags,..) while on the other hand the

blossoms / leaves of the tree represent the whole set of IoT applications that can be built from

the sap (i.e., data and information) coming from the roots. The trunk of the tree is of utmost

importance here, as it represent the Architectural Reference Model (ARM). The ARM is the

combination of the Reference Model and the Reference Architecture, the set of models,

guidelines, best practices, views and perspectives that can be usedfor building fully

interoperable concrete IoT architectures and systems. In this tree, we aim at selecting a minimal

set of interoperable technologies (the roots) and proposing the potentially necessary set of

enablers or building blocks (the trunk) that enable the creation of a maximal set of interoperable

IoT systems (the leaves).

The IOT-A Tree

IoT-A architectural reference model building blocks.

Starting with existing architectures and solutions, generic baseline requirements can be

extracted and used as an input to the design. The IoT-A ARM consists of four parts:

The vision summarises the rationale for providing an architectural reference model for

the IoT. At the same time it discusses underlying assumptions, such as motivations. Italso

discusses how the architectural reference model can be used, the methodology applied to the

architecture modelling, and the business scenarios and stakeholders addressed.

Business scenarios defined as requirements by stakeholders are the drivers of the

architecture work. With the knowledge of businesses aspirations, a holistic view of IoT

architectures can be derived.

The IoT Reference Model provides the highest abstraction level for the definition of the

IoT-A Architectural Reference Model. Itpromotes a common understanding of the IoT domain.

The description of the IoT Reference Model includes a general discourse on the IoT domain, an

IoT Domain Model as a top-level description, an IoT Information Model explaining how IoT

information is going to be modelled, and an IoT Communication Model in order to understand

specifics about communication between many heterogeneous IoT devices and the Internet as a

whole.

The IoT Reference Architecture is the reference for building compliant IoT architectures.

As such, it provides views and perspectives on different architectural aspects that are of concern

to stakeholders of the IoT. The terms view and perspectives are used according to the general

literature and standards the creation of the IoT Reference Architecture focuses on abstract sets

of mechanisms rather than concrete application architectures. To organisations, an important

aspect is the compliance of their technologies with standards and best practices, so that

interoperability across organisations isensured.

In an IoT system, data is generated by multiple kinds of devices, processed in different

ways, transmitted to different locations, and acted upon by applications. The proposed IoT

reference model is comprised of seven levels. Each level is defined with terminology that can be

standardized to create a globally accepted frame of reference.

 Simplifies: It helps break down complex systems so that each part is more

understandable. Clarifies: It provides additional information to precisely identify levels

of the IoT and to establish commonterminology.

 Identifies: It identifies where specific types of processing is optimized across different

parts of thesystem.

 Standardizes: It provides a first step in enabling vendors to create IoT products that

work with eachother.

 Organizes: It makes the IoT real and approachable, instead of simplyconceptual.

Level 1: Physical Devices and Controllers
The IoT Reference Model starts with Level 1: physical devices and controllers that might

control multiple devices.These are the ―things‖in the IoT, and theyinclude a wide range of

endpoint devices that send and receive information. Today, the list of devices is already

extensive. It will become almost unlimited as more equipment is added to the IoT over time.

Devices are diverse, and there are no rules about size, location, form factor, or origin. Some

devices will be the size of a silicon chip. Some will be as large as vehicles. The IoT must support

the entire range. Dozens or hundreds of equipment manufacturers will produce IoT devices. To

simplify compatibility and support manufacturability, the IoT Reference Model generally

describes the level of processing needed from Level 1devices.

Level 2: Connectivity

Communications and connectivity are concentrated in one level—Level 2. The most

important function of Level 2 is reliable, timely information transmission. This includes

transmissions:

● Between devices (Level 1) and thenetwork

● Across networks(east-west)

● Between the network (Level 2) and low-level information processing occurring at Level 3

Traditionaldatacommunicationnetworkshavemultiplefunctions,asevidencedbythe

International Organization for Standardization (ISO) 7-layer reference model. However, a

complete IoT system contains many levels in addition to the communications network. One

objective of the IoT Reference Model is for communications and processing to be executed by

existing networks. The IoT Reference Model does not require or indicate creation of a different

network—it relies on existing networks. As Level 1 devices proliferate, the ways in which they

interact with Level 2 connectivity equipment may change. Regardless of the details, Level 1

devices communicate through the IoT system by interacting with Level 2 connectivity

equipment.

Python

Python is a general-purpose high level programming language and suitable for providing a

solid foundation to the reader in the area of cloud computing.

The main characteristics of Python are:

1) Multi-paradigm programminglanguage.

2) Python supports more than one programming paradigms including object- oriented

programming and structured programming.

3) InterpretedLanguage.

4) Python is an interpreted language and does not require an explicit compilationstep.

5) The Python interpreter executes the program source code directly, statement by

statement, as a processor or scripting engine does.

6) Interactive Language

7) Python provides an interactive mode in which the user can submit commands at the

Python prompt and interact with the interpreterdirectly.

Python

Benefits

Python - Setup

Datatypes

Every value in Python has a datatype. Since everything is an object in Python programming, data

types are actually classes and variables are instance (object) of these classes.

There are various data types in Python. Some of the important types are listed below.

Python Numbers

Integers, floating point numbers and complex numbers falls under Python numbers category.

They are defined as int, float and complex class in Python. We can use the type() function to

know which class a variable or a value belongs to and the isinstance() function to check if an

object belongs to a particular class.

Script.py

1. a = 5

2. print(a, "is of type", type(a))

3. a = 2.0

4. print(a, "is of type", type(a))

5. a = 1+2j

6. print(a, "is complex number?", isinstance(1+2j,complex))

Integers can be of any length, it is only limited by the memory available. A floating point

number is accurate up to 15 decimal places. Integer and floating points are separated by decimal

points. 1 is integer, 1.0 is floating point number. Complex numbers are written in the form, x +

yj, where x is the real part and y is the imaginary part. Here are someexamples.

>>> a = 1234567890123456789

>>> a

1234567890123456789

>>> b = 0.1234567890123456789

>>> b

0.12345678901234568

>>> c = 1+2j

>>> c

(1+2j)

Python List

List is an ordered sequence of items. It is one of the most used datatype in Python and is very

flexible. All the items in a list do not need to be of the same type. Declaring a list is pretty

straight forward. Items separated by commas are enclosed within brackets [].

>>> a = [1, 2.2, 'python']

We can use the slicing operator [] to extract an item or a range of items from a list. Index starts

form 0 in Python.

Script.py

1. a = [5,10,15,20,25,30,35,40]

2. # a[2] = 15

3. print("a[2] = ", a[2])

4. # a[0:3] = [5, 10, 15]

5. print("a[0:3] = ", a[0:3])

6. # a[5:] = [30, 35, 40]

7. print("a[5:] = ", a[5:])

Lists are mutable, meaning; value of elements of a list can be altered.

>>> a = [1,2,3]

>>> a[2]=4

>>> a

[1, 2, 4]

Python Tuple

Tuple is an ordered sequences of items same as list. The only difference is that tuples are

immutable. Tuples once created cannot be modified. Tuples are used to write-protect data and

are usually faster than list as it cannot change dynamically. It is defined within parentheses ()

where items are separated bycommas.

>>> t = (5,'program', 1+3j)

Script.py

https://www.programiz.com/python-programming/tuple

t = (5,'program', 1+3j)

t[1] = 'program'

print("t[1] = ", t[1])

t[0:3] = (5, 'program', (1+3j))

print("t[0:3] = ", t[0:3])

Generates error

Tuples are immutable

t[0] = 10

Python Strings

String is sequence of Unicode characters. We can use single quotes or double quotes to represent

strings. Multi-line strings can be denoted using triple quotes, ''' or """.

>>> s = "This is a string"

>>> s = '''a multiline

Like list and tuple, slicing operator [] can be used with string. Strings are immutable.

Script.py

a ={5,2,3,1,4}

printing setvariable

print("a = ", a)

data type of variable a

print(type(a))

We can perform set operations like union, intersection on two sets. Set have unique values. They

eliminate duplicates. Since, set are unordered collection, indexing has no meaning. Hence the

slicing operator [] does not work. It is generally used when we have a huge amount of data.

Dictionaries are optimized for retrieving data. We must know the key to retrieve the value. In

Python, dictionaries are defined within braces {} with each item being a pair in the

form key:value. Key and value can be of anytype.

>>> d = {1:'value','key':2}

>>> type(d)

<class 'dict'>

We use key to retrieve the respective value. But not the other way around.

Script.py

https://www.programiz.com/python-programming/string

d ={1:'value','key':2}

print(type(d))

print("d[1] = ",d[1]);

print("d['key'] = ", d['key']);

Generates error

print("d[2] = ",d[2]);

Python if...else Statement

Every value in Python has a datatype. Since everything is an object in Python programming, data

types are actually classes and variables are instance (object) of these classes. Decision making is

required when we want to execute a code only if a certain condition is satisfied.

The if…elif…else statement is used in Python for decision making.

Python if Statement

Syntax

if test expression:

statement(s)

Here, the program evaluates the test expression and will execute statement(s) only if the text

expression is True.

If the text expression is False, the statement(s) is not executed. In Python, the body of

the if statement is indicated by the indentation. Body starts with an indentation and the first

unindented line marks the end. Python interprets non-zero values as True. None and 0 are

interpreted as False.

Python if Statement Flowchart

Example: Python if Statement

If the number is positive, we print an appropriate message

num = 3

if num > 0:

print(num, "is a positive number.")

print("This is always printed.")

num = -1

if num >0:

print(num, "is a positive number.")

print("This is also always printed.")

When you run the program, the output willbe:

3 is a positivenumber

This is alwaysprinted

This is also always printed.

In the above example, num > 0 is the test expression. The body of if is executed only if this

evaluates to True.

When variable num is equal to 3, test expression is true and body inside body of if is executed. If

variable num is equal to -1, test expression is false and body inside body of if is skipped.

The print() statement falls outside of the if block (unindented). Hence, it is executed regardless

of the testexpression.

Python if...else Statement

Syntax

if test expression:

Body of if

else:

Body of else

The if..else statement evaluates test expression and will execute body of if only when test

condition is True.

If the condition is False, body of else is executed. Indentation is used to separate the blocks.

Python if..else Flowchart

Example of if...else

Program checks if the number is positive or negative

And displays an appropriate message

num = 3

Try these two variations as well.

num = -5

num = 0

if num >= 0:

print("Positive or Zero")

else:

print("Negative number")

In the above example, when num is equal to 3, the test expression is true and body of if is

executed and body of else is skipped.

If num is equal to -5, the test expression is false and body of else is executed and body of if is

skipped.

If num is equal to 0, the test expression is true and body of if is executed and body of else is

skipped.

Python if...elif...else Statement

Syntax

if test expression:
Body of if

elif test expression:

Body of elif

else:

Body of else

The elif is short for else if. It allows us to check for multiple expressions. If the condition

for if is False, it checks the condition of the next elif block and so on. If all the conditions

are False, body of else is executed. Only one block among the several if...elif...else blocks is

executed according to the condition. The if block can have only one else block. But it can have

multiple elifblocks.

Flowchart of if...elif...else

Example of if...elif...else

In this program,

we check if the number is positive or

negative or zero and

display an appropriate message

num = 3.4

Try these two variations as well:

num = 0

num = -4.5

if num > 0:

print("Positive number")

elif num == 0:

print("Zero")

else:

print("Negative number")

When variable num is positive, Positive number is printed.

If num is equal to 0, Zero is printed.

If num is negative, Negative number is printed

Python Nested if statements

We can have a if...elif...else statement inside another if...elif...else statement. This is called

nesting in computer programming. Any number of these statements can be nested inside one

another. Indentation is the only way to figure out the level of nesting. This can get confusing, so

must be avoided if we can.

Python Nested if Example

In this program, we input a number

check if the number is positive or

negative or zero anddisplay

an appropriate message

This time we use nested if

num = float(input("Enter a number: "))

if num >= 0:

if num == 0:

print("Zero")

else:

print("Positive number")

else:

print("Negative number")

Output 1

Enter a number: 5

Positive number

Output 2

Enter a number: -1

Negative number

Output 3

Enter a number: 0

Zero

Python for Loop

The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable

objects. Iterating over a sequence is called traversal.

Syntax of for Loop

for val in sequence:

Body of for

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated

from the rest of the code using indentation.

Flowchart of for Loop

Syntax

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

sum = sum+val

Output: The sum is 48

print("The sum is", sum)

when you run the program, the output will be:

The sum is 48

The range() function

We can generate a sequence of numbers using range() function. range(10) will generate numbers

from 0 to 9 (10 numbers). We can also define the start, stop and step size as range(start,stop,step

size). step size defaults to 1 if not provided. This function does not store all the values in emory,

it would be inefficient. So it remembers the start, stop, step size and generates the next number

on thego.

To force this function to output all the items, we can use the function list().

The following example will clarify this.

Output: range(0, 10)

print(range(10))

Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print(list(range(10)))

Output: [2, 3, 4, 5, 6, 7]

print(list(range(2, 8)))

Output: [2, 5, 8, 11, 14, 17]

print(list(range(2, 20, 3)))

We can use the range() function in for loops to iterate through a sequence of numbers. It can be

combined with the len() function to iterate though a sequence using indexing. Here is an

example.

Program to iterate through a list using indexing

genre = ['pop', 'rock', 'jazz']

iterate over the list using index

for i in range(len(genre)):

print("I like", genre[i])

When you run the program, the output will be:

I likepop

I likerock

I likejazz

What is while loop in Python?

The while loop in Python is used to iterate over a block of code as long as the test expression (condition)

is true. We generally use this loop when we don't know beforehand, the number of times to iterate.

Syntax of while Loop in Python

while test_expression:

Body of while

In while loop, test expression is checked first. The body of the loop is entered only if the test_expression

evaluates to True. After one iteration, the test expression is checked again. This process continues until

the test_expression evaluates to False. In Python, the body of the while loop is determined through

indentation. Body starts with indentation and the first unindented line marks the end. Python interprets

any non-zero value as True. None and 0 are interpreted asFalse.

Flowchart of while Loop

Program to add natural

numbers upto

sum = 1+2+3+...+n
To take input from the user,

n = int(input("Enter n: "))

n = 10
initialize sum and counter

sum = 0

i = 1
while i <= n:

sum = sum + i

i=i+1 # updatecounter

print thesum

print("The sum is", sum)
When you run the program, the output will be:

Enter n: 10

The sum is 55

In the above program, the test expression will be True as long as our counter variable i is less than or

equal to n (10 in ourprogram).

We need to increase the value of counter variable in the body of the loop. This is very important (and

mostly forgotten). Failing to do so will result in an infinite loop (never ending loop).

Finally the result is displayed.

Python Modules

A file containing a set of functions you want to include in the application is called Module.

Create a Module

To create a module just save the code you want in a file with the file extension .py:

Example

Save this code in a file named mymodule.py

def greeting(name):

print("Hello, " + name)

Use a Module

Now we can use the module we just created, by using the import statement:

Example

Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Jonathan")

Note: When using a function from a module, use the syntax: module_name.function_name.

Variables in Module

The module can contain functions, as already described, but also variables of all types(arrays,

dictionaries, objects etc):

Example

Save this code in the file mymodule.py

person1 = {"name": "John","age": 36,"country": "Norway"}

Example

Import the module named mymodule, and access the person1 dictionary:

import mymodule

a = mymodule.person1["age"]
print(a)

Naming a Module

You can name the module file whatever you like, but it must have the file extension .py

Re-naming a Module

You can create an alias when you import a module, by using the as keyword:

Example

Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]

print(a)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you like.

Example

Import and use the platform module:

import platform

x = platform.system()

print(x)

Using the dir() Function

There is a built-in function to list all the function names (or variable names) in a module. The

dir() function:

Example

List all the defined names belonging to the platform module:

import platform

x = dir(platform)

print(x)

Note: The dir() function can be used on all modules, also the ones you create yourself.

Import from Module

You can choose to import only parts from a module, by using the from keyword.

Example

The module named mymodule has one function and one dictionary:

def greeting(name):

print("Hello, " + name)

person1 = {"name": "John", "age": 36, "country": "Norway"}

Example

Import only the person1 dictionary from the module:

from mymodule import person1

print (person1["age"])

Note: When importing using the from keyword, do not use the module name when referring to

elements in the module. Example: person1["age"], not mymodule.person1["age"].

Packages

We don't usually store all of our files in our computer in the same location. We use a well-

organized hierarchy of directories for easier access. Similar files are kept in the same directory,

for example, we may keep all the songs in the "music" directory. Analogous to this, Python has

packages for directories and modules for files. As our application program grows larger in size

with a lot of modules, we place similar modules in one package and different modules in

different packages. This makes a project (program) easy to manage and conceptuallyclear.

Similar, as a directory can contain sub-directories and files, a Python package can have sub-

packages and modules. A directory must contain a file namedinit.py in order for Python to

consider it as a package. This file can be left empty but we generally place the initialization code

for that package in this file. Here is an example. Suppose we are developing a game, one possible

organization of packages and modules could be as shown in the figure below.

Package Module Structure in Python Programming

Importing module from a package

We can import modules from packages using the dot (.) operator. For example, if want to import

the start module in the above example, it is done as follows.

import Game.Level.start

Now if this module contains a function named select_difficulty(), we must use the full name to

reference it.

Game.Level.start.select_difficulty(2)

If this construct seems lengthy, we can import the module without the package prefix as follows.

from Game.Level import start

We can now call the function simply as follows.

start.select_difficulty(2)

Yet another way of importing just the required function (or class or variable) form a module

within a package would be as follows.

from Game.Level.start import select_difficulty

Now we can directly call this function.

select_difficulty(2)

Although easier, this method is not recommended. Using the full namespace avoids confusion

and prevents two same identifier names from colliding. While importing packages, Python looks

in the list of directories defined in sys.path, similar as for module search path.

Files

File is a named location on disk to store related information. It is used to permanently store data

in a non-volatile memory (e.g. hard disk). Since, random access memory (RAM) is volatile

which loses its data when computer is turned off, we use files for future use of the data. When

we want to read from or write to a file we need to open it first. When we are done, it needs to be

closed, so that resources that are tied with the file are freed. Hence, in Python, a file operation

takes place in the followingorder.

1. Open afile

2. Read or write (perform operation)

3. Close thefile

How to open a file?

Python has a built-in function open() to open a file. This function returns a file object, also called

a handle, as it is used to read or modify the file accordingly.

>>> f=open("test.txt") # open file in currentdirectory

>>> f = open("C:/Python33/README.txt") # specifying full path

We can specify the mode while opening a file. In mode, we specify whether we want to read 'r',

write 'w' or append 'a' to the file. We also specify if we want to open the file in text mode or

binary mode. The default is reading in text mode. In this mode, we get strings when reading from

the file. On the other hand, binary mode returns bytes and this is the mode to be used when

dealing with non-text files like image or exe files.

Python File Modes

Mode Description

'r' Open a file for reading. (default)

'w' Open a file for writing. Creates a new file if it does not exist or truncates the file if it

exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a' Open for appending at the end of the file without truncating it. Creates a new file if it

does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

f=open("test.txt") # equivalent to 'r' or 'rt'

f = open("test.txt",'w') # write in textmode

f = open("img.bmp",'r+b') # read and write in binary mode

Unlike other languages, the character 'a' does not imply the number 97 until it is encoded using

ASCII (or other equivalent encodings). Moreover, the default encoding is platform dependent. In

windows, it is 'cp1252' but 'utf-8' in Linux. So, we must not also rely on the default encoding or

else our code will behave differently in different platforms. Hence, when working with files in

text mode, it is highly recommended to specify the encoding type.

f = open("test.txt",mode = 'r',encoding = 'utf-8')

How to close a file Using Python?

When we are done with operations to the file, we need to properly close the file. Closing a file

will free up the resources that were tied with the file and is done using Python close() method.

Python has a garbage collector to clean up unreferenced objects but, we must not rely on it to

close the file.

f = open("test.txt",encoding = 'utf-8')

perform file operations

f.close()

This method is not entirely safe. If an exception occurs when we are performing some operation

with the file, the code exits without closing the file.

A safer way is to use a try...finally block.

try:

f = open("test.txt",encoding = 'utf-8')

perform file operations

finally:

f.close()

This way, we are guaranteed that the file is properly closed even if an exception is raised,

causing program flow to stop. The best way to do this is using the with statement. This ensures

that the file is closed when the block inside with is exited. We don't need to explicitly call the

close() method. It is doneinternally.

with open("test.txt",encoding = 'utf-8') as f:

perform file operations

How to write to File Using Python?

In order to write into a file in Python, we need to open it in write 'w', append 'a' or exclusive

creation 'x' mode. We need to be careful with the 'w' mode as it will overwrite into the file if it

already exists. All previous data are erased. Writing a string or sequence of bytes (for binary

files) is done using write() method. This method returns the number of characters written to the

file.

with open("test.txt",'w',encoding = 'utf-8') as f:

f.write("my first file\n")

f.write("This file\n\n")

f.write("contains three lines\n")

This program will create a new file named 'test.txt' if it does not exist. If it does exist, it is

overwritten. We must include the newline characters ourselves to distinguish different lines.

How to read files in Python?

To read a file in Python, we must open the file in reading mode. There are various methods

available for this purpose. We can use the read(size) method to read in size number of data. If

size parameter is not specified, it reads and returns up to the end of the file.

>>> f = open("test.txt",'r',encoding = 'utf-8')

>>> f.read(4) # read the first 4 data

'This'

>>>f.read(4) # read the next 4 data

' is'

>>>f.read() # read in the rest till end of file

'my first file\nThis file\ncontains threelines\n'

>>> f.read() # further reading returns empty sting

''

We can see that, the read() method returns newline as '\n'. Once the end of file is reached, we get

empty string on further reading. We can change our current file cursor (position) using the seek()

method. Similarly, the tell() method returns our current position (in number of bytes).

>>>f.tell() # get the current file position

56

>>> f.seek(0) # bring file cursor to initial position

0

>>> print(f.read()) # read the entire file

This is my first file

This file

contains three lines

We can read a file line-by-line using a for loop. This is both efficient and fast.

>>> for line in f:

... print(line, end = '')

...

This is my first file

This file

contains three lines

The lines in file itself has a newline character '\n'.

Moreover, the print() end parameter to avoid two newlines when printing. Alternately, we can

use readline() method to read individual lines of a file. This method reads a file till the newline,

including the newlinecharacter.

>>> f.readline()

'This is my first file\n'

>>> f.readline()

'This file\n'

>>> f.readline()

'contains three lines\n'

>>> f.readline()

''

Lastly, the readlines() method returns a list of remaining lines of the entire file. All these reading

method return empty values when end of file (EOF) is reached.

>>> f.readlines()

['This is my first file\n', 'This file\n', 'contains three lines\n']

Python File Methods

There are various methods available with the file object. Some of them have been used in above

examples. Here is the complete list of methods in text mode with a brief description.

Python File Methods

Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase and return it.

fileno() Return an integer number (file descriptor) of the file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read at most n characters form the file. Reads till end of file if it is negative or None.

readable() Returns True if the file stream can be read from.

readline(n=-1) Read and return one line from the file. Reads in at most n bytes if specified.

readlines(n=-1) Read and return a list of lines from the file. Reads in at most n bytes/characters if specified.

seek(offset,from=SE

EK_SET)

Change the file position to offset bytes, in reference to from (start, current, end).

seekable() Returns True if the file stream supports random access.

tell() Returns the current file location.

truncate(size=None) Resize the file stream to size bytes. If size is not specified, resize to current location.

writable() Returns True if the file stream can be written to.

write(s) Write string s to the file and return the number of characters written.

writelines(lines) Write a list of lines to the file.

Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase and returnit.

fileno()Return an integer number (file descriptor) of thefile.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read at most n characters form the file. Reads till end of file if it is negative or None.

readable() Returns True if the file stream can be readfrom.

readline(n=-1) Read and return one line from the file. Reads in at most n bytes if specified.

readlines(n=-1) Read and return a list of lines from the file. Reads in at most n

bytes/characters ifspecified.

seek(offset,from=SEEK_SET) Change the file position to offset bytes, in reference to from

(start, current,end).

seekable() Returns True if the file stream supports randomaccess.

tell() Returns the current filelocation.

truncate(size=None) Resize the file stream to size bytes. If size is not specified, resize to

currentlocation.

writable() Returns True if the file stream can be writtento.

write(s) Write string s to the file and return the number of characterswritten.

writelines(lines) Write a list of lines to thefile.

UNIT IV

IoT PHYSICAL DEVICES AND ENDPOINTS

IoT Device

A "Thing" in Internet of Things (IoT) can be any object that has a unique identifier and which

can send/receive data (including user data) over a network (e.g., smart phone, smartTV,

computer, refrigerator, car, etc.).

• IoT devices are connected to the Internet and send information about themselves or about their

surroundings (e.g. information sensed by the connected sensors) over a network (to other devices

or servers/storage) or allow actuation upon the physical entities/environment around them

remotely.

IoT Device Examples

A home automation device that allows remotely monitoring the status of appliances and

controlling the appliances. • An industrial machine which sends information abouts its operation

and health monitoring data to a server. • A car which sends information about its location to a

cloud-based service. • A wireless-enabled wearable device that measures data about a person

such as the number of steps walked and sends the data to a cloud-basedservice.

Basic building blocks of an IoT Device

1. Sensing: Sensors can be either on-board the IoT device or attached to thedevice.

2. Actuation: IoT devices can have various types of actuators attached that allow taking

actions upon the physical entities in the vicinity of thedevice.

3. Communication: Communication modules are responsible for sending collected data to

other devices or cloud-based servers/storage and receiving data from other devices and

commands from remote applications.

4. Analysis & Processing: Analysis and processing modules are responsible for making

sense of the collecteddata.

Block diagram of an IoT Device

Exemplary Device: Raspberry Pi

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi

runs various flavors of Linux and can perform almost all tasks that a normal desktop computer

can do. Raspberry Pi also allows interfacing sensors and actuators through the general purpose

I/O pins. Since Raspberry Pi runs Linux operating system, it supports Python "out of the box".

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi

runs various flavors of Linux and can perform almost all tasks that a normal desktop computer

can do. Raspberry Pi also allows interfacing sensors and actuators through the general purpose

I/O pins. Since Raspberry Pi runs Linux operating system, it supports Python "out of the box".

Raspberry Pi

Linux on Raspberry Pi

1. Raspbian: Raspbian Linux is a Debian Wheezy port optimized for RaspberryPi.

2. Arch: Arch is an Arch Linux port for AMDdevices.

3. Pidora: Pidora Linux is a Fedora Linux optimized for RaspberryPi.

4. RaspBMC: RaspBMC is an XBMC media-center distribution for RaspberryPi.

5. OpenELEC: OpenELEC is a fast and user-friendly XBMC media-centerdistribution.

6. RISC OS: RISC OS is a very fast and compact operatingsystem.

Raspberry Pi GPIO

Raspberry Pi Interfaces

1. Serial: The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for

communication with serialperipherals.

2. SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for

communicating with one or more peripheraldevices.

3. I2C: The I2C interface pins on Raspberry Pi allow you to connect hardware modules.

I2C interface allows synchronous data transfer with just two pins - SDA (data line) and

SCL (clockline).

Raspberry Pi Example: Interfacing LED and switch with Raspberry Pi

from time import sleeP

import RPi.GPIO asGPIO

GPIO.setmode(GPIO.BCM)

#Switch Pin GPIO.setup(25,GPIO.IN)

#LEDPin

GPIO.setup(18,GPIO.OUT)

state=false

deftoggleLED(pin):

state = not state

GPIO.output(pin,state)

whileTrue:

try:

if (GPIO.input(25) ==True):

toggleLED(pin)

sleep(.01)

exceptKeyboardInterrupt:

exit()

Other Devices

1. pcDuino

2. BeagleBoneBlack

3. Cubieboard

UNIT V

IoT PHYSICAL SERVERS AND CLOUD OFFERINGS

Introduction to Cloud Computing

The Internet of Things (IoT) involves the internet-connected devices we use to perform

the processes and services that support our way of life. Another component set to help IoT

succeed is cloud computing, which acts as a sort of front end. Cloud computing is an

increasingly popular service that offers several advantages to IOT, and is based on the concept of

allowing users to perform normal computing tasks using services delivered entirely over the

internet. A worker may need to finish a major project that must be submitted to a manager, but

perhaps they encounter problems with memory or space constraints on their computing device.

Memory and space constraints can be minimized if an application is instead hosted on the

internet. The worker can use a cloud computing service to finish their work because the data is

managed remotely by a server. Another example: you have a problem with your mobile device

and you need to reformat it or reinstall the operating system. You can use Google Photos to

upload your photos to internet-based storage. After the reformat or reinstall, you can then either

move the photos back to you device or you can view the photos on your device from the internet

when youwant.

Concept

In truth, cloud computing and IoT are tightly coupled. The growth of IoT and the rapid

development of associated technologiescreate a widespread connection of ―things.‖This has lead to

the production of large amounts of data, which needs to be stored, processed and accessed. Cloud

computing as a paradigm for big data storage and analytics. While IoT is exciting on its own, the

real innovation will come from combining it with cloud computing. The combination of cloud

computing and IoT will enable new monitoring services and powerful processing of sensory data

streams. For example, sensory data can be uploaded and stored with cloud computing, later to be

used intelligently for smart monitoring and actuation with other smart devices. Ultimately, the

goal is to be able to transform data to insight and drive productive, cost-effective action from

those insights. The cloud effectively serves as the brain to improved decision-making and

optimized internet-based interactions.However, when IoT meets cloud, new challenges arise.

There is an urgent need for novel network architectures that seamlessly integrate them. The

critical concerns during integration are quality of service (QoS) and qualityof experience (QoE),

as well as data security, privacy and reliability. The virtual infrastructure for practical mobile

computing and interfacing includes integrating applications, storage devices, monitoring devices,

visualization platforms, analytics tools and client delivery. Cloud computing offers a practical

utility-based model that will enable businesses and users to access applications on demand

anytime and fromanywhere.

https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Quality_of_experience
https://en.wikipedia.org/wiki/Quality_of_experience
https://en.wikipedia.org/wiki/Quality_of_experience

Characteristics

First, the cloud computing of IoT is an on-demand self service, meaning it‘s there when you need

it. Cloud computing is a web-based service that can be accessed without any special assistance or

permission from other people; however, you need at minimum some sort of internet access.

Second, the cloud computing of IoT involves broad network access, meaning it offers several

connectivity options. Cloud computing resources can be accessed through a wide variety of

internet-connected devices such as tablets, mobile devices and laptops. This level of convenience

means users can access those resources in a wide variety of manners, even from older devices.

Again, though, this emphasizes the need for network access points.

Third, cloud computing allows for resource pooling, meaning information can be shared with

those who know where and how (have permission) to access the resource, anytime and

anywhere. This lends to broader collaboration or closer connections with other users. From an

IoT perspective, just as we can easily assign an IP address to every "thing" on theplanet, we can

share the "address" of the cloud-based protected and stored information with others and pool

resources.

Fourth, cloud computing features rapid elasticity, meaning users can readily scale the service to

their needs. You can easily and quickly edit your software setup, add or remove users, increase

storage space, etc. This characteristic will further empower IoT by providing elastic computing

power, storage and networking.

Finally, the cloud computing of IoT is a measured service, meaning you get what you pay for.

Providers can easily measure usage statistics such as storage, processing, bandwidth and active

user accounts inside your cloud instance. This pay per use (PPU) model means your costs scale

with your usage. In IoT terms, it's comparable to the ever-growing network of physical objects

that feature an IP address for internet connectivity, and the communication that occurs between

these objects and other internet-enabled devices and systems; just like your cloud service, the

service rates for that IoT infrastructure may also scale with use.

Service and Deployment

Service models

Service delivery in cloud computing comprises three different service models: software as a

service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS).

Software as a service (SaaS) provides applications to the cloud‘s end user that are mainly

accessed via a web portal or service-oriented architecture-based web service technology. These

services can be seen as ASP (application service provider) on the application layer. Usually, a

specific company that uses the service would run, maintain and give support so that it can be

reliably used over a long period of time.

Platform as a service (PaaS) consists of the actual environment for developing and provisioning

cloud applications. The main users of this layer are developers that want to develop and run a

cloud application for a particular purpose. A proprietary language was supported and provided

by the platform (a set of important basic services) to ease communication, monitoring, billing

and other aspects such as startup as well as to ensure an application‘s scalability and flexibility.

Limitations regarding the programming languages supported, the programming model, the ability

to access resources, and the long-term persistence are possibledisadvantages.

Infrastructure as a service (IaaS) provides the necessary hardware and software upon which a

customer can build a customized computing environment. Computing resources, data storage

resources and the communications channel are linked together with these essential IT resources

to ensure the stability of applications being used on the cloud. Those stack models can be

referred to as the medium for IoT, being used and conveyed by the users in different methods for

the greatest chance of interoperability. This includes connecting cars, wearables, TVs,

smartphones, fitness equipment, robots, ATMs, and vending machines as well as the vertical

applications, security and professional services, and analytics platforms that come withthem.

Deployment models

Deployment in cloud computing comprises four deployment models: private cloud, public cloud,

community cloud and hybrid cloud.

A private cloud has infrastructure that‘s provisioned for exclusive use by a single organization

comprising multiple consumers such as business units. It may be owned, managed and operated

by the organization, a third party or some combination of them, and it may exist on or off

premises.

A public cloud is created for open use by the general public. Public cloud sells services to

anyone on the internet. (Amazon Web Services is an example of a large public cloud provider.)

This model is suitable for business requirements that require management of load spikes and the

applications used by the business, activities that would otherwise require greater investment in

infrastructure for the business. As such, public cloud also helps reduce capital expenditure and

bring down operational ITcosts.

A community cloud is managed and used by a particular group or organizations that have shared

interests, such as specific security requirements or a common mission.

Finally, a hybrid cloud combines two or more distinct private, community or public cloud

infrastructures such that they remain unique entities but are bound together by standardized or

proprietary technology that enables data and application portability. Normally, information that‘s

not critical is outsourced to the public cloud, while business-critical services and data are kept

within the control of the organization.

CLOUD STORAGE API

A cloud storage API is an application program interface that connects a locally-based application

to a cloud-based storage system, so that a user can send data to it and access and work with data

stored in it. To the application, the cloud storage system is just another target device, like tape or

disk-based storage. An application program interface (API) is code that allows two software

programs to communicate with each other. The API defines the correct way for a developer to

write a program that requests services from an operating system (OS) or other application. APIs

are implemented by function calls composed of verbs and nouns. The required syntax is

described in the documentation of the application beingcalled.

How APIs work

APIs are made up of two related elements. The first is a specification that describes how

information is exchanged between programs, done in the form of a request for processing and a

return of the necessary data. The second is a software interface written to that specification and

published in some way for use.The software that wants to access the features and capabilities of

the API is said to call it, and the software that creates the API is said to publish it.

Why APIs are important for business

The web, software designed exchange information via the internet and cloud computinghave all

combined to increase the interest in APIs in general and services in particular.Software that was

https://searchmicroservices.techtarget.com/definition/application-program-interface-API
http://searchsoa.techtarget.com/definition/source-code
http://searchcio-midmarket.techtarget.com/definition/operating-system
http://whatis.techtarget.com/definition/function
http://whatis.techtarget.com/definition/syntax
http://whatis.techtarget.com/definition/interface
http://searchcloudcomputing.techtarget.com/definition/cloud-computing

once custom-developed for a specific purpose is now often written referencing APIs that provide

broadly useful features, reducing development time and cost and mitigating the risk of

errors.APIs have steadily improved software quality over the last decade, and the growing

number of web services exposed through APIs by cloud providers is also encouraging the

creation of cloud-specific applications, internet of things (IoT) efforts and apps to support mobile

devices and users.

Three basic types of APIs

APIs take three basic forms: local, web-like and program-like.

1. Local APIs are the original form, from which the name came. They offer OS

or middleware services to application programs. Microsoft's .NET APIs, the TAPI

(Telephony API) for voice applications, and database access APIs are examples of the

local APIform.

2. Web APIs are designed to represent widely used resources like HTML pages and are

accessed using a simple HTTP protocol. Any web URL activates a web API. Web APIs

are often called REST (representational state transfer) or RESTful because the publisher

of REST interfaces doesn't save any data internally between requests. As such, requests

from many users can be intermingled as they would be on theinternet.

3. Program APIs are based on remote procedure call (RPC) technology that makes a

remote program component appear to be local to the rest of the software. Service oriented

architecture (SOA) APIs, such as Microsoft's WS-series of APIs, are programAPIs.

IoT / Cloud Convergence

Internet-of-Things can benefit from the scalability, performance and pay-as-you-go nature of

cloud computing infrastructures. Indeed, as IoT applications produce large volumes of data and

comprise multiple computational components (e.g., data processing and analytics algorithms),

their integration with cloud computing infrastructures could provide them with opportunities for

cost-effective on-demand scaling. As prominent examples consider the following settings:

A Small Medium Enterprise (SME) developing an energy management IoT product, targeting

smart homes and smart buildings. By streaming the data of the product (e.g., sensors and WSN

data) into the cloud it can accommodate its growth needs in a scalable and cost effective fashion.

As the SMEs acquires more customers and performs more deployments of its product, it is able

tocollectandmanagegrowingvolumesofdatainascalableway,thustakingadvantageofa

―pay-as-you-grow‖model. Moreover, cloud integration allows the SME to store and

processmassive datasets collected from multiple (rather than a single)deployments.

A smart city can benefit from the cloud-based deployment of its IoT systems and applications. A

city is likely to deploy many IoT applications, such as applications for smart energy

management, smart water management, smart transport management, urban mobility of the

citizensandmore.Theseapplicationscomprisemultiplesensorsanddevices,alongwith

http://searchmicroservices.techtarget.com/definition/Web-services-application-services
http://searchcloudprovider.techtarget.com/definition/cloud-provider-API
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://searchmicroservices.techtarget.com/definition/middleware
http://searchwindevelopment.techtarget.com/definition/NET
http://searchexchange.techtarget.com/definition/TAPI
http://searchexchange.techtarget.com/definition/TAPI
http://searchexchange.techtarget.com/definition/TAPI
http://searchexchange.techtarget.com/definition/TAPI
http://searchmicroservices.techtarget.com/definition/HTML-Hypertext-Markup-Language
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchnetworking.techtarget.com/definition/URL
http://searchmicroservices.techtarget.com/definition/REST-representational-state-transfer
http://searchcloudstorage.techtarget.com/definition/RESTful-API
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://searchmicroservices.techtarget.com/definition/service-oriented-architecture-SOA
http://searchmicroservices.techtarget.com/definition/service-oriented-architecture-SOA
http://searchmicroservices.techtarget.com/definition/service-oriented-architecture-SOA
http://searchmicroservices.techtarget.com/definition/service-oriented-architecture-SOA

computational components. Furthermore, they are likely to produce very large data volumes.

Cloud integration enables the city to host these data and applications in a cost-effective way.

Furthermore, the elasticity of the cloud can directly support expansions to these applications, but

also the rapid deployment of new ones without major concerns about the provisioning of the

required cloud computing resources.

A cloud computing provider offering pubic cloud services can extend them to the IoT area,

through enabling third-parties to access its infrastructure in order to integrate IoT data and/or

computational components operating over IoT devices. The provider can offer IoT data access

and services in a pay-as-you-fashion, through enabling third-parties to access resources of its

infrastructure and accordingly to charge them in a utility-based fashion.

These motivating examples illustrate the merit and need for converging IoT and cloud computing

infrastructure. Despite these merits, this convergence has always been challenging mainly due to

the conflicting properties of IoT and cloud infrastructures, in particular, IoT devices tend to be

location specific, resource constrained, expensive (in terms of development/ deployment cost)

and generally inflexible (in terms of resource access and availability). On the other hand, cloud

computing resources are typically location independent and inexpensive, while at the same time

providing rapid and flexibly elasticity. In order to alleviate these incompatibilities, sensors and

devices are virtualized prior to integrating their data and services in the cloud, in order to enable

their distribution across any cloud resources. Furthermore, service and sensor discovery

functionalities are implementing on the cloud in order to enable the discovery of services and

sensors that reside in different locations.

Based on these principles the IoT/cloud convergence efforts have started since over a decade i.e.

since they very early days of IoT and cloud computing. Early efforts in the research community

(i.e. during 2005-2009) have focused on streaming sensor and WSN data in a cloud

infrastructure. Since 2007 we have also witnessed the emergence of public IoT clouds, including

commercial efforts. One of the earliest efforts has been the famous Pachube.com infrastructure

(used extensively for radiation detection and production of radiation maps during earthquakes in

Japan). Pachube.com has evolved (following several evolutions and acquisitions of this

infrastructure) to Xively.com, which is nowadays one of the most prominent public IoT clouds.

Nevertheless, there are tens of other public IoT clouds as well, such

as ThingsWorx, ThingsSpeak,Sensor-Cloud,Realtime.io and more. The list is certainly non-

exhaustive. These public IoT clouds offer commercial pay-as-you-go access to end-users wishing

to deploying IoT applications on the cloud. Most of them come with developer friendly tools,

which enable the development of cloud applications, thus acting like a PaaS for IoT in the cloud.

Similarly to cloud computing infrastructures, IoT/cloud infrastructures and related services can

be classified to the followingmodels:

1. Infrastructure-as-a-Service (IaaS) IoT/Clouds: These services provide the means for

accessing sensors and actuator in the cloud. The associated business model involves the

IoT/Cloud provide to act either as data or sensor provider. IaaS services for IoT provide

access control to resources as a prerequisite for the offering of related pay-as-you-go

services.

http://xively.com/
https://www.thingworx.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://realtime.io/

2. Platform-as-a-Service (PaaS) IoT/Clouds: This is the most widespread model for

IoT/cloud services, given that it is the model provided by all public IoT/cloud

infrastructures outlined above. As already illustrate most public IoT clouds come with a

range of tools and related environments for applications development and deployment in

a cloud environment. A main characteristic of PaaS IoT services is that they provide

access to data, not to hardware. This is a clear differentiator comparing toIaaS.

3. Software-as-a-Service (SaaS) IoT/Clouds: SaaS IoT services are the ones enabling their

uses to access complete IoT-based software applications through the cloud, on-demand

and in a pay-as-you-go fashion. As soon as sensors and IoT devices are not visible, SaaS

IoT applications resemble very much conventional cloud-based SaaS applications. There

are however cases where the IoT dimension is strong and evident, such as applications

involving selection of sensors and combination of data from the selected sensors in an

integrated applications. Several of these applications are commonly called Sensing-as-a-

Service, given that they provide on-demand access to the services of multiple sensors.

Note that SaaS IoT applications are typically built over a PaaS infrastructure and enable

utility based business models involving IoT software andservices.

These definitions and examples provide an overview of IoT and cloud convergence and why it is

important and useful. More and more IoT applications are nowadays integrated with the cloud in

order to benefit from its performance, business agility and pay-as-you-go characteristics. In

following chapters of the tutorial, we will present how to maximize the benefits of the cloud for

IoT, through ensuring semantic interoperability of IoT data and services in the cloud, thus

enabling advanced data analytics applications, but also integration of a wide range of vertical

(silo) IoT applications that are nowadays available in areas such as smart energy, smart transport

and smart cities. We will also illustrate the benefits of IoT/cloud integration for specific areas

and segments of IoT, such as IoT-based wearablecomputing.

WAMP for IoT

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket which provides

publish-subscribe and remote procedure call (RPC) messaging patterns.

WAMP

1. Transport: Transport is channel that connects two peers.

2. Session: Session is a conversation between two peers that runs over atransport.

3. Client: Clients are peers that can have one or more roles. In publish-subscribe model client

can have followingroles:

a) Publisher: Publisher publishes events (including payload) to the topic maintained by

thebroker.

b) Subscriber: Subscriber subscribes to the topics and receives the events including the

payload.

In RPC model client can have following roles: –

1. Caller: Caller issues calls to the remote procedures along with call arguments. – Callee:

Callee executes the procedures to which the calls are issued by the caller and returns the

results back to the caller. • Router: Routers are peers that perform generic call and event

routing. In publish-subscribe model Router has the role of a Broker: – Broker: Broker acts as

a router and routes messages published to a topic to all subscribers subscribed to thetopic.

In RPC model Router has the role of a Broker: –

1. Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee and routes

results from Callee toCaller.

2. Application Code: Application code runs on the Clients (Publisher, Subscriber, Callee or

Caller).

Amazon EC2 – Python Example

Boto is a Python package that provides interfaces to Amazon Web Services (AWS). In this

example, a connection to EC2 service is fi rst established by calling boto.ec2.connect_to_region.

The EC2 region, AWS access key and AWS secret key are passed to this function. After

connecting to EC2 , a new instance is launched using the conn.run_instances function. The AMI-

ID, instance type, EC2 key handle and security group are passed to this function.

Amazon AutoScaling – Python Example

1. AutoScaling Service: A connection to AutoScaling service is first established by calling

boto.ec2.autoscale.connect_to_regionfunction.

2. Launch Configuration: After connecting to AutoScaling service, a new launch

configuration is created by calling conn.create_launch_con f iguration. Launch

configuration contains instructions on how to launch new instances including the AMI-

ID, instance type, security groups,etc.

3. AutoScaling Group : After creating a launch configuration, it is then associated with a

new AutoScaling group. AutoScaling group is created by calling

conn.create_auto_scaling_group. The settings for AutoScaling group such as the

maximum and minimum number of instances in the group, the launch configuration,

availability zones, optional load balancer to use with the group,etc.

Amazon AutoScaling – Python Example

#Creating auto-scaling policies

scale_up_policy = ScalingPolicy(name='scale_up',

adjustment_type='ChangeInCapacity',

as_name='My-Group',

scaling_adjustment=1,

cooldown=180)

scale_down_policy =ScalingPolicy(name='scale_down',

adjustment_type='ChangeInCapacity',

as_name='My-Group', scaling_adjustment=-1,

cooldown=180)

conn.create_scaling_policy(scale_up_policy)

conn.create_scaling_policy(scale_down_policy)

AutoScaling Policies:

1. After creating an AutoScaling group, the policies for scaling up and scaling down are

defined.

2. In this example, a scale up policy with adjustment type ChangeInCapacity and scaling_ad

justment = 1 isdefined.

3. Similarly a scale down policy with adjustment type ChangeInCapacity and scaling_ad

justment = -1 isdefined.

CloudWatch Alarms

#Connecting to CloudWatch

cloudwatch = boto.ec2.cloudwatch.connect_to_region(REGION,

aws_access_key_id=ACCESS_KEY,

aws_secret_access_key=SECRET_KEY)

alarm_dimensions = {"AutoScalingGroupName": 'My-Group'}

#Creating scale-up alarm

scale_up_alarm = MetricAlarm(

name='scale_up_on_cpu', namespace='AWS/EC2',

metric='CPUUtilization', statistic='Average',

comparison='>', threshold='70',

period='60', evaluation_periods=2,

alarm_actions=[scale_up_policy.policy_arn],

dimensions=alarm_dimensions)

cloudwatch.create_alarm(scale_up_alarm)

#Creating scale-down alarm

scale_down_alarm =MetricAlarm(

name='scale_down_on_cpu',namespace='AWS/EC2',

metric='CPUUtilization', statistic='Average',

comparison='<',threshold='40',

period='60', evaluation_periods=2,

alarm_actions=[scale_down_policy.policy_arn],

dimensions=alarm_dimensions) cloudwatch.create_alarm(scale_down_alarm)

1. With the scaling policies defined, the next step is to create Amazon CloudWatch alarms

that trigger thesepolicies.

2. The scale up alarm is defined using the CPUUtilization metric with the Average statistic

and threshold greater 70% for a period of 60 sec. The scale up policy created previously

is associated with this alarm. This alarm is triggered when the average CPU utilization of

the instances in the group becomes greater than 70% for more than 60seconds.

3. The scale down alarm is defined in a similar manner with a threshold less than50%.

Python for MapReduce

#Inverted Index Mapper in Python

#!/usr/bin/env python import sys for line in sys.stdin: doc_id, content =

line.split(‘‘) words = content.split() for word in words: print ‘%s%s‘ % (word,

doc_id)

The example shows inverted index mapper program. The map function reads the

data from the standard input (stdin) and splits the tab-limited data into document-

ID and contents of the document. The map function emits key-value pairs where

key is each word in the document and value is the document-ID.

Python for MapReduce

#Inverted Index Reducer in Python

#!/usr/bin/env python import sys current_word = None current_docids = [] word =

None

for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() #

parse the input we got from mapper.py word, doc_id = line.split(‘‘) if current_word

== word: current_docids.append(doc_id) else: if current_word: print ‘%s%s‘ %

(current_word, current_docids) current_docids = [] current_docids.append(doc_id)

current_word = word

The example shows inverted index reducer program. The key-value pairs emitted

by the map phase are shuffled to the reducers and grouped by the key. The reducer

reads the key-value pairs grouped by the same key from the standard input (stdin)

and creates a list of document-IDs in which the word occurs. The output of reducer

contains key value pairs where key is a unique word and value is the list of

document-IDs in which the word occurs.

Python Packages of Interest

1. JSON: JavaScript Object Notation (JSON) is an easy to read and write data-

interchange format. JSON is used as an alternative to XML and is is easy for

machines to parse and generate. JSON is built on two structures - a

collection of name-value pairs (e.g. a Python dictionary) and ordered lists of

values (e.g.. a Pythonlist).

2. XML: XML (Extensible Markup Language) is a data format for structured

document interchange. The Python minidom library provides a minimal

implementation of the Document Object Model interface and has an API

similar to that in otherlanguages.

3. HTTPLib & URLLib: HTTPLib2 and URLLib2 are Python libraries used

in network/internetprogramming

4. SMTPLib: Simple Mail Transfer Protocol (SMTP) is a protocol which

handles sending email and routing e-mail between mail servers. The Python

smtplib module provides an SMTP client session object that can be used to

send email.

5. NumPy:NumPy is a package for scientific computing in Python. NumPy

provides support for large multi-dimensional arrays andmatrices

6. Scikit-learn: Scikit-learn is an open source machine learning library for

Python that provides implementations of various machine learning

algorithms for classification, clustering, regression and dimension reduction

problems.

Python Web Application Framework - Django

Django is an open source web application framework for developing web

applications in Python. A web application framework in general is a collection of

solutions, packages and best practices that allows development of web applications

and dynamic websites. Django is based on the Model-Template-View architecture

and provides a separation of the data model from the business rules and the user

interface. Django provides a unified API to a database backend. Thus web

applications built with Django can work with different databases without requiring

any code changes. With this fiexibility in web application design combined with

thepowerfulcapabilitiesofthePythonlanguageandthePythonecosystem,

Django is best suited for cloud applications. Django consists of an object-relational

mapper, a web templating system and a regular-expressionbased URL dispatcher.

Django Architecture

Django is Model-Template-View (MTV) framework.

1. Model: The model acts as a definition of some stored data and handles the

interactions with the database. In a web application, the data can be stored in a

relational database, non-relational database, an XML file, etc. A Django

model is a Python class that outlines the variables and methods for a particular

type ofdata.

2. Template: In a typical Django web application, the template is simply an

HTML page with a few extra placeholders. Django‘s template language can

be used to create various forms of text files (XML, email, CSS, Javascript,

CSV,etc.)

3. View :The view ties the model to the template. The view is where you write

the code that actually generates the web pages. View determines what data is

to be displayed, retrieves the data from the database and passes the data to the

template.

Case studies illustrating IoT design

Case Study in IoT: Home Automation

An IoT software-based approach on the field of Home Automation. Common use-cases

include measuring home conditions, controlling home appliances and controlling home access

through RFID cards as an example and windows through servo locks. However, the main focus

of this paper is to maximize the security of homes through IoT. More specifically, monitoring

and controlling servo door locks, door sensors, surveillance cameras, surveillance car and smoke

detectors, which help ensuring and maximizing safety and security ofhomes.

A user has the following features through a mobile application in which he/she:

1. can turn on or o_ LED lights and monitor the state of theLED.

2. can lock and unlock doors through servo motors and monitor if the doors are

locked orunlocked.

3. can monitor if the doors are closed or opened through IR sensors.

4. is notified through email if the door is left open for toolong.

5. is notified of who entered through the door as the camera captures the faceimage

and send it to him/her viaemail.

6. is notified through email if the _re detector detectssmoke.

7. is able to control the surveillance car from anywhere to monitor his/herhome.

As the field of Home Automation through IoT is a wide application in a very wide and

challenging field due to the reasons mentioned in the previous paragraphs, I chose to work on

that field as part of this thesis, specifically in maintaining and ensuring security and safety inside

home.

IoT aims in creating a network between objects embedded with sensors, that canstore, analyze,

communicate and exchange data together over the internet. This leads to efficient industry,

manufacturing, efficient energy management, resource management, accurate health care,

smarter business decisions based on analyzed data, safer driving through smart cars that are able

to communicate together, smart home automation and countless moreapplications.

The system designed for the home automation project presented in this paper needs a control

unit, a computer, to be able to control the different electrical devices connected to it. Raspberry

Pi, is a credit-card tiny computer, that can be plugged to a monitor, uses standard keyboard and

mouse, that enables people of different ages learn how toprogram.

Illustrates the publish/subscribe model provided by PubNub

Illustrates the system architecture used in this home automation project.

To simplify the publish/subscribe model along with the system architecture used in this Home

Automation project, here is the explanation of the steps of constructing it: Different sensors,

cameras and servo motors were connected to the Raspberry Pi. It was programmed to collect

and publish the data, in the form of JSON string, acquired from these devices to PubNub. Data is

published from the Raspberry Pi by providing it with the "publish key" and the "channel name".

The data is sent to the channel provided by PubNub servers, and forwarded by PubNub to the

subscribers of thischannel.

The subscriber in this scenario, of a user acquiring data and readings by the sensors and

monitoring devices, is the web/mobile application. The "subscription key" and "channel name" is

embedded in the web/mobile application's code. Allowing it to receive messages forwarded by

PubNub. On the other hand, in a scenario where the user wants to send a command to home

appliances, controlling the LED lights for example, the web/mobile application is the publisher

provided by the "publish key" and the "channel name".The commend is sent in the form of JSON

string to PubNub servers, while the "subscription key" and "channel name" is embedded in the

Raspberry Pi code. This allows the Raspberry Pi to receive any published strings on the channel

it is subscribed to. Upon receiving the JSON string, the Raspberry Pi take the action specified by

that string. This allows full control and monitoring of all devices connected to the Raspberry Pi

by theuser.

Case Study in IoT: Smart Cities

The Internet-of-Things (IoT) is the novel cutting-edge technology which proffers to connect

plethora of digital devices endowed with several sensing, actuation and computing capabilities

with the Internet, thus offers manifold new services in the context of a smart city. The appealing

IoT services and big data analytics are enabling smart city initiatives all over the world. These

services are transforming cities by improving infrastructure, transportation systems, reduced

traffic congestion, waste management and the quality of human life. In this paper, we devise a

taxonomy to best bring forth a generic overview of IoT paradigm for smart cities, integrated

information and communication technologies (ICT), network types, possible opportunities and

major requirements. Moreover, an overview of the up-to-date efforts from standard bodies is

presented. Later, we give an overview of existing open source IoT platforms for realizing smart

city applications followed by several exemplary case studies. In addition, we summarize the

latest synergies and initiatives worldwide taken to promote IoT in the context of smart cities.

Finally, we highlight several challenges in order to give future researchdirections.

IOT BASED SMART CITY TAXONOMY

This section presents a taxonomy of IoT based smart cities which categorizes the literature on the

basis of existing communication protocols, major service providers, network types,

standardization efforts, offered services, and crucial requirements.

Communication Protocols

IoT based smart city realization significantly relies on numerous short and wide range

communication protocols to transport data between devices and backend servers. Most

prominent short range wireless technologies include Zig-Bee, Bluetooth, Wi-Fi, Wireless

Metropolitan Area Network (WiMAX) and IEEE 802.11p which are primarily used in smart

metering, e-healthcare and vehicular communication. Wide range technologies such as Global

System for Mobile communication (GSM) and GPRS, Long-Term Evolution (LTE), LTE-

Advanced are commonly utilized in ITS such as vehicle-to infrastructure (V2I), mobile e-

healthcare, smart grid and infotainment services. Additionally, LTE-M is considered as an

evolution for cellular IoT (C-IoT). In Release 13, 3GPP plans to further improve coverage,

battery lifetime as well as device complexity [7]. Besides well-known existing protocols, LoRa

alliance standardizes the LoRaWAN protocol to support smart city applications to primarily

ensure interoperability between several operators. Moreover, SIGFOX is an ultra narrowband

radio technology with full star-based infrastructure offers a high scalable global network for

realizing smart city applications with extremely low power consumption. A comparative

summary2 of the major communicationprotocols.

Service Providers

Pike Research on smart cities estimated this market will grow to hundreds of billion dollars by

2020, with an annual growth of nearly 16 billion. IoT is recognized as a potential source to

increase revenue of service providers. Thus, well-known worldwide service providers have

already started exploring this novel cutting edge communication paradigm. Major service

providers include Telefonica, SK telecom, Nokia, Ericsson, Vodafone, NTT Docomo, Orange,

Telenor group and AT&T which offer variety of services and platforms for smart city

applications such as ITS and logistics, smart metering, home automation and e-healthcare.

Network Types

IoT based smart city applications rely on numerous network topologies to accomplish a fully

autonomous environment. The capillary IoT networks offer services over a short range.

Examples include wireless local area networks (WLANs), BANs and wireless personal area

networks (WPANs). The application areas include indoor e-healthcare services, home

automation, street lighting. On the other hand, applications such as ITS, mobile e-healthcare and

waste management use wide area networks (WANs), metropolitan area networks (MANs),and

mobile communication networks. The above networks pose distinct features in terms of data,

size, coverage, latency requirements, and capacity.

Case Study in IoT: Smart Environment

The rapid advancements in communication technologies and the explosive growth of Internet of

Things (IoT) have enabled the physical world to invisibly interweave with actuators, sensors, and

other computational elements while maintaining continuous network connectivity. The

continuously connected physical world with computational elements forms a smart environment.

A smart environment aims to support and enhance the abilities of its dwellers in executing their

tasks, such as navigating through unfamiliar space and moving heavy objects for the elderly, to

name a few. Researchers have conducted a number of efforts to use IoT to facilitate our lives and

to investigate the effect of IoTbased smart environments on human life. This paper surveys the

state-of-the-art research efforts to enable the IoT-based smart environments. We categorize and

classify the literature by devising a taxonomy based on communication enablers, network types,

technologies, local area wireless standards, objectives, and characteristics. Moreover, the paper

highlights the unprecedented opportunities brought about by IoT-based smart environments and

their effect on human life. Some reported case studies from different enterprises are also

presented. Finally, we discuss open research challenges for enabling IoT-based smart

environments.

Immense developments and increasing miniaturization of computer technology have

enabled tiny sensors and processors to be integrated into everyday objects. This advancement is

further supported by tremendous developments in areas such as portable appliances and devices,

pervasive computing, wireless sensor networking, wireless mobile communications, machine

learning-based decision making, IPv6 support, human computer interfaces, and agent

technologies to make the dream of smart environment a reality. A smart environment is a

connected small world where sensor-enabled connected devices work collaboratively to make

the lives of dwellers comfortable. The term smart refers to the ability to autonomouslyobtain and

applies knowledge; and the term environment refers to the surroundings. Therefore, a smart

environment is one that is capable of obtaining knowledge and applying it to adapt according to

its inhabitants‘ needs to ameliorate their experience of thatenvironment.

The functional capabilities of smart objects are further enhanced by interconnecting them

with other objects using different wireless technologies. In this context, IPv6 plays a vital role

because of several features, including better security mechanisms, scalability in case of billion of

connected devices, and the elimination of NAT barriers1. This concept of connecting smart

objects with the Internet was first coined by Kevin Ashton as ―Internet of Things‖ (IoT).

Nowadays, IoT is receiving attention in a number of fields such as healthcare, transport,

and industry, among others. Several research efforts have been conducted to integrate IoT with

smart environments. The integration of IoT with a smart environment extends the capabilities of

smart objects by enabling the user to monitor the environment from remote sites. IoT can be

integrated with different smart environments based on the application requirements. The work on

IoT-based smart environments can generally be classified into the following areas: a) smart

cities, b) smart homes, c) smart grid, d) smart buildings, e) smart transportation, f) smart health,

and g) smart industry.illustrates the IoT-based smartenvironments.

The taxonomy of the IoT based smart environment. The devised taxonomy is based on the

following parameters: communication enablers, network types, technologies, wireless standards,

objectives, and characteristics

Communication Enablers

Communication enablers refer to wireless technologies used to communicate across the Internet.

The key wireless Internet technologies are WiFi, 3G, 4G, and satellite. WiFi is mainly used in

smart homes, smart cities, smart transportation, smart industries, and smart building

environments; whereas, 3G and 4G are mainly used in smart cities and smart grid environments.

Satellites are used in smart transportation, smart cities, and smart grid environments. Table

presents the comparative summary of the communication technologies used in IoT based smart

environments.

Network Types

IoT-based smart environments rely on different types of networks to perform the collaborative

tasks for making the lives of inhabitants more comfortable. The main networks are wireless local

area networks (WLANs), wireless personal area networks (WPANs), wide area networks

(WANs), metropolitan area networks (MANs), and wireless regional area networks (WRANs).

These networks have different characteristics in terms of size, data transfer, and supported reach

ability.

Technologies

IoT-based smart environments leverage various technologies to form a comfortable and suitable

ecosystem. These technologies are include sensing, communication, data fusion, emerging

computing, and information security. Sensing technologies are commonly used to acquire data

from various locations and transmit it using communication technologies to a central location.

The emerging computing technologies, such as cloud computing and fog computing, deployed in

the central location, leverage the data fusion technologies for integrating the data coming from

heterogeneous resources. In addition, smart environments also use information security

technologies to ensure data integrity and user privacy.

Local Area Wireless Standards

The commonly used local area wireless standards in IoT-based smart environments are IEEE

802.11, IEEE 802.15.1, and IEEE 802.15.4. These standard technologies are used inside the

smart environment to transfer the collected data among different devices. IEEE 802.11 is used in

smart homes, smart buildings, and smart cities. IEEE 802.15.1 and IEEE 802.15.4 have relatively

shorter coverage than IEEE 802.11 and are used mainly in sensors and other objects deployed in

the smartenvironments.

