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UNIT 1 
 

Discrete Fourier Transform 
 

1.1 Introduction: 

Before we introduce the DFT we consider the sampling of the Fourier transform of an 

aperiodic discrete-time sequence. Thus we establish the relation between the sampled Fourier 

transform and the DFT.A discrete time system may be described by the convolution sum, the 

Fourier representation and the z transform as seen in the previous chapter. If the signal is 

periodic in the time domain DTFS representation can be used, in the frequency domain the 

spectrum is discrete and periodic. If the signal is non-periodic or of finite duration the 

frequency domain representation is periodic and continuous this is not convenient to 

implement on the computer. Exploiting the periodicity property of DTFS representation the 

finite duration sequence can also be represented in the frequency domain, which is referred to 

as Discrete Fourier Transform DFT. 

 DFT is an important mathematical tool which can be used for the software 

implementation of certain digital signal processing algorithms .DFT gives a method to 

transform a given sequence to frequency domain and to represent the spectrum of the sequence  

using  only k frequency values, where k is an integer that takes N values, K=0, 1, 2,…..N-1. 

The advantages of DFT are: 

1. It is computationally convenient. 

2. The DFT of a finite length sequence makes the frequency domain analysis much 

simpler than continuous Fourier transform technique. 

 

1.2 FREQUENCY DOMAIN SAMPLING AND RECONSTRUCTION OF DISCRETE 

TIME    SIGNALS: 

 
Consider an aperiodic discrete time signal x (n) with Fourier transform, an aperiodic finite 

energy signal has continuous spectra. For an aperiodic signal x[n] the spectrum is: 

 

      





n

jwnenxwX ………………………………(1.1) 
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Suppose we sample X[w] periodically in frequency at a sampling of w radians between 

successive samples. We know that DTFT is periodic with 2, therefore only samples in the 

fundamental frequency range will be necessary. For convenience we take N equidistant 

samples in the interval (0<=w<2 ). The spacing between samples will be 
N

w



2

  as shown 

below in Fig.1.1. 

 
 

Fig 1.1 Frequency Domain Sampling 

 

 

Let us first consider selection of N, or the number of samples in the frequency domain. 

If we evaluate equation (1) at
N

k
w

2
  

  )1(,.......,2,1,0
2 /2 
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
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
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 Nkenx
N

k
X

n

Nknj 
………………………. (1.2) 

We can divide the summation in (1) into infinite number of summations where each sum 

contains N terms.  
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If we then change the index in the summation from n to n-l N and interchange the order of 

summations we get: 

 

X[w] 

       w 

0                                             2 
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Denote the quantity inside the bracket as xp[n]. This is the signal that is a repeating version of 

x[n] every N samples. Since it is a periodic signal it can be represented by the Fourier series. 

 

  )1(,........,2,1,0
1

0
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With FS coefficients: 

 

    )1(,.......,2,1,0
1 1

0
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N

c
N
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 …………… (1.4) 

 

Comparing the expressions in equations (1.4) and (1.3) we conclude the following: 

 

   )1(,.......,1,0
21
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
………………. (1.5) 

 

Therefore it is possible to write the expression xp[n] as below: 
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………. (1.6) 

 

The above formula shows the reconstruction of the periodic signal xp[n] from the samples of 

the spectrum X[w]. But it does not say if X[w] or x[n] can be recovered from the samples. 

 

Let us have a look at that: 

Since xp[n] is the periodic extension of x[n] it is clear that x[n] can be recovered from xp[n] if 

there is no aliasing in the time domain. That is if x[n] is time-limited to less than the period N 

of xp[n].This is depicted in Fig. 1.2 below: 
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     Fig. 1.2 Signal Reconstruction 

 

 

 

Hence we conclude: 

The spectrum of an aperiodic discrete-time signal with finite duration L can be exactly 

recovered from its samples at frequencies 
N

k
wk

2
  if N >= L. 

 

We compute xp[n] for n=0, 1,....., N-1 using equation (1.6)   

Then X[w] can be computed using equation (1.1).  

 

1.3 Discrete Fourier Transform: 
 

The DTFT representation for a finite duration sequence is 

  ∞      -jωn 

X (jω) = ∑ x (n) ℮ 

 n= -∞        

               jωn 

X (n) =1/2π    ∫X (jω) e      dω ,     Where ω═ 2πk/n 

x[n] 

n 

0                       L 

xp[n] 

n 

0               L      N 

N>=L 

No   aliasing 

xp[n] 

n 

0          N 

N<L 

Aliasing 
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        2π 

Where x(n) is a finite duration sequence, X(jω) is periodic with period 2π.It is 

convenient sample X(jω) with a sampling frequency equal an integer multiple of its period =m 

that is taking N uniformly spaced samples between 0 and 2π. 

Let ωk= 2πk/n, 0≤k≤N-1 

 

         ∞  -j2πkn/N 

Therefore X(jω) = ∑ x(n) ℮ 

        n=−∞ 

Since X(jω) is sampled for one period and there are N samples X(jω) can be expressed 

as   

            N-1 -j2πkn/N 

X(k) = X(jω)│ ω=2πkn/N     ═∑  x(n) ℮  0≤k≤N-1              

                         n=0 

 

 

1.4 Matrix relation of DFT 
 

The DFT expression can be expressed as  

 

[X] = [x(n)] [WN]                                                  

                                                      T 

Where [X] = [X(0), X(1),……..] 

 

[x] is the transpose of the input sequence. WN is a N x N matrix 

 

WN =   1       1       1      1     ………………1 

             1       wn1  wn2  wn3……………...wn n-1 

             1       wn2   wn4  wn6  ……………wn2(n-1) 

             ……………………………………………. 

            ……………………………………………. 

            1………………………………..wN (N-1)(N-1) 

   

ex; 

4 pt DFT of the sequence   0,1,2,3 

 

X(0)                   1               1            1              1 

X(1)                   1               -j           -1              j 

X(2)        =         1               -1           1            -1 

X(3)                   1                 j           -1            -j 

 

 

Solving the matrix X(K) =  6  ,  -2+2j,   -2 ,  -2-2j  

 

1.5 Relationship of Fourier Transforms with other transforms 
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1.5.1 Relationship of Fourier transform with continuous time signal: 

 

Suppose that xa(t) is a continuous-time periodic signal with fundamental period Tp= 1/F0.The 

signal can be expressed in Fourier series as  

 

Where {ck} are the Fourier coefficients. If we sample xa(t) at a uniform rate Fs = N/Tp = 1/T, 

we obtain discrete time sequence  

 

 
Thus {ck’} is the aliasing version of {ck} 

 

1.5.2 Relationship of Fourier transform with z-transform 

 

 Let us consider a sequence x(n) having the z-transform 

 
 

With ROC that includes unit circle. If X(z) is sampled at the N equally spaced points on the 

unit circle Zk = e j2πk/N for K=  0,1,2,………..N-1 we obtain  

 
 

The above expression is identical to Fourier transform X(ω) evaluated at N equally spaced 

frequencies ωk = 2πk/N for K=  0,1,2,………..N-1. 
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If the sequence x(n) has a finite duration of length N or less. The sequence can be recovered 

from its N-point DFT. Consequently X(z) can be expressed as a function of DFT as  

 

 
 

Fourier transform of a continuous time signal can be obtained from DFT as  
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Recommended Questions with solutions  
 

Question 1 

The first five points of the 8-point DFT of a real valued sequence are {0.25, 0.125-j0.318, 0, 

0.125-j0.0518, 0}. Determine the remaining three points 

 

Ans:  Since x(n) is real, the real part of the DFT is even, imaginary part odd. Thus the 

remaining points are {0.125+j0.0518,0,0, 0.125+j0.318}. 

 

Question 2 

Compute the eight-point DFT circular convolution for the following sequences. 
x2(n) = sin 3πn/8 

Ans:  

 
 

Question 3 
Compute the eight-point DFT circular convolution for the following sequence 

X3(n) = cos 3πn/8 
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Question 4 
Define DFT. Establish a relation between the Fourier series coefficients of a continuous time 

signal and DFT 

 

Solution 

 

The DTFT representation for a finite duration sequence is 

       ∞           

X (jω) = ∑ x (n) ℮-jωn 

 n= -∞        

                    

X (n) =1/2π    ∫X (jω) e jωn dω ,     Where ω═ 2πk/n 

        2π 

Where x(n) is a finite duration sequence, X(jω) is periodic with period 2π.It is 

convenient sample X(jω) with a sampling frequency equal an integer multiple of its period =m 

that is taking N uniformly spaced samples between 0 and 2π. 

Let ωk= 2πk/n, 0≤k≤N 

              ∞             

Therefore X(jω) = ∑ x(n) ℮-j2πkn/N 

        n=−∞ 

Since X(jω) is sampled for one period and there are N samples X(jω) can be expressed 

as   

            N-1  

X(k) = X(jω)│ ω=2πkn/N     ═∑  x(n) ℮-j2πkn/N 0≤k≤N-1          

                                             n=0 

Question 5 

 

  
Solution:- 
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Question 6 

 

Find the 4-point DFT of sequence x(n) = 6+ sin(2πn/N), n= 0,1,………N-1 

 

Solution :- 

 

 

Question 7  

 

 
 

Solution 
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Question 8  

 

  

 
Solution 
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Unit 2 

Properties of DFT 

 

 

2.1 Properties:- 

 
       The DFT and IDFT for an N-point sequence x(n) are given as  
 

 
 

In this section we discuss about the important properties of the DFT. These properties are 

helpful in the application of the DFT to practical problems. 

 

 

 
 Periodicity:- 

 

 
 

 

 

     2.1.2 Linearity:    If  
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      Then A x1 (n) + b x2 (n)   a X1(k) + b X2(k) 

 

 

2.1.3 Circular shift: 
 

In linear shift, when a sequence is shifted the sequence gets extended. In circular shift the 

number of elements in a sequence remains the same. Given a sequence x (n) the shifted 

version x (n-m) indicates a shift of m. With DFTs the sequences are defined for 0 to N-1. 

 

If x (n) = x (0), x (1), x (2), x (3) 

 

X (n-1) =   x (3), x (0), x (1).x (2) 

 

X (n-2) =   x (2), x (3), x (0), x (1) 

 

 

2.1.4 Time shift: 
 

If x (n)  X (k) 

                                      mk 

Then x (n-m)  WN      X (k) 

 

 

2.1.5 Frequency shift   
 

If x(n) X(k) 

    +nok 

Wn            x(n)  X(k+no) 

                              N-1          kn 

Consider    x(k)  =  x(n) W n  

                              n=0   

                                   N-1 

                                                            (k+ no)n 

                   X(k+no)=\    x(n) WN          

                                    n=0   

                                                      kn         non                                  

                            =  x(n) WN            WN 

 

                                         non 

 X(k+no)x(n) WN      

 

 

2.1.6 Symmetry:  
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  For a real sequence, if x(n) X(k) 

                                             

                      X(N-K) = X* (k) 

 

 For a complex sequence 

 DFT(x*(n)) = X*(N-K) 

 

 

If x(n)                 then      X(k) 

 

Real and even                      real and even 

Real and odd                        imaginary and odd 

Odd and imaginary              real odd 

Even and imaginary             imaginary and even    

 

 

2.2 Convolution theorem; 
 

Circular convolution in time domain corresponds to multiplication of the DFTs 

 

If y(n) = x(n)  h(n) then Y(k) = X(k) H(k) 

 

Ex let x(n) = 1,2,2,1  and  h(n) = 1,2,2,1 

 Then y (n) = x(n)  h(n) 

 

Y(n) = 9,10,9,8 

 

N pt DFTs of 2 real sequences can be found using a single DFT 

 

If g(n) & h(n) are two sequences then let x(n) = g(n) +j h(n) 

 

G(k) = ½ (X(k) + X*(k)) 

 

H(k) = 1/2j (X(K) +X*(k)) 

 

2N pt DFT of a real sequence using a single N pt DFT 

 

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT 

 

Let y(n) = x(2n)  and g(2n+1) 

                                 k 

X (k) = Y (k) + WN   G (k) 

 

Using DFT to find IDFT 

 

The DFT expression can be used to find IDFT 
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X(n)  =  1/N [DFT(X*(k)]* 

 

 

Recommended Questions with solutions 

Question 1  

 

State and Prove the Time shifting Property of DFT 

 

Solution 

 

The DFT and IDFT for an N-point sequence x(n) are given as  

 

 
 

Time shift: 

 

If x (n)  X (k) 

                                      mk 

Then x (n-m)  WN      X (k) 

 
Question 2  

 

State and Prove the: (i) Circular convolution property of DFT; (ii) DFT of Real and even 

sequence. 

 

Solution 

 

(i) Convolution theorem 

 

Circular convolution in time domain corresponds to multiplication of the DFTs 

If y(n) = x(n)  h(n) then Y(k) = X(k) H(k) 

Ex let x(n) = 1,2,2,1  and  h(n) = 1,2,2,1 Then y (n) = x(n)  h(n) 

 

Y(n) = 9,10,9,8 

N pt DFTs of 2 real sequences can be found using a single DFT 
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If g(n) & h(n) are two sequences then let x(n) = g(n) +j h(n) 

G(k) = ½ (X(k) + X*(k)) 

H(k) = 1/2j (X(K) +X*(k)) 

2N pt DFT of a real sequence using a single N pt DFT 

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT 

Let y(n) = x(2n)  and g(2n+1) 

                                

X (k) = Y (k) + WN
K   G (k) 

Using DFT to find IDFT 

The DFT expression can be used to find IDFT 

X(n)  =  1/N [DFT(X*(k)]* 

 

(ii)DFT of Real and even sequence.   

For a real sequence, if x(n) X(k)                                             

                      X (N-K) = X* (k) 

 

 For a complex sequence 

 DFT(x*(n)) = X*(N-K) 

 

If x(n)                 then      X(k) 

Real and even                      real and even 

Real and odd                        imaginary and odd 

Odd and imaginary              real odd 

Even and imaginary             imaginary and even    

 

 

Question 3  

 

Distinguish between circular and linear convolution 

 

Solution 

 

1) Circular convolution is used for periodic and finite signals while linear convolution is 

used for aperiodic and infinite signals. 

2) In linear convolution we convolved one signal with another signal where as in circular 

convolution the same convolution is done but in circular pattern depending upon the 

samples of the signal  

3) Shifts are linear in linear in linear convolution, whereas it is circular in circular 

convolution. 

 

Question 4  
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Solution(a) 

 
 

Solution(b) 

 

 
 

Solution(c) 

 
 

Solution(d) 
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Question 5  
 

 

 

 
Solution 

 

 

Question 6  

 
 

Solution 
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UNIT 3 

FAST-FOURIER-TRANSFORM (FFT) ALGORITHMS 

 

3.1 Digital filtering using DFT 
 

In a LTI system the system response is got by convoluting the input with the impulse 

response. In the frequency domain their respective spectra are multiplied. These spectra are 

continuous and hence cannot be used for computations. The product of 2 DFT s is equivalent 

to the circular convolution of the corresponding time domain sequences. Circular convolution 

cannot be used to determine the output of a linear filter to a given input sequence. In this case a 

frequency domain methodology equivalent to linear convolution is required. Linear 

convolution can be implemented using circular convolution by taking the length of the 

convolution as N >= n1+n2-1 where n1 and n2 are the lengths of the 2 sequences. 

 

3.1.1 Overlap and add 
 

In order to convolve a short duration sequence with a long duration sequence x(n) ,x(n) 

is split into blocks of length N x(n) and h(n) are zero padded to length L+M-1 . circular 

convolution is performed to each block then the results are added. These data blocks may be 

represented as  

 

 
 

The IDFT yields data blocks of length N that are free of aliasing since the size of the 

DFTs and IDFT is N = L+M -1 and the sequences are increased to N-points by appending 

zeros to each block. Since each block is terminated with M-1 zeros, the last M-1 points from 

each output block must be overlapped and added to the first M-1 points of the succeeding 
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block. Hence this method is called the overlap method. This overlapping and adding yields the 

output sequences given below. 

 

 

 
 

 

2.1.2 Overlap and save method 
 

In this method x (n) is divided into blocks of length N with an overlap of k-1 samples. 

The first block is zero padded with k-1 zeros at the beginning. H (n) is also zero padded to 

length N. Circular convolution of each block is performed using the N length DFT .The output 

signal is obtained after discarding the first k-1 samples the final result is obtained by adding 

the intermediate results. 
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In this method the size of the I/P data blocks is N= L+M-1 and the size of the DFts and 

IDFTs are of length N. Each data block consists of the last M-1 data points of the previous 

data block followed by L new data points to form a data sequence of length N= L+M-1. An N-

point DFT is computed from each data block. The impulse response of the FIR filter is 

increased in length by appending L-1 zeros and an N-point DFT of the sequence is computed 

once and stored. 

The multiplication of two N-point DFTs {H(k)} and {Xm(k)} for the mth block of data yields 

 

 

 
 

Since the data record is of the length N, the first M-1 points of Ym(n) are corrupted by 

aliasing and must be discarded. The last L points of Ym(n) are exactly the same as the result 

from linear convolution and as a consequence we get  
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3.2 Direct Computation of DFT 
        

The problem:  

Given signal samples: x[0], . . . , x[N - 1] (some of which may be zero), develop a procedure   

to compute 

 
       

 for k = 0, . . . , N - 1 where 

 
 
      We would like the procedure to be fast, simple, and accurate. Fast is the most important, so we will 

sacrifice simplicity for speed, hopefully with minimal loss of accuracy 
 
3.3 Need for efficient computation of DFT (FFT Algorithms)  

Let us start with the simple way. Assume that    has been precompiled and stored in a 

table for the N of interest. How big should the table be? is periodic in m with period N, 

so we just need to tabulate the N values: 
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(Possibly even less since Sin is just Cos shifted by a quarter periods, so we could save just Cos 

when N is a multiple of 4.) 

Why tabulate? To avoid repeated function calls to Cos and sin when computing the DFT. Now 

we can compute each X[k] directly form the formula as follows 

 
For each value of k, there are N complex multiplications, and (N-1) complex additions. There 

are N values of k, so the total number of complex operations is 

 
Complex multiplies require 4 real multiplies and 2 real additions, whereas complex additions 

require just 2 real additions N2 complex multiplies are the primary concern. 

N2 increases rapidly with N, so how can we reduce the amount of computation? By exploiting 

the following properties of W: 

 
The first and third properties hold for even N, i.e., when 2 is one of the prime factors of N. 

There are related properties for other prime factors of N. 

 

Divide and conquer approach 

We have seen in the preceding sections that the DFT is a very computationally 

intensive operation. In 1965, Cooley and Tukey published an algorithm that could be used to 

compute the DFT much more efficiently. Various forms of their algorithm, which came to be 

known as the Fast Fourier Transform (FFT), had actually been developed much earlier by 

other mathematicians (even dating back to Gauss). It was their paper, however, which 

stimulated a revolution in the field of signal processing. 

It is important to keep in mind at the outset that the FFT is not a new transform. It is 

simply a very efficient way to compute an existing transform, namely the DFT. As we saw, a 
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straight forward implementation of the DFT can be computationally expensive because the 

number of multiplies grows as the square of the input length (i.e. N2 for an N point DFT). The 

FFT reduces this computation using two simple but important concepts. The first concept, 

known as divide-and-conquer, splits the problem into two smaller problems. The second 

concept, known as recursion, applies this divide-and-conquer method repeatedly until the 

problem is solved. 

Recommended Questions with solutions 

Question1

 

Solution:-

 

Question 2 

 

Solution:- 
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Question 3 

 

Solution:-  
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Question 4 

 
Solution:- (a)    

 

 

(b) 
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UNIT 4 

RADIX-2 FFT ALGORITHM FOR THE COMPUTATION OF DFT AND 

IDFT 
 

4.1 Introduction:  

       Standard frequency analysis requires transforming time-domain signal to frequency 

domain and studying Spectrum of the signal. This is done through DFT computation. N-point 

DFT computation results in N frequency components. We know that DFT computation 

through FFT requires N/2 log2N complex multiplications and N log2N additions. In certain 

applications not all N frequency components need to be computed (an application will be 

discussed). If the desired number of values of the DFT is less than 2 log2N than direct 

computation of the desired values is more efficient that FFT based computation. 

4.2 Radix-2 FFT 

Useful when N is a power of 2: N = rv for integers r and v. ‘r’ is called the radix, which 

comes from the Latin word meaning .a root, and has the same origins as the word radish. 

 When N is a power of r = 2, this is called radix-2, and the natural .divide and conquer 

approach. is to split the sequence into two sequences of length N=2. This is a very clever trick 

that goes back many years. 

4.2.1 Decimation in time 
 

 
 

Fig 4.1 First step in Decimation-in-time domain Algorithm 
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4.2.2 Decimation-in-frequency Domain 
 

 Another important radix-2 FFT algorithm, called decimation-in-frequency algorithm is 

obtained by using divide-and-conquer approach with the choice of M=2 and L= N/2.This 

choice of data implies a column-wise storage of the input data sequence. To derive the 

algorithm, we begin by splitting the DFT formula into two summations, one of which involves 

the sum over the first N/2 data points and the second sum involves the last N/2 data points. 

Thus we obtain  

 

 
Now, let us split X(k) into the even and odd-numbered samples. Thus we obtain 
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Fig 4.2 Shuffling of Data and Bit reversal 

 

 The computation of the sequences g1 (n) and g2 (n) and subsequent use of these 

sequences to compute the N/2-point DFTs depicted in fig we observe that the basic 

computation in this figure involves the butterfly operation. 
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 The computation procedure can be repeated through decimation of the N/2-point DFTs, 

X(2k) and X(2k+1). The entire process involves v = log2 N of decimation, where each stage 

involves N/2 butterflies of the type shown in figure 4.3.  

 

 
 

Fig 4.3 First step in Decimation-in-time domain Algorithm 
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Fig 4.4 N=8 point Decimation-in-frequency domain Algorithm 

4.2 Example: DTMF – Dual Tone Multi frequency 

      This is known as touch-tone/speed/electronic dialing, pressing of each button generates a 

unique set of two-tone signals, called DTMF signals. These signals are processed at exchange 

to identify the number pressed by determining the two associated tone frequencies. Seven 

frequencies are used to code the 10 decimal digits and two special characters (4x3 array) 
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 In this application frequency analysis requires determination of possible seven (eight) 

DTMF fundamental tones and their respective second harmonics .For an 8 kHz sampling freq, 

the best value of the DFT length N to detect the eight fundamental DTMF tones has been 

found to be 205 .Not all 205 freq components are needed here, instead only those 

corresponding to key frequencies are required. FFT algorithm is not effective and efficient in 

this application. The direct computation of the DFT which is more effective in this application 

is formulated as a linear filtering operation on the input data sequence. 

This algorithm is known as Goertzel Algorithm 

This algorithm exploits periodicity property of the phase factor. Consider the DFT definition  

  

 

 

 Since           is equal to 1, multiplying both sides of the equation by this results in; 

 

 

This is in the form of a convolution  

      

 

 

 

Where yk(n) is the out put of a filter which has impulse response of hk(n) and input  x(n).  

 The output of the filter at n = N yields the value of the DFT at the freq ωk = 2πk/N 

 The filter has frequency response given by 

 

 

 

The above form of filter response shows it has a pole on the unit circle at the frequency ωk = 

2πk/N. 

Entire DFT can be computed by passing the block of input data into a parallel bank of N 

single-pole filters (resonators) 
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The above form of filter response shows it has a pole on the unit circle at the frequency ωk = 

2πk/N. 

Entire DFT can be computed by passing the block of input data into a parallel bank of N 

single-pole filters (resonators) 

1.3 Difference Equation implementation of filter: 

       From the frequency response of the filter (eq 6) we can write the following difference 

equation relating input and output; 

 

 

  

 

The desired output is X(k) = yk(n) for k = 0,1,…N-1.  The phase factor appearing in the 

difference equation can be computed once and stored. 

 The form shown in eq (7) requires complex multiplications which can be avoided 

doing suitable modifications (divide and multiply by 11  zW k

N ). Then frequency response of 

the filter can be alternatively expressed as  

  

 

 

This is second –order realization of the filter (observe the denominator now is a second-order 

expression). The direct form realization of the above is given by 
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The recursive relation in (9) is iterated for  n = 0,1,……N, but the equation in (10) is computed 

only once at time n =N. Each iteration requires one real multiplication and two additions. 

Thus, for a real input sequence x(n) this algorithm requires (N+1) real multiplications to yield 

X(k) and X(N-k) (this is due to symmetry). Going through the Goertzel algorithm it is clear 

that this algorithm is useful only when M out of N DFT values need to be computed where M≤ 

2log2N, Otherwise, the FFT algorithm is more efficient method. The utility of the algorithm 

completely depends on the application and number of frequency components we are looking 

for. 

4.2. Chirp z- Transform 

 

4.2.1 Introduction: 

      Computation of DFT is equivalent to samples of the z-transform of a finite-length 

sequence at equally spaced points around the unit circle. The spacing between the samples is 

given by 2π/N. The efficient computation of DFT through FFT requires N to be a highly 

composite number which is a constraint. Many a times we may need samples of z-transform 

on contours other than unit circle or  we my require dense set of frequency samples over a 

small region of unit circle.  To understand these let us look in to the following situations: 

 

1. Obtain samples of z-transform on a circle of radius ‘a’ which is concentric to unit circle 

The possible solution is to multiply the input  sequence by a-n 

2. 128 samples needed between frequencies  ω = -π/8  to  +π/8 from a 128 point sequence 
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From the given specifications we see that the spacing between the frequency samples is 

π/512 or 2π/1024. In order to achieve this freq resolution we take 1024- point FFT  of 

the given 128-point seq by appending the  sequence with 896 zeros. Since we need 

only 128 frequencies out of 1024 there will be big wastage of computations in this 

scheme. 

 

For the above two problems Chirp z-transform is the alternative. 

Chirp z- transform is defined as: 

 

 

 

 

Where zk is a generalized contour. Zk is the set of points in the z-plane falling on an arc which 

begins at some point z0 and spirals either in toward the origin or out away from the origin such 

that the points {zk}are defined as, 
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Note that, 

a. if R0< 1 the points fall on a contour that spirals toward the origin 

b. If R0 > 1 the contour spirals away from the origin 

c. If R0= 1 the contour is a circular arc of radius 

d.If r0=1 and R0=1 the contour is an arc of the unit circle. 

    (Additionally this contour allows one to compute the freq content of the sequence x(n) at 

dense set of L frequencies in the range covered by the arc without having to compute a large 

DFT (i.e., a DFT of the sequence x(n) padded with many zeros to obtain the desired resolution 

in freq.)) 

e. If r0= R0=1 and θ0=0 Φ0=2π/N and L = N the contour is the entire unit circle similar to the 

standard DFT. These conditions are shown in the following diagram. 
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 Substituting the value of zk in the expression of X(zk)  

 

 

     where   

 

4.2.2 Expressing computation of X(zk) as linear filtering operation:      

     By substitution of  

 

     we can express X(zk) as 

      

     Where 

 

 

both g(n) and h(n) are complex valued sequences        

4.2.3 Why it is called Chirp z-transform? 

       If R0 =1, then sequence  h(n) has the form of complex exponential  with argument ωn = 

n2Φ0/2 = (n Φ0/2) n. The quantity (n Φ0/2) represents the freq of the complex exponential 
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signal, which increases linearly with time. Such signals are used in radar systems are called 

chirp signals. Hence the name chirp z-transform. 

 

 

 

 

 

 

 

 

            

 

4.2.4 How to Evaluate linear convolution of  eq (17)  

1. Can be done efficiently with FFT 

2. The two sequences involved are g(n) and h(n). g(n) is finite length seq of length N and 

h(n) is of infinite duration, but fortunately only a portion of h(n) is required to compute 

L values of X(z), hence FFT could be still be used. 

3. Since convolution is via FFT, it is circular convolution of the N-point seq g(n) with an 

M- point section of h(n) where M > N 

4.  The concepts used in overlap –save method can be used                 

5. While circular convolution is used to compute linear convolution of two sequences we 

know the initial N-1 points contain aliasing and the remaining points are identical to 

the result that would be obtained from a linear convolution of h(n) and g(n), In view of 

this the DFT size selected is   M = L+N-1 which would yield L valid points and N-1 

points corrupted by aliasing. The section of h(n) considered is for –(N-1) ≤ n≤ (L-1) 

yielding total length M as defined       

6.  The portion of h(n) can be defined in many ways, one such way is, 
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        h1(n) = h(n-N+1)     n = 0,1,…..M-1 

7. Compute H1(k) and G(k) to obtain  

             Y1(k) = G(K)H1(k)  

8. Application of IDFT will give y1(n), for       

            n =0,1,…M-1. The starting N-1 are discarded and desired values are y1(n) for 

           N-1 ≤n ≤ M-1 which corresponds to the range 0 ≤n ≤ L-1 i.e., 

     y(n)= y1(n+N-1)  n=0,1,2,…..L-1   

9.  Alternatively h2(n) can be defined as 

 

 

 

10. Compute Y2(k) = G(K)H2(k), The desired values of y2(n) are in the range  

            0 ≤n ≤L-1 i.e., 

            y(n) = y2(n)    n=0,1,….L-1 

11. Finally, the complex values X(zk) are computed by dividing y(k) by h(k)  

             For k =0,1,……L-1       

4.3 Computational complexity 

        In general the computational complexity of CZT is of the order of M log2M  complex 

multiplications. This should be compared with N.L which is required for direct evaluation. 

If L is small direct evaluation is more efficient otherwise if L is large then CZT is more 

efficient.   

4.3.1 Advantages of CZT 

      a. Not necessary to have N =L 

b.Neither N or L need to be highly composite 

c.The samples of Z transform are taken on a more general contour that includes the unit 

circle as a special case.  

 4.4 Example to understand utility of CZT algorithm in freq analysis 

      (ref: DSP by Oppenheim Schaffer) 

 CZT is used in this application to sharpen the resonances by evaluating the z-transform 

off the unit circle. Signal to be analyzed is a synthetic speech signal generated by exciting a 
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five-pole system with a periodic impulse train. The system was simulated to correspond to a 

sampling freq. of 10 kHz.  The poles are located at center freqs of 270,2290,3010,3500 & 4500 

Hz with bandwidth of 30, 50, 60,87 & 140 Hz respectively. 

 

Solution: Observe the pole-zero plots and corresponding magnitude frequency response for 

different choices of |w|. The following observations are in order: 

 

• The first two spectra correspond to spiral contours outside the unit circle with a resulting 

broadening of the resonance peaks 

• |w| = 1 corresponds to evaluating z-transform on the unit circle 

• The last two choices correspond to spiral contours which spirals inside the unit circle and 

close to the pole locations resulting in a sharpening of resonance peaks. 
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  4.5 Implementation of CZT in hardware to compute the DFT signals 

          The block schematic of the CZT hardware is shown in down figure.  DFT computation 

requires r0 =R0 =1, θ0 = 0 Φ0 = 2π/N and L = N. 

The cosine and sine sequences in h(n) needed for pre multiplication and post multiplication are 

usually stored in a ROM. If only magnitude of DFT is desired, the post multiplications are 

unnecessary, 

In this case |X(zk)| = |y(k)| k =0,1,….N-1   
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Recommended Questions with solutions 

Question 1 

 

 

 
Solution:- 
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Question 2 

 
 

Solution :- There are 20 real , non trial multiplications 

Figure 4.1 DIF Algorithm for N=16 
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Question 3 

 
Solution:- 

 

 
 

Question 4 

 
 

Solution:- 
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Question 5 

 
 

Solution:-  

 

 

Question 6 

 

Solution:- 

 

 

 

 

This can be viewed as the convolution of the N-length sequence x(n) with implulse 

response of a linear filter 
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UNIT 5 

IIR FILTER DESIGN 

CONTENTS:- 

IIR FILTER DESIGN: CHARACTERISTICS OF COMMONLY USED ANALOG FILTERS – 
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Unit 5 

Design of IIR Filters 
 

5.1 Introduction  

A digital filter is a linear shift-invariant discrete-time system that is realized using finite 

precision arithmetic. The design of digital filters involves three basic steps: 

 

 The specification of the desired properties of the system. 

 The approximation of these specifications using a causal discrete-time system. 

 The realization of these specifications using finite precision arithmetic. 

 

 These three steps are independent; here we focus our attention on the second step. The 

desired digital filter is to be used to filter a digital signal that is derived from an analog signal 

by means of periodic sampling. The specifications for both analog and digital filters are often 

given in the frequency domain, as for example in the design of low pass, high pass, band pass 

and band elimination filters.  

 Given the sampling rate, it is straight forward to convert from frequency specifications 

on an analog filter to frequency specifications on the corresponding digital filter, the analog 

frequencies being in terms of Hertz and digital frequencies being in terms of radian frequency 

or angle around the unit circle with the point Z=-1 corresponding to half the sampling 

frequency. The least confusing point of view toward digital filter design is to consider the filter 

as being specified in terms of angle around the unit circle rather than in terms of analog 

frequencies. 
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Figure 5.1: Tolerance limits for approximation of ideal low-pass filter 

 

 

 A separate problem is that of determining an appropriate set of specifications on the 

digital filter. In the case of a low pass filter, for example, the specifications often take the form 

of a tolerance scheme, as shown in Fig. 5.1. 

 

 
 Many of the filters used in practice are specified by such a tolerance scheme, with no 

constraints on the phase response other than those imposed by stability and causality 

requirements; i.e., the poles of the system function must lie inside the unit circle. Given a set 

of specifications in the form of Fig. 5.1, the next step is to and a discrete time linear system 

whose frequency response falls within the prescribed tolerances. At this point the filter design 

problem becomes a problem in approximation. In the case of infinite impulse response (IIR) 

filters, we must approximate the desired frequency response by a rational function, while in the 

finite impulse response (FIR) filters case we are concerned with polynomial approximation. 

 

5.1 Design of IIR Filters from Analog Filters: 
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 The traditional approach to the design of IIR digital filters involves the transformation 

of an analog filter into a digital filter meeting prescribed specifications. This is a reasonable 

approach because: 

 The art of analog filter design is highly advanced and since useful results can be 

achieved, it is advantageous to utilize the design procedures already developed for 

analog filters. 

 Many useful analog design methods have relatively simple closed-form design 

formulas. 

Therefore, digital filter design methods based on analog design formulas are rather simple to 

implement. An analog system can be described by the differential equation 

 

 
And the corresponding rational function is 

 
 

The corresponding description for digital filters has the form 

 

 
 

and the rational function 

 
 

 In transforming an analog filter to a digital filter we must therefore obtain either H(z) 

or h(n) (inverse Z-transform of H(z) i.e., impulse response) from the analog filter design. In 

such transformations, we want the imaginary axis of the S-plane to map into the nit circle of 

the Z-plane, a stable analog filter should be transformed to a stable digital filter. That is, if the 

analog filter has poles only in the left-half of S-plane, then the digital filter must have poles 

only inside the unit circle. These constraints are basic to all the techniques discussed here. 
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5.2 Characteristics of Commonly Used Analog Filters: 
 
 From the previous discussion it is clear that, IIT digital filters can be obtained by 

beginning with an analog filter. Thus the design of a digital filter is reduced to designing an 

appropriate analog filter and then performing the conversion from Ha(s) to H (z). Analog filter 

design is a well - developed field, many approximation techniques, viz., Butterworth, 

Chebyshev, Elliptic, etc., have been developed for the design of analog low 

pass filters. Our discussion is limited to low pass filters, since, frequency transformation can 

be applied to transform a designed low pass filter into a desired high pass, band pass and band 

stop filters. 

 

5.2.1 Butterworth Filters: 

 

Low pass Butterworth filters are all - pole filters with monotonic frequency response in 

both pass band and stop band, characterized by the magnitude - squared frequency response  

 
Where, N is the order of the filter, Ώc is the -3dB frequency, i.e., cutoff frequency, Ώp is the 

pass band edge frequency and 1= (1 /1+ε2 ) is the band edge value of │Ha(Ώ)│2. Since the 

product Ha(s) Ha(-s) and evaluated at s = jΏ is simply equal to │Ha(Ώ)│2, it follows that 

 

The poles of Ha(s)Ha(-s) occur on a circle of radius Ώc at equally spaced points. From Eq. 

(5.29), we find the pole positions as the solution of 

 

And hence, the N poles in the left half of the s-plane are 
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 Note that, there are no poles on the imaginary axis of s-plane, and for N odd there will 

be a pole on real axis of s-plane, for N even there are no poles even on real axis of s-plane. 

Also note that all the poles are having conjugate symmetry. Thus the design methodology to 

design a Butterworth low pass filter with δ2 attenuation at a specified frequency Ώs is Find N, 

 

 Where by definition, δ2 = 1/√1+δ2. Thus the Butterworth filter is completely 

characterized by the parameters N, δ2, ε and the ratio Ώs/Ώp or Ώc.Then, from Eq. (5.31) find 

the pole positions Sk; k = 0,1, 2,……..(N-1). Finally the analog filter is given by 

 

 
 

5.2.2 Chebyshev Filters: 
 

 There are two types of Chebyshev filters. Type I Chebyshev filters are all-pole filters 

that exhibit equiripple behavior in the pass band and a monotonic characteristic in the stop 

band. On the other hand, type II Chebyshev filters contain both poles and zeros and exhibit a 

monotonic behavior in the pass band and an equiripple behavior in the stop band. The zeros of 

this class of filters lie on the imaginary axis in the s-plane. The magnitude squared of the 

frequency response characteristic of type I Chebyshev filter is given as 

 
 

Where ε is a parameter of the filter related to the ripple in the pass band as shown in Fig. 

(5.7), and TN is the Nth order Chebyshev polynomial defined as 

 

 

The Chebyshev polynomials can be generated by the recursive equation 
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Where T0(x) = 1 and T1(x) = x. 

At the band edge frequency Ώ= Ώp, we have 

 

 
Figure 5.2: Type I Chebysehev filter characteristic 

 
Or equivalently 

 
Where δ1 is the value of the pass band ripple. 

 

The poles of Type I Chebyshev filter lie on an ellipse in the s-plane with major axis 

 
And minor axis 

 

 
 
Where β is related to ε according to the equation 

VTUlive.com 63



 

 
The angular positions of the left half s-plane poles are given by 

 

 
 Then the positions of the left half s-plane poles are given by 

 

 
Where σk = r2 Cos φk and Ώk = r1 Sinφk. The order of the filter is obtained from 

 

 
Where, by definition δ2 = 1/√1+δ2. 

Finally, the Type I Chebyshev filter is given by 

 

A Type II Chebyshev filter contains zero as well as poles. The magnitude squared response is 

given as 

 

 
Where TN(x) is the N-order Chebyshev polynomial. The zeros are located on the imaginary 

axis at the points 

 

 
and the left-half s-plane poles are given 
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Where 

 
 

and  

 
Finally, the Type II Chebyshev filter is given by 

 

 
 The other approximation techniques are elliptic (equiripple in both passband and 

stopband) and Bessel (monotonic in both passband and stopband). 

 

 

5.3 Analog to Analog Frequency Transforms 
 

 Frequency transforms are used to transform lowpass prototype filter to other filters like 

highpass or bandpass or bandstop filters. One possibility is to perform frequency transform in 

the analog domain and then convert the analog filter into a corresponding digital filter by a 

mapping of the s-plane into z-plane. An alternative approach is to convert the analog lowpass 

filter into a lowpass digital filter and then to transform the lowpass digital filter into the 

desired digital filter by a digital transformation. 

 

 Suppose we have a lowpass filter with pass edge ΩP and if we want convert that into 

another lowpass filter with pass band edge Ω’P then the transformation used is  

 

 

 
 

To convert low pass filter into highpass filter the transformation used is  

VTUlive.com 65



 

 
 

 
 

Thus we obtain  

 

 

 
The filter function is  
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Recommended Questions with answers 
 
Question 1 

I Design a digital filter to satisfy the following characteristics. 

 -3dB cutoff frequency of 0:5_ rad. 

 Magnitude down at least 15dB at 0:75_ rad. 

 Monotonic stop band and pass band Using 

 Impulse invariant technique 

 Approximation of derivatives 

 Bilinear transformation technique 

 

 

 
Figure 5.8: Frequency response plot of the example 

Solution:- 

a) Impulse Invariant Technique 

From the given digital domain frequency, _nd the corresponding analog domain frequencies. 

 

Where T is the sampling period and 1/T is the sampling frequency and it always corresponds 

to 2Π radians in the digital domain. In this problem, let us assume T = 1sec. 

Then Ώc = 0:5Π and Ώs = 0:75Π 

Let us find the order of the desired filter using 
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Where δ2 is the gain at the stop band edge frequency ωs. 

 

 
Order of filter N =5. 

Then the 5 poles on the Butterworth circle of radius Ώc = 0:5 Π are given by 

 

 
 

Then the filter transfer function in the analog domain is 

 

 

where Ak's are partial fractions coefficients of Ha(s). 

Finally, the transfer function of the digital filter is 
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b) 

 
 

c) For the bilinear transformation technique, we need to pre-warp the digital frequencies 

into corresponding analog frequencies. 

 

 
 

Then the order of the filter 

 
 

The pole locations on the Butterworth circle with radius Ώc = 2 are 

 
 

Then the filter transfer function in the analog domain is 

 

 
 

 

 

Finally, the transfer function of the digital filter is 
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Question 2 

Design a digital filter using impulse invariant technique to satisfy following 

characteristics 

(i) Equiripple in pass band and monotonic in stop band 

(ii) -3dB ripple with pass band edge frequency at 0:5П radians. 

(iii) Magnitude down at least 15dB at 0:75 П radians. 

 

Solution: Assuming T=1, Ώ= 0:5 П and s = 0:75 П 

The order of desired filter is 
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Question 3  

 
 

 

Solution:-  

For the design specifications we have  
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Question 4 

 
Solution:-  
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UNIT 6 

Implementation of Discrete time systems  

CONTENTS:- 

      IMPLEMENTATION OF DISCRETE-TIME SYSTEMS: STRUCTURES FOR IIR AND FIR SYSTEMS 

DIRECT FORM I AND DIRECT FORM II SYSTEMS, CASCADE, LATTICE AND PARALLEL 

REALIZATION.          7 HRS 
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2. DISCRETE TIME SIGNAL PROCESSING, OPPENHEIM & SCHAFFER, PHI, 2003.  
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UNIT 6 

Implementation of Discrete-Time Systems 

 
6.1 Introduction 
The two important forms of expressing system leading to different realizations of FIR & IIR 

filters are 

a) Difference equation form 





M

k

k

N

k

k knxbknyany
11

)()()(  

b) Ration of polynomials 
















N

k

k

k

M

k

k

k

Za

Zb

ZH

1

0

1

)(  

 

The following factors influence choice of a specific realization, 

 Computational complexity 

 Memory requirements 

 Finite-word-length 

 Pipeline / parallel processing 

 

6.1.1 Computation Complexity 
       This is do with number of arithmetic operations i.e. multiplication, addition & divisions. If 

the realization can have less of these then it will be less complex computationally. 

In the recent processors the fetch time from memory & number of times a comparison between 

two numbers is performed per output sample is also considered and found to be important 

from the point of view of computational complexity. 

 

6.1.2 Memory requirements 
       This is basically number of memory locations required to store the system parameters, 

past inputs, past outputs, and any intermediate computed values. Any realization requiring less 

of these is preferred.  

 

6.1.3 Finite-word-length effects 
       These effects refer to the quantization effects that are inherent in any digital 

implementation of the system, either in hardware or in software. No computing system has 

infinite precision. With finite precision there is bound to be errors. These effects are basically 

to do with truncation & rounding-off of samples. The extent of this effect varies with type of 

arithmetic used(fixed or floating). The serious issue is that the effects have influence on 

system characteristics. A structure which is less sensitive to this effect need to be chosen. 
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6.1.4 Pipeline / Parallel Processing 
       This is to do with suitability of the structure for pipelining & parallel processing. The 

parallel processing can be in software or hardware. Longer pipelining make the system more 

efficient. 

 

6.2 Structure for FIR Systems: 

FIR system is described by, 







1

0

)()(
M

k

k knxbny  

Or equivalently, the system function 







1

0

)(
M

k

k

k ZbZH  

Where we can identify 


 


otherwise

nnb
nh

n

0

10
)(  

Different FIR Structures used in practice are,  

1. Direct form 

2. Cascade form 

3. Frequency-sampling realization 

4. Lattice realization 

 

6.2.1 Direct – Form Structure 

Convolution formula is used to express FIR system given by, 

 







1

0

)()()(
M

k

knxkhny  

 It is Non recursive in structure 

 

 

 As can be seen from the above implementation it requires M-1 memory locations for 

storing the M-1 previous inputs 

 It requires computationally  M multiplications and M-1 additions per output point 

 It is more popularly referred to as tapped delay line or transversal system 

 Efficient structure with  linear phase characteristics are  possible where 

)1()( nMhnh   
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Prob: 

Realize the following system function using minimum number of multiplication 

(1) 54321

3

1

4

1

4

1

3

1
1)(   ZZZZZZH  

We recognize 







 1,

3

1
,

4

1
,

4

1
,

3

1
,1)(nh  

M is even = 6, and we observe h(n) = h(M-1-n) h(n) = h(5-n) 

i.e h(0) = h(5)  h(1) = h(4)  h(2) = h(3) 

Direct form structure for Linear phase FIR can be realized 

 

 
 

Exercise: Realize the following using system function using minimum number of 

multiplication. 

8765321

4

1

3

1

2

1

2

1

3

1

4

1
1)(   ZZZZZZZZH  

m=9  







 1,

4

1
,

3

1
,

2

1
,

2

1
,

3

1
,

4

1
,1)(nh  

odd symmetry 

h(n) = -h(M-1-n); h(n) = -h(8-n);  h(m-1/2) = h(4) = 0 

h(0) = -h(8);  h(1) = -h(7); h(2) = -h(6); h(3) = -h(5) 
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6.2.2 Cascade – Form Structure 

 
The system function H(Z) is factored into product of second – order FIR system 





K

k

k ZHZH
1

)()(  

Where 
2

2

1

10)(   ZbZbbZH kkkk      k = 1, 2, ….. K 

and K = integer part of (M+1) / 2 

       The filter parameter b0 may be equally distributed among the K filter section, such that b0 

= b10 b20 …. bk0   or it may be assigned to a single filter section. The zeros of H(z) are grouped 

in pairs to produce the second – order FIR system. Pairs of complex-conjugate roots are 

formed so that the coefficients {bki} are real valued. 

 

VTUlive.com 79



  In case of linear –phase FIR filter, the symmetry in h(n) implies that the zeros of H(z) 

also exhibit a form of symmetry. If zk and zk* are pair of complex – conjugate zeros then 

1/zk and 1/zk* are also a pair complex –conjugate zeros. Thus simplified fourth order 

sections are formed. This is shown below, 

 

43

1

2

2

1

10

*

1111

0 )/1)(/1)(*1)(1()(









zzCzCzCC

zzzzzzzzCzH

kkkk

kkkkkk
 

 
 

Problem: Realize the difference equation 

)4()3(75.0)2(5.0)1(25.0)()(  nxnxnxnxnxny  

in cascade form. 

 

Soln: 

)()()(

)821.03719.11)(2181.11219.11()(

75.05.025.01)(

)75.05.025.01){()(

21

2121

43_21

4321

zHzHzH

zzzzzH

zzzzzH

zzzzzXzY















 

 
 

6.3 Frequency sampling realization: 

 
We can express system function H(z) in terms of DFT samples H(k) which is given by 












1

0
11

)(1
)1()(

N

k
k

N

N

zW

kH

N
zzH  
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This form can be realized with cascade of FIR and IIR structures. The term (1-z-N) is realized 

as FIR and the term  





1

0
11

)(1 N

k
k

N zW

kH

N
 as IIR structure. 

 

The realization of the above freq sampling form shows necessity of complex arithmetic. 

Incorporating symmetry in h(n) and symmetry properties of DFT of real sequences the 

realization can be modified to have only real coefficients. 

 
 
 

6.4 Lattice structures 
 

Lattice structures offer many interesting features: 

 

1. Upgrading filter orders is simple. Only additional stages need to be added instead of 

redesigning the whole filter and recalculating the filter coefficients. 

2. These filters are computationally very efficient than other filter structures in a filter 

bank applications (eg. Wavelet Transform) 

3. Lattice filters are less sensitive to finite word length effects. 

 

Consider  

 

i
m

i

m zia
zX

zY
zH 



 )(1
)(

)(
)(

1

 

m is the order of the FIR filter and am(0)=1 

 

when m = 1   Y(z)/ X(z)  =  1+ a1(1) z-1 
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y(n)= x(n)+ a1(1)x(n-1) 

 

f1(n) is known as upper channel output and r1(n)as lower channel output.  

 

f0(n)= r0(n)=x(n) 

 
 
 

 
 

The outputs are 

 

)()(),1(

1)1()()(

1)1()()(

111

0011

0101

nynfthenakif

bnrnfknr

anrknfnf







 

 

If m=2 

 

)2()1()()(

)2()2()1()1()()(

)2()1(1
)(

)(

121

22

2

2

1

2





 

nrknfny

nxanxanxny

zaza
zX

zY

 

 

Substituting 1a and 1b in (2) 

 

)2()1()()(

)]2()1()1()()(

)()()(sin

)]2()1()1()(

)]2()1([)1()()(

2211

2121

00

02012010

0012010











nxknxkkknx

nxknxkknxknxny

nxnrnfce

nrknfkknrknf

nrnfkknrknfny

 

 

We recognize  
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22

2112

)1(

)1(

ka

kkka




 

 

Solving the above equation we get 

 

)4()2(
)2(1

)1(
22

2

2
1 akand

a

a
k 


  

 

Equation (3) means that, the lattice structure for a second-order filter is simply a cascade of 

two first-order filters with k1 and k2 as defined in eq (4) 

 

 
 

 

Similar to above, an Mth order FIR filter can be implemented by lattice structures with  

M – stages 

 

 
8.4.1 Direct Form –I  to lattice structure 
 

For  m = M, M-1, ………..2, 1 do 

 

11
1

)()()(
)(

)(

21 







 mi
k

imamaia
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m

mmm
m
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 The above expression fails if km=1. This is an indication that there isa zero on the unit 

circle. If km=1, factor out this root from A(z) and the recursive formula can be applied 

for reduced order system. 

 

)2(1

)1(

)2(1

)1(

)2(1

)]2(1)[1(

1

)1()2()1(
)1(

1&2

)1(&)2(

12

2

2
1

2

2

2

2

22

2

2

222
1

1122

a

a
kThus

a

a

a

aa

k

aaa
a

imfor

akak

mandmfor























 

 

8.4.2 Lattice to direct form –I 

 

For m = 1,2,…….M-1 

 

11)()()()(

)(

1)0(

11 





 miimamaiaia

kma

a

mmmm

mm

m

 

 

Problem: 

Given FIR filter 2

3
1121)(   ZZZH  obtain lattice structure for the same 

Given 2)1(1 a , 3
1

2 )2( a  

Using the recursive equation for 

m = M, M-1, ……, 2, 1 

here M=2 therefore  m = 2, 1 

if m=2 3
1

22 )2(  ak  

 if m=1 )1(11 ak   

also, when m=2 and i=1 

2

3

1

2

)2(1

)1(
)1(

3
1

2

2
1 







a

a
a  

Hence 2
3

11 )1(  ak  

 

VTUlive.com 84



Recommended questions with solution 

 

 

Problem:1 

Consider an FIR lattice filter with co-efficients 
2

1
1 k , 

3

1
2 k , 

4

1
3 k . Determine the FIR 

filter co-efficient for the direct form structure 

( 3

3

2

3

1

33 )3()2()1()0()(   ZaZaZaaZH ) 

1)0(3 a   
4

1)3( 33  ka      
3

1
)2( 22  ka  

         
2

1
)1( 11  ka   

 

for m=2, i=1 

  )1()2()1()1( 1212 aaaa   

 

   = 









3

1
1

2

1
)]2(1)[1( 21 aa   

 

   =
3

2

6

4
   

 

for m=3, i=1 

  )2()3()1()1( 2323 aaaa   

 

   =
3

1
.

4

1

3

2
   

   =
12

1

3

2
 =

12

18 
  

  

   =
4

3

12

9
  

 

 

for m=3 & i=2 

 

                                 )1()3()2()2( 2323 aaaa      

                                            =
3

2
.

4

1

3

1
  

                                            =
6

12

6

1

3

1 
  
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                                            =
2

1

6

3
  

 

 

1)0(3 a ,          
4

3
)1(3 a ,      

2

1
)2(3 a  ,    

4

1
)3(3 a  

 

 
 

6.5 Structures for  IIR  Filters 
 

The IIR filters are represented by system function; 

H(Z) =
k

N

k

k

k
M

k

k

za

zb














1

0

1

  

and corresponding difference equation given by, 





N

k

k

N

k

k knxbknyany
01

)()()(  

 

Different  realizations for IIR filters are, 

 

1. Direct form-I 

2. Direct form-II 

3. Cascade form 

4. Parallel form 

5. Lattice form 

 

6.5.1 Direct form-I 
       This is a straight forward implementation of difference equation which is very simple. 

Typical Direct form – I realization is shown below . The upper branch is forward path and 

lower branch is feedback path. The number of delays depends on presence of most previous 

input and output samples in the difference equation. 
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6.5.2 Direct form-II 

 

The given transfer function H(z) can be expressed as, 

 

)(

)(
.

)(

)(

)(

)(
)(

zV

zY

zX

zV

zX

zY
zH   

where V(z) is an intermediate term. We identify, 

 



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
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1
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)(

)(
         -------------------all poles 

 









 
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
M

k

k
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zY

1

1
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)(
        -------------------all zeros 

The corresponding difference equations are, 

 





N

k

k knvanxnv
1

)()()(  





M
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k nvbnvny
1

)1()()(  
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          This realization requires M+N+! multiplications, M+N addition and the maximum of 

{M, N} memory location 

 

 

6.5.3 Cascade Form 

 
The transfer function of a system can be expressed as, 
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)()....()()( 21 zHzHzHzH k  

 

Where )(ZH k  could be first order or second order section realized in Direct form – II form 

i.e., 

  
2

2

1

1

2

2

1

10

1
)(










ZaZa

ZbZbb
ZH

kk

kkk

k  

where  K is the integer part of (N+1)/2 

         Similar to FIR cascade realization, the parameter b0 can be distributed equally among the 

k filter section B0 that b0 = b10b20…..bk0. The second order sections are required to realize 

section which has complex-conjugate poles with real co-efficients. Pairing the two complex-

conjugate poles with a pair of complex-conjugate zeros or real-valued zeros to form a 

subsystem of the type shown above is done arbitrarily. There is no specific rule used in the 

combination. Although all cascade realizations are equivalent for infinite precision arithmetic, 

the various realizations may differ significantly when implemented with finite precision 

arithmetic. 

 

6.5.4 Parallel form structure 

 
In the expression  of transfer function, if MN  we can express system function  







N

k k

k

Zp

A
CZH

1
11

)(  



N

k

k ZHC
1

)(  

Where {pk} are the poles, {Ak} are the coefficients in the partial fraction expansion, and the 

constant C is defined as NN abC  , The system realization of above form is shown below. 

 

 
 

Where 
2

2

1

1
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Once again choice of using first- order or second-order  sections depends on poles of the 

denominator polynomial. If there are complex set of poles which are conjugative in nature then 

a second order section is a must to have real coefficients. 

 

Problem 2 

Determine the  

(i)Direct form-I  (ii) Direct form-II  (iii) Cascade &    

(iv)Parallel form realization of the system function 
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Cascade Form 

H(z) = H1(z) H2(z) 

Where  
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VTUlive.com 91



Parallel Form 

H(z) = H1(z) + H2(z) 

 

)
2

1
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)
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z
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z
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Problem: 3 

  Obtain the direct form – I, direct form-II 

   Cascade and parallel form realization for the following system, 

   y(n)= -0.1 y(n-1)+0.2y(n-2)+3x(n)+3.6 x(n-1)+0.6 x(n-2)  

 

Solution: 

The Direct form realization is done directly from the given i/p – o/p equation, show in below 

diagram 

 
 

Direct form –II realization 

 Taking ZT on both sides and finding H(z) 
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Cascade form realization 

The transformer function can be expressed as: 
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which can be re written as 

 

   where 
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Parallel Form realization 

 

The transfer function can be expressed as  

H(z) = C + H1(z) + H2(z)  where  H1(z) & H2(z) is given by, 
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6.6 Lattice Structure for  IIR System: 
 

Consider an  All-pole system with system function. 
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The corresponding difference equation for this IIR system is,  
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N nxknykany
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OR 
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N knykanynx
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  For N=1 

   )1()1()()( 1  nyanynx  

Which can realized as, 

 
 

We observe 

  )()( 1 nfnx   

  )1()()()( 0110  ngknfnfny  

    )1()( 1  nyknx    )1(11 ak   

  )1()()1()()( 10011  nynykngnfkng   

For N=2, then 

  )2()2()1()1()()( 22  nyanyanxny  
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This output can be obtained from a two-stage lattice filter as shown in below fig 

 

 
 

 

  )()(2 nxnf   

  )1()()( 1221  ngknfnf   

  )1()()( 1122  ngnfkng  

  )1()()( 0110  ngknfnf  

  )1()()( 0011  ngnfkng   

   

  
)1()1()(

)1()()()()(
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
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ngkngknf
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    )1()2()1()( 0100122  ngkngnfkknf  

    )1()2()1()( 112  nyknynykknx  

  )2()1()1()( 221  nyknykknx  

Similarly 

  )2()1()1()()( 2122  nynykknykng  

We observe 

  222122 )2();1()1(;1)0( kakkaa   

N-stage IIR filter realized in lattice structure is, 

 
  )()( nxnf N   

 )1()()( 11   ngknfnf mmmm   m=N, N-1,---1 

 )1()()( 11   ngnfkng mmmm   m=N, N-1,---1 
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 )()()( 00 ngnfny   

 

8.6.1 Conversion from lattice structure to direct form: 

 

1)0(;)(  mmm akma  

)()()()( 11 kmamakaka mmmm    

 

Conversion from direct form to lattice structure 
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6.6.2 Lattice – Ladder Structure: 

 

       A general IIR filter containing both poles and zeros can be realized using an all pole 

lattice as the basic building block. 

 

 

 

If, 
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Where MN   

A lattice structure can be constructed by first realizing an all-pole lattice co-efficients 

Nmkm 1,  for the denominator AN(Z), and then adding a ladder part for M=N. The 

output of the ladder part can be expressed as a weighted linear combination of {gm(n)}. 

Now the output is given by 


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
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m

mm ngCny
0

)()(  

Where {Cm} are called the ladder co-efficient and can be obtained using the recursive relation, 
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
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iimm miaCbC   m=M, M-1, ….0 
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Problem:4 

Convert the following pole-zero IIR filter into a lattice ladder structure, 
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Using the equation 
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for lattice structure 
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For ladder structure 
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To convert a lattice- ladder form into a direct form, we find an equation to obtain  

)(kaN  from mk   (m=1,2,………N) then equation for mc  is   recursively used to compute mb  

(m=0,1,2,………M). 

 
 

 

Problem 5 
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Question 6 

 
Consider a FIR filter with system function:  

           H(z) = 1+2.82 Z-1 +3.4048z-2 +1.74z- 3. Sketch the direct form and lattice      

           realizations of the filter. 
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UNIT 7 

FIR FILTER DESIGN 

CONTENTS:- 

FIR FILTER DESIGN: INTRODUCTION TO FIR FILTERS, DESIGN OF FIR FILTERS USING - 

RECTANGULAR, HAMMING, BARTLET AND KAISER WINDOWS, FIR FILTER DESIGN USING 

FREQUENCY SAMPLING TECHNIQUE.        6 HRS 
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UNIT 7 

Design of FIR Filters 
 

 

7.1 Introduction: 

Two important classes of digital filters based on impulse response type are 

                Finite Impulse Response (FIR) 

                Infinite Impulse Response (IIR) 

 

The filter can be expressed in two important forms as: 

1 ) System function representation; 

 

 

 

2) Difference Equation representation; 

 

 

       Each of this form allows various    methods of implementation. The eq (2) can be viewed 

as a computational procedure (an algorithm) for determining the output sequence y(n) of the 

system from the input sequence x(n). Different realizations are possible with different 

arrangements of eq (2) 

 

The major issues considered while designing a digital filters are : 

• Realiability (causal or non causal) 

• Stability (filter output will not saturate) 

• Sharp Cutoff Characteristics  

• Order of the filter need to be minimum (this leads to less delay) 

• Generalized procedure (having single procedure for all kinds of filters) 

• Linear phase characteristics 
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The factors considered with filter implementation are , 

a. It must be a simple design  

b. There must be modularity in the implementation so that any order filter can be obtained with 

lower order modules. 

c. Designs must be as general as possible. Having different design procedures for different 

types of filters( high pass, low pass,…)  is cumbersome and complex. 

d. Cost of implementation must be as low as possible   

e. The choice of  Software/Hardware realization 

7.2 Features of IIR:  

The important features of  this class of filters can be listed as: 

• Out put is a function of past o/p, present and past i/p’s 

• It is recursive in nature 

• It has  at least one Pole (in general poles  and zeros) 

• Sharp cutoff chas. is achievable with minimum  order 

• Difficult to have linear phase chas over full range of freq. 

•   Typical design procedure is analog design then  conversion from analog to digital  

   7.3 Features of  FIR : The main features of FIR filter are, 

• They are inherently stable 

• Filters with linear phase characteristics can be designed 

• Simple implementation – both recursive and nonrecursive structures possible 

• Free of limit cycle oscillations when implemented on a finite-word length digital system 

7.3.1 Disadvantages: 

• Sharp cutoff at the cost of higher order 

• Higher order leading to more delay, more memory and higher cost of implementation 

 

7.4 Importance of Linear Phase: 

The group delay is defined as  

 

which is negative differential of phase function. 

        Nonlinear phase results in different frequencies experiencing different delay and arriving 

at different time at the receiver. This creates problems with speech processing and data 


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communication applications. Having linear phase ensures constant group delay for all 

frequencies. 

The further discussions are focused on FIR filter. 

6.5 Examples of simple FIR filtering operations: 1.Unity Gain Filter 

     y(n)=x(n) 

2. Constant gain filter 

     y(n)=Kx(n) 

3. Unit delay filter 

     y(n)=x(n-1) 

4.Two - term  Difference filter 

     y(n) = x(n)-x(n-1) 

5. Two-term average filter 

     y(n) = 0.5(x(n)+x(n-1)) 

6. Three-term average filter (3-point moving average filter) 

     y(n) = 1/3[x(n)+x(n-1)+x(n-2)] 

7. Central Difference filter 

     y(n)= 1/2[ x(n) – x(n-2)] 

 

     When we say Order of the filter it is the number of previous inputs used to compute the 

current output and  Filter coefficients are the numbers associated with each of the terms x(n), 

x(n-1),.. etc 

The table below shows order and filter coefficients of above simple filter types: 
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Ex. order a0 a1 a2 

1 0 1 - - 

2 0 K - - 

3 1 0 1 - 

4(HP) 1 1 -1 - 

5(LP) 1 1/2 1/2 - 

6(LP) 2 1/3 1/3 1/3 

7(HP) 2 1/2 0 -1/2 

 

7.6 Design of FIR filters: 

        The section to follow will discuss on design of FIR filter. Since linear phase can be 

achieved with FIR filter we will discuss the conditions required to achieve this.   

 

7.6.1 Symmetric and Antisymmetric FIR filters giving out Linear Phase characteristics: 

 Symmetry in filter impulse response will ensure linear phase 

 

An FIR filter of length M with i/p x(n) & o/p y(n) is described by the difference equation: 

 

y(n)= b0 x(n)  + b1 x(n-1)+…….+b M-1 x(n-(M-1)) = )(
1

0

knxb
M

k

k 




            -(1) 

 

Alternatively. it can be expressed in convolution form  

 


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
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M

k

knxkhny                          - (2) 

 

i.e bk= h(k), k=0,1,…..M-1 

 

Filter is also characterized by  
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kzkhzH      -(3) polynomial of degree M-1 in the variable z-1. The roots of this 

polynomial constitute zeros of the filter. 

 

An FIR filter has linear phase if its unit sample response  satisfies the condition 

 h(n)= ± h(M-1-n)   n=0,1,…….M-1         -(4) 

 

 Incorporating this symmetry & anti symmetry condition in  eq 3 we can show linear phase 

chas of FIR filters 
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If M is odd 
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Applying symmetry conditions for M odd 
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7.6.2 Frequency response: 

 

       If the system impulse response has symmetry property (i.e.,h(n)=h(M-1-n)) and M is odd 
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In case of M even the phase response remains the same with magnitude response expressed as 
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If the impulse response satisfies anti symmetry property (i.e., h(n)=-h(M-1-n))then for  

M odd we will have  
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If M is even then, 
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In both cases the phase response is given by 
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Which clearly shows presence of Linear Phase characteristics. 

 

7.6.3 Comments on filter coefficients: 

• The number of filter coefficients that specify the frequency response is (M+1)/2 when is M 

odd and M/2 when M is even in case of symmetric conditions 

• In case of impulse response antisymmetric we have h(M-1/2)=0 so that there are     (M-1/2) 

filter coefficients when M is odd and M/2 coefficients when M is even 

 

7.6.5 Choice of Symmetric and antisymmetric unit sample response 

         When we have a choice between different symmetric properties, the particular one is 

picked up based on application for which the filter is used. The following points give an 

insight to this issue.  

• If h(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(π)=0, consequently not 

suited for lowpass and highpass filter. This condition is suited in Band Pass filter design. 

• Similarly if M is even Hr(0)=0 hence not used for low pass filter 

• Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero response 

at w = 0 if desired. 

Looking at these points, antisymmetric properties are not generally preferred. 
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7.6.6 Zeros of Linear Phase FIR Filters: 

Consider the filter system function 

 

 

 

Expanding this equation 

 

 

 

 

 

    

 

This shows that if z = z1 is a zero then z=z1
-1 is also a zero 

The different possibilities: 

1. If z1 = 1 then z1 = z1
-1 =1 is also a zero implying it is one zero 

2. If the zero  is real and |z|<1 then we have pair of zeros 

3. If zero  is complex and |z|=1then and we again have pair of complex zeros. 

4. If zero  is complex and |z|≠1 then and we  have two pairs of complex zeros 
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The plot above shows distribution of zeros  for a Linear – phase FIR filter. As it can be seen 

there is pattern in distribution of these zeros. 

7.7 Methods of designing FIR filters: 

The standard methods of designing FIR filter can be listed as: 

 

1. Fourier series based method 

2. Window based method 

3. Frequency sampling method 

         7.7.1 Design of Linear Phase FIR filter based on Fourier Series method:      

        Motivation: Since the desired freq response Hd(e
jω) is a periodic function in ω with  

period 2π, it can be expressed as Fourier series expansion 

      

 

 

 

 

     

This expansion results in impulse response coefficients which are infinite in duration and non 

causal. It can be made finite duration by truncating the infinite length. The linear phase can be 

obtained by introducing symmetric property in the filter impulse response, i.e., h(n) = h(-n). It 

can be made causal by introducing sufficient delay (depends on filter length)    

 7.7.2 Stepwise procedure: 

1. From the desired freq response using inverse FT relation obtain hd(n)  

2. Truncate the infinite length of the impulse response to finite length with     ( assuming 

M odd) 

 

 

3. Introduce h(n) = h(-n) for linear phase characteristics 

4. Write the expression for H(z); this is non-causal realization 

5. To obtain causal realization H’(z) = z -(M-1)/2 H(z) 
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Exercise Problems 

Problem 1 : Design an ideal bandpass filter with a frequency response: 

 

  

Find the values of h(n) for M = 11 and plot the frequency response. 

 

  

       

 

 

 

 

 

 

 

For n = 0 the value of h(n) is separately evaluated from the basic integration  

    h(0) = 0.5 

Other values of h(n) are evaluated from h(n) expression 

   h(1)=h(-1)=0 

   h(2)=h(-2)=-0.3183 

   h(3)=h(-3)=0 

   h(4)=h(-4)=0 

   h(5)=h(-5)=0 

The transfer function of the filter is 
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The magnitude response can be expressed as  

 

 

 

 

We have 

a(0)=h(0) 

a(1)=2h(1)=0 

a(2)=2h(2)=-0.6366 

a(3)=2h(3)=0 

a(4)=2h(4)=0 

a(5)=2h(5)=0 

The magnitude response function is 

    |H(e jω)| = 0.5 – 0.6366 cos 2ω which can plotted for various values of ω 

ω in degrees =[0 20 30 45 60 75 90 105 120 135 150 160 180]; 
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|H(e jω)| in dBs= [-17.3 -38.17 -14.8 -6.02 -1.74 0.4346 1.11 0.4346 -1.74 -6.02 -14.8 -38.17 -

17.3]; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Problem  2: Design an ideal lowpass filter with a  freq response 

 

 

 

            

 Find the values of h(n) for N =11. Find H(z). Plot the magnitude response 

 

 From  the freq response we can determine hd(n), 
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Truncating hd(n) to 11 samples 

 

h(0) = 1/2 

h(1)=h(-1)=0.3183 

h(2)=h(-2)=0 

h(3)=h(-3)=-0.106 
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h(4)=h(-4)=0 

h(5)=h(-5)=0.06366 

 

The realizable filter can be obtained by shifting h(n) by 5 samples to right h’(n)=h(n-5) 

 

h’(n)= [0.06366, 0, -0.106, 0, 0.3183, 0.5, 0.3183, 0, -0.106, 0, 0.06366]; 
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Using the result of magnitude response for  M odd and symmetry 
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Problem 3 : 

   Design an ideal band reject  filter with a frequency response: 

 

     

 

 Find the values of h(n) for M = 11 and plot the frequency response 

 

Ans:h(n)= [0   -0.1378  0  0.2757  0  0.667  0  0.2757  0      -0.1378  0]; 

 

7.8 Window based Linear Phase FIR filter design 

      The other important method of designing FIR filter is by making use of windows. The 

arbitrary truncation of impulse response obtained through inverse Fourier relation can lead to 

distortions in the final frequency response.The arbitrary truncation is equivalent to multiplying 

infinite length function with finite length rectangular window, i.e., 

   h(n) = hd(n) w(n) where w(n) = 1 for n = ±(M-1)/2  

The above multiplication in time domain corresponds to convolution in freq domain, i.e., 
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    H( e jω ) = Hd(e jω) * W(e jω )  where W(e jω ) is the FT of window function w(n). 

 

The FT of w(n) is given by 

  

 

 

The whole process of multiplying h(n) by a window function and its effect in freq domain are 

shown in below set of figures. 
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Suppose the filter to be designed is Low pass filter then the convolution of ideal filter freq 

response and window function freq response results in distortion in the resultant filter freq 

response. The ideal sharp cutoff chars are lost and presence of ringing effect is seen at the band 

edges which  is referred to Gibbs Phenomena. This is  due to main lobe width and side lobes of 

the window function freq response.The main lobe width introduces transition band and side 

lobes results in rippling characters in pass band and stop band. Smaller the main lobe width 

smaller will be the transition band. The ripples will be of low amplitude if the peak of the first 

side lobe is far below the main lobe peak. 

 

7.8.1 How to reduce the distortions? 

1. Increase length of the window 

    - as M increases the main lob width becomes narrower, hence the transition band width is 

decreased 

   -With increase in length the side lobe width is decreased but height of each side lobe 

increases in such a manner that the area under each sidelobe remains invariant to changes in 

M. Thus ripples and ringing effect in pass-band and stop-band are not changed. 

2. Choose windows which tapers off slowly rather than ending abruptly      - Slow tapering 

reduces ringing and ripples but generally increases transition width since main lobe width 

of these kind of windows are larger. 
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7.8.2 What is ideal window characteristics? 

            Window having very small main lobe width with most of the energy contained with it 

(i.e.,ideal window freq response must be impulsive).Window design is a mathematical 

problem, more complex the window lesser  are the distortions. Rectangular window is one of 

the simplest window in terms of computational complexity. Windows better than rectangular 

window are, Hamming, Hanning, Blackman, Bartlett, Traingular,Kaiser. The different 

window functions are discussed in the following sention. 

7.8.3 Rectangular window: The mathematical description is given by, 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.8.4 Hanning windows: 

 It is defined mathematically by,  
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7.8.5 Hamming windows: 

This window function is given by, 

 

 

 

 

 

 

 
 

7.8.6 Blackman windows: 

This window function is given by,  
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7.8.7 Bartlett (Triangular) windows: 

The mathematical description is given by, 

 

 

 

 

 

 
 

7.8.8 Kaiser windows: The mathematical description is given by, 
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Type of window Appr. Transition  

width of the main lobe 

Peak  

sidelobe (dB) 

Rectangular 4π/M -13 

Bartlett 8π/M -27 

Hanning 8π/M -32 

Hamming 8π/M -43 

Blackman 12π/M -58 

 

        Looking at the above table we observe filters which are mathematically simple do not 

offer best characteristics. Among the window functions discussed Kaiser is the most complex 

one in terms of functional description whereas it is the one which offers maximum flexibility 

in the design. 

7.8.9 Procedure for designing linear-phase FIR filters using windows: 

 

1.  Obtain hd(n) from the desired freq response using inverse FT relation  

2. Truncate the infinite length of the impulse response to finite length with   
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         ( assuming M odd) choosing proper window 

 

 

 

 

3.       Introduce h(n) = h(-n) for linear phase characteristics 

4.       Write the expression for H(z); this is non-causal realization 

5.       To obtain causal realization H’(z) = z -(M-1)/2 H(z)  

 

Exercise Problems  

 Prob 1: Design an ideal  highpass  filter with a frequency response: 

 

 

      

      using a hanning window with  M = 11 and plot the frequency response. 
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      hd(1) = hd(-1)=-0.225 

      hd(2) = hd(-2)= -0.159 

      hd(3) = hd(-3)= -0.075 

      hd(4) = hd(-4)= 0 

      hd(5) = hd(-5) = 0.045 

The hamming window function is given by  
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whn(0) = 1 

whn(1) = whn(-1)=0.9045 

whn(2)= whn(-2)=0.655 

whn(3)= whn(-3)= 0.345 

whn(4)= whn(-4)=0.0945 

whn(5)= whn(-5)=0 

 

h(n)= whn(n)hd(n) 

 

h(n)=[0  0 -0.026  -0.104  -0.204  0.75  -0.204  -0.104  -0.026  0  0] 
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Using the equation  
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The magnitude response is given by, 

|Hr(e jω)| = |0.75 - 0.408cosω - 0.208 cos2ω - 0.052cos3ω| 

 

ω in degrees = [0 15 30 45 60 75 90 105 120 135 150 165 180] 

|H(e jω)| in dBs = [-21.72  -17.14  -10.67 -6.05  -3.07 -1.297 -0.3726  

-0.0087 0.052  0.015  0  0  0.017] 
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 Prob 2 : Design a filter with a frequency response: 

 

 

      

      

 

 

 using a Hanning window with  M = 7 

 

Soln: 

The freq resp is having a term e –jω(M-1)/2 which gives h(n) symmetrical about 

 n = M-1/2 = 3 i.e we get a causal sequence. 

 

    

  

 

    

  

 

 

 

The Hanning window function values are given by 

whn(0) = whn(6) =0 

whn(1)= whn(5) =0.25 

whn(2)= whn(4) =0.75 

whn(3)=1 

h(n)=hd(n) whn(n)  

h(n)=[0  0.03975  0.165  0.25  0.165  0.3975  0] 
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 7.9  Design of Linear Phase FIR filters using Frequency Sampling method 

7.9.1 Motivation: We know that DFT of a finite duration DT sequence is obtained by     sampling FT 

of the sequence then DFT samples  can be used in reconstructing original time domain samples if 

frequency domain sampling was done correctly. The samples of FT of h(n) i.e., H(k) are sufficient 

to recover h(n). 

            Since the designed filter has to be realizable then h(n) has to be real, hence even 

symmetry properties for mag response |H(k)| and odd symmetry properties for phase response 

can be applied. Also, symmetry for h(n) is applied to  obtain linear phase chas. 

Fro DFT relationship we have 
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Also we know H(k) = H(z)|z=e 
j2πkn/N 

 

The system function H(z) is given by 
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Substituting for h(n) from IDFT relationship 
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Since H(k) is obtained by sampling H(ejω) hence the method is called Frequency Sampling 

Technique. 

 

Since the impulse response samples or coefficients of the filter has to be real for filter to be 

realizable with simple arithmetic operations, properties of  DFT of real sequence can be used. 

The following properties of DFT for real sequences are useful: 

 

H*(k) = H(N-k) 

 

|H(k)|=|H(N-k)| - magnitude response is even 

 

θ(k) = - θ(N-k) – Phase response is odd 
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Using substitution k = N – r or r = N- k in the second substitution 

with r going from now  (N- 1)/2  to 1 as k goes from 1 to (N-1)/2 
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Similarly for N even we have 
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Using the symmetry property h(n)= h (N-1-n) we can obtain Linear phase FIR filters using the 

frequency sampling technique. 

 

Exercise problems 

Prob 1 : Design a LP FIR filter using Freq sampling technique having cutoff freq of π/2 

rad/sample. The filter should have linear phase and length of 17. 

 

 

The desired response can be expressed as 
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The range for “k” can be adjusted to be an integer such as 
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The freq response is given by 
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Using these value of H(k)   we obtain h(n) from the equation 
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 Even though k varies from 0 to 16 since we considered ω varying between 0 and π/2 

only k values from 0 to 8 are considered 

 While finding h(n) we observe symmetry in h(n) such that n varying 0 to 7 and 9 to 16 

have same set of h(n) 

 

 7.10 Design of FIR Differentiator 

             Differentiators are widely used in Digital and Analog systems whenever a derivative 

of the signal is needed.  Ideal differentiator has pure linear magnitude response in the freq 

range –π to +π. The typical frequency response characteristics is as shown in the below figure. 
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Problem 2: Design an Ideal Differentiator using a) rectangular window and b)Hamming 

window with length of the system = 7. 

 

Solution: 

As seen from differentiator frequency chars. It is defined as 

 

H(ejω) = jω     between –π to +π 

 

0
cos

2

1
)(  



nandn
n

n
dejnh nj

d





 



 

The hd(n) is an add function with hd(n)=-hd(-n) and hd(0)=0 

 

a) rectangular window 

 

h(n)=hd(n)wr(n) 

 

h(1)=-h(-1)=hd(1)=-1 

h(2)=-h(-2)=hd(2)=0.5 

h(3)=-h(-3)=hd(3)=-0.33 

 

h’(n)=h(n-3) for causal system 

thus, 
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Also from the equation 
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For M=7 and h’(n) as found above we obtain this as  
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b) Hamming window 

h(n)=hd(n)wh(n) 

 

where wh(n) is given by 
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otherwise
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For the present problem 
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The window function coefficients are given by  for n=-3 to +3  

Wh(n)= [0.08 0.31 0.77 1 0.77 0.31 0.08] 

 

Thus h’(n) = h(n-5) = [0.0267, -0.155, 0.77, 0, -0.77, 0.155, -0.0267] 

 

Similar to the earlier case of rectangular window we can  write the freq response of 

differentiator as 
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We observe  

 With rectangular window, the effect of ripple is more and transition band width is 

small compared with hamming window 

 With hamming window, effect of  ripple is less whereas transition band is more 

 

 

7.11 Design of FIR Hilbert transformer: 

Hilbert transformers are used to obtain phase shift of 90 degree. They are also called j 

operators. They are typically required in quadrature signal processing. The Hilbert transformer 
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is very useful when out of phase component (or imaginary part) need to be generated from 

available real component of the signal. 

 

 

 

 

Problem 3: Design an ideal Hilbert transformer using a) rectangular window and b) 

Blackman Window with M = 11 

 

 

   

Solution: 

 As seen from freq chars it is defined as 
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The impulse response is given by 
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At n = 0  it is hd(0) = 0 and hd(n) is an odd function 

 

a)  Rectangular window 

 h(n) = hd(n) wr(n) = hd(n) for -5 ≥n ≥5 

 

h’(n)=h(n-5) 

 

h(n)= [-0.127, 0, -0.212, 0, -0.636, 0, 0.636, 0, 0.212, 0, 0.127] 
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b) Blackman Window 

 window function is defined as 
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Wb(n) = [0, 0.04, 0.2, 0.509,0.849,1,0.849, 0.509, 0.2, 0.04,0]  for -5≥n≥5 

 

h’(n) = h(n-5) = [0, 0, -0.0424, 0, -0.5405, 0, 0.5405, 0, 0.0424, 0, 0] 
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Recommended questions with solution 

 

 

Question1 

 
 

Solution:- 

 
 

 

(b) Magnitude plot 
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Phase plot 

 
 

(c) Hamming window 

 
(d) Bartlett window 
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Question 2 

 
 

Solution:-  
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Question 3 

 
 

Solution:- 

 
 

Magnitude and phase response 
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Question 4 

Solu

tion:-  

 

 

 

 

 

VTUlive.com 140



UNIT 8 

Design of IIR Filters from Analog Filters 

CONTENTS:- 

DESIGN OF IIR FILTERS FROM ANALOG FILTERS (BUTTERWORTH AND CHEBYSHEV) - IMPULSE 

INVARIANCE METHOD. MAPPING OF TRANSFER FUNCTIONS: APPROXIMATION OF DERIVATIVE 

(BACKWARD DIFFERENCE AND BILINEAR TRANSFORMATION) METHOD, MATCHED Z 

TRANSFORMS, VERIFICATION FOR STABILITY AND LINEARITY DURING MAPPING  7 HRS 

 

                                                                                                                    

RECOMMENDED READINGS:- 

1. DIGITAL SIGNAL PROCESSING – PRINCIPLES ALGORITHMS & APPLICATIONS, PROAKIS & 

MONALAKIS, PEARSON EDUCATION, 4TH
 EDITION, NEW DELHI, 2007.  

2. DISCRETE TIME SIGNAL PROCESSING, OPPENHEIM & SCHAFFER, PHI, 2003.  

3. DIGITAL SIGNAL PROCESSING, S. K. MITRA, TATA MC-GRAW HILL, 2ND
 EDITION, 2004. 

 

 

 

 

 

 

 

 

VTUlive.com 141



UNIT - 8 

DESIGN OF IIR FILTERS FROM ANALOG FILTERS 

(BUTTERWORTH AND CHEBYSHEV) 

 
 8.1 Introduction 
A digital filter is a linear shift-invariant discrete-time system that is realized using finite 

precision arithmetic. The design of digital filters involves three basic steps: 

 

 The specification of the desired properties of the system. 

 The approximation of these specifications using a causal discrete-time system. 

 The realization of these specifications using _nite precision arithmetic. 

 

These three steps are independent; here we focus our attention on the second step. 

The desired digital filter is to be used to filter a digital signal that is derived from an analog 

signal by means of periodic sampling. The speci_cations for both analog and digital filters are 

often given in the frequency domain, as for example in the design of low 

pass, high pass, band pass and band elimination filters. Given the sampling rate, it is straight 

forward to convert from frequency specifications on an analog _lter to frequency 

speci_cations on the corresponding digital filter, the analog frequencies being in terms of Hertz 

and digital frequencies being in terms of radian frequency or angle around the unit circle with 
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the point Z=-1 corresponding to half the sampling frequency. The least confusing point of 

view toward digital filter design is to consider the filter as being specified in terms of angle 

around the unit circle rather than in terms of analog frequencies. 

 

 
Figure 7.1: Tolerance limits for approximation of ideal low-pass filter 

 

 

A separate problem is that of determining an appropriate set of specifications on the digital 

filter. In the case of a low pass filter, for example, the specifications often take the 
form of a tolerance scheme, as shown in Fig. 4.1 

 

 

  
Many of the filters used in practice are specified by such a tolerance scheme, with no 

constraints on the phase response other than those imposed by stability and causality 

requirements; i.e., the poles of the system function must lie inside the unit circle. Given a set 

of specifications in the form of Fig. 7.1, the next step is to and a discrete time linear system 

whose frequency response falls within the prescribed tolerances. At this point the filter design 

problem becomes a problem in approximation. In the case of infinite impulse response (IIR) 

filters, we must approximate the desired frequency response by a rational function, while in the 

finite impulse response (FIR) filters case we are concerned with polynomial approximation. 

 

7.2 Design of IIR Filters from Analog Filters: 
 

The traditional approach to the design of IIR digital filters involves the transformation of an 

analog filter into a digital filter meeting prescribed specifications. This is a reasonable 

approach because: 

 

 The art of analog filter design is highly advanced and since useful results can be 

achieved, it is advantageous to utilize the design procedures already developed for 

analog filters. 

 Many useful analog design methods have relatively simple closed-form design 

formulas. 
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Therefore, digital filter design methods based on analog design formulas are rather simple to 

implement. 

An analog system can be described by the differential equation  

 

  ------------------------------------------------------------7.1  

 

And the corresponding rational function is 

 

 ---------------------------------------------------------7.2 

 

 

The corresponding description for digital filters has the form  

 

--------------------------------------------------7.3  

and the rational function 

 

 --------------------------------------------------------7.4 

 

 

In transforming an analog filter to a digital filter we must therefore obtain either H(z)or h(n) 

(inverse Z-transform of H(z) i.e., impulse response) from the analog filter design. In such 

transformations, we want the imaginary axis of the S-plane to map into the finite circle of the 

Z-plane, a stable analog filter should be transformed to a stable digital filter. That is, if the 

analog filter has poles only in the left-half of S-plane, then the digital filter must have poles 

only inside the unit circle. These constraints are basic to all the techniques discussed   

 

7.3 IIR Filter Design by Impulse Invariance: 
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This technique of transforming an analog filter design to a digital filter design corresponds to 

choosing the unit-sample response of the digital filter as equally spaced samples of the impulse 

response of the analog filter. That is,  

 -------------------------------------------------------------------------7.5 

Where T is the sampling period. Because of uniform sampling, we have  

---------------------------------------------7.6 

 

Or  

 

---------------------------------------------7.7 

  
Figure 7.2: Mapping of s-plane into z-plane 

 

 

Where s = jω and Ω=ω/T, is the frequency in analog domain and ω is the frequency in digital 

domain.  

From the relationship Z = eST it is seen that strips of width 2π/T in the S-plane map into the 

entire Z-plane as shown in Fig. 7.2. The left half of each S-plane strip maps into interior of the 

unit circle, the right half of each S-plane strip maps into the exterior of the unit circle, and the 

imaginary axis of length 2π/T of S-plane maps on to once round the unit circle of Z-plane. 

Each horizontal strip of the S-plane is overlaid onto the Z-plane to form the digital filter 

function from analog filter function. The frequency response of the digital filter is related to 

the frequency response of the  
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Figure 7.3: Illustration of the effects of aliasing in the impulse invariance technique 

 
 
analog filter as 

------------------------------------------------7.8 

 
From the discussion of the sampling theorem it is clear that if and only if 

  
Then 

   
 

Unfortunately, any practical analog filter will not be band limited, and consequently there is 

interference between successive terms in Eq. (7.8) as illustrated in Fig. 7.3. Because of the 

aliasing that occurs in the sampling process, the frequency response of the resulting digital 

filter will not be identical to the original analog frequency response. To get the filter design 

procedure, let us consider the system function of the analog filter expressed in terms of a 

partial-fraction expansion 

 

-----------------------------------------------------------------------7.9 
 

The corresponding impulse response is 
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--------------------------------------------------------------- 7.10 

 

And the unit-sample response of the digital filter is then 

 

 --------------7.11 

 
The system function of the digital filter H(z) is given by 

------------------------------------------------------------7.12 

 

In comparing Eqs. (7.9) and (7.12) we observe that a pole at s=sk in the S-plane transforms to 

a pole at expskT in the Z-plane. It is important to recognize that the impulse invariant design 

procedure does not correspond to a mapping of the S-plane to the Z-plane. 

 

 

8.4 IIR Filter Design By Approximation Of Derivatives: 

 
A second approach to design of a digital filter is to approximate the derivatives in Eq. (4.1) by 

finite differences. If the samples are closer together, the approximation to the derivative would 

be increasingly accurate. For example, suppose that the first derivative is approximated by the 

first backward difference 

--------------------------7.13 

 

Where y(n)=y(nT). Approximation to higher-order derivatives are obtained by repeated 

application of Eq. (7.13); i.e., 

 
                                                                                                     -------------------------- 7.14 

For convenience we define 

 

-------------------------------------------------------------------7.15 
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Applying Eqs. (7.13), (7.14) and (7.15) to (7.1), we obtain 

 

---------------------------------------------7.16 

 

Where y(n) = ya(nT) and x(n) = xa(nT). We note that the operation ∆(1)[ ] is a linear shift-

invariant operator and that ∆(k)[ ] can be viewed as a cascade of (k) operators ∆(1)[ ]. In 

particular 

 

 
 

And  

 

 
 

 

Thus taking the Z-transform of each side in Eq. (7.16), we obtain 

 

------------------------------------------------------------7.17 

 
Comparing Eq. (7.17) to (7.2), we observe that the digital transfer function can be obtained 

directly from the analog transfer function by means of a substitution of variables 

---------------------------------------------------------------------------------7.18 

 

So that, this technique does indeed truly correspond to a mapping of the S-plane to the Z-

plane, according to Eq. (7.18). To investigate the properties of this mapping, we must express 

z as a function of s, obtaining 

 
 

Substituting s = jΩ, i.e., imaginary axis in S-plane 
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------------------------------------------------------7.19 

 

Which corresponds to a circle whose center is at z =1/2 and radius is 1/2, as shown in Fig. 7.4. 

It is easily verified that the left half of the S-plane maps into the inside of the small circle and 

the right half of the S-plane maps onto the outside of the small circle. Therefore, although the 

requirement of mapping the jΩ-axis to the unit circle is not satisfied, this mapping does satisfy 

the stability condition. 

 

 
 

Figure 4.4: Mapping of s-plane to z-plane corresponding to first backward-difference 

approximation to the derivative 

 

In contrast to the impulse invariance technique, decreasing the sampling period T, theoretically 

produces a better filter since the spectrum tends to be concentrated in a very small region of 

the unit circle. These two procedures are highly unsatisfactory for anything but low pass 

filters. An alternative approximation to the derivative is a forward difference and it provides a 

mapping into the unstable digital filters. 

 

8.5 IIR Filter Design By The Bilinear Transformation: 
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In the previous section a digital filter was derived by approximating derivatives by differences. 

An alternative procedure is based on integrating the differential equation and then using a 

numerical approximation to the integral. Consider the first - order equation 

-----------------------------------------------------------7.20 

 

Where y’a(t) is the first derivative of ya(t). The corresponding analog system function is 

 

 
 

We can write ya(t) as an integral of y’a(t), as in 

 

 
In particular, if t = nT and t0 = (n - 1)T, 

 

 
If this integral is approximated by a trapezoidal rule, we can write 

 

----------------------7.21 

 

However, from Eq. (7.20), 

 

 
 
Substituting into Eq. (4.21) we obtain 

 

 
Where y(n) = y(nT) and x(n) = x(nT). Taking the Z-transform and solving for H(z) gives 

 

 

--------------------------------------------7.22 
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From Eq. (7.22) it is clear that H(z) is obtained from Ha(s) by the substitution 

 

-------------------------------------------------------------------7.23 

 

That is, 

--------------------------------------------------------------7.24 

 
This can be shown to hold in general since an Nth - order differential equation of the form of 

Eq. (7.1) can be written as a set of N first-order equations of the form of Eq. (7.20). Solving 

Eq. (7.23) for z gives 

----------------------------------------------------------------------------7.25 

The invertible transformation of Eq. (7.23) is recognized as a bilinear transformation. To see 

that this mapping has the property that the imaginary axis in the s-plane maps onto the unit 

circle in the z-plane, consider z = ejω, then from Eq. (7.23), s is given by  
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Figure 7.5: Mapping of analog frequency axis onto the unit circle using the bilinear 

Transformation 

 

Thus for z on the unit circle, σ = 0 and  Ω and ω are related by 

 

T Ω/2 = tan (ω/2) 

or 

ω = 2 tan -1(T Ω/2) 

 

This relationship is plotted in Fig. (7.5), and it is referred as frequency warping. From the 

_gure it is clear that the positive and negative imaginary axis of the s-plane are mapped, 

respectively, into the upper and lower halves of the unit circle in the z-plane. In addition to the 

fact that the imaginary axis in the s-plane maps into the unit circle in the z-plane, the left half 

of the s-plane maps to the inside of the unit circle and the right half of the s-plane maps to the 

outside of the unit circle, as shown in Fig. (7.6). Thus we see that the use of the bilinear 

transformation yields stable digital filter from analog filter. Also this transformation avoids the 

problem of aliasing encountered with the use of impulse invariance, because it maps the entire 

imaginary axis in the s-plane onto the unit circle in the z-plane. The price paid for this, 

however, is the introduction of a distortion in the frequency axis. 
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Figure 4.6: Mapping of the s-plane into the z-plane using the bilinear transformation 

 

 

8.6 The Matched-Z Transform: 
 
Another method for converting an analog filter into an equivalent digital filter is to map 

the poles and zeros of Ha(s) directly into poles and zeros in the z-plane. For analog filter 

 

-----------------------------------------------------------------7.26 

 

the corresponding digital filter is 

 

---------------------------------------------------------7.27 

 
Where T is the sampling interval. Thus each factor of the form (s-a) in Ha(s) is mapped 

into the factor (1- eaT z-1). 
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Recommended questions with solution 

 
Question 1 
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Question 2  

 

 
 

Question 3  
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Question 4  

 
 

 
 

Question 5  
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Question 6  
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Question 7  
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Architectures for Programmable Digital Signal Processing 

Devices 
 

Basic Architectural Features 

A programmable DSP device should provide instructions similar to a conventional 

microprocessor. The instruction set of a typical DSP device should include the following, 

a. Arithmetic operations such as ADD, SUBTRACT, MULTIPLY etc 

b. Logical operations such as AND, OR, NOT, XOR etc 

c. Multiply and Accumulate (MAC) operation 

d. Signal scaling operation 

In addition to the above provisions, the architecture should also include, 

a. On chip registers to store immediate results 

b. On chip memories to store signal samples (RAM) 

c. On chip memories to store filter coefficients (ROM) 

DSP Computational Building Blocks 

Each computational block of the DSP should be optimized for functionality and speed and in 

the meanwhile the design should be sufficiently general so that it can be easily integrated with other 

blocks to implement overall DSP systems. 

 
 Multipliers 

The advent of single chip multipliers paved the way for implementing DSP functions on a 

VLSI chip. Parallel multipliers replaced the traditional shift and add multipliers now days. Parallel 

multipliers take a single processor cycle to fetch and execute the instruction and to store the result. 

They are also called as Array multipliers. The key features to be considered for a multiplier are: 

a. Accuracy 

b. Dynamic range 

c. Speed 

 

The number of bits used to represent the operands decides the accuracy and the dynamic range 

of the multiplier. Whereas speed is decided by the architecture employed. If the multipliers are 

implemented using hardware, the speed of execution will be very high but the circuit complexity will 

also increases considerably. Thus there should be a tradeoff between the speed of execution and the 

circuit complexity. Hence the choice of the architecture normally depends on the application. 

 
 Parallel Multipliers 

Consider the multiplication of two unsigned numbers A and B. Let A be represented using m 

bits as (Am-1 Am-2 …….. A1 A0) and B be represented using n bits as (Bn-1 Bn-2 …….. B1 B0). 

Then the product of these two numbers is given by, 
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This operation can be implemented paralleling using Braun multiplier whose hardware structure is as 

shown in the figure 2.1. 
 

Fig 2.1 Braun Multiplier for a 4X4 Multiplication 
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 Multipliers for Signed Numbers 

 

In the Braun multiplier the sign of the numbers are not considered into account. In order to 

implement a multiplier for signed numbers, additional hardware is required to modify the Braun 

multiplier. The modified multiplier is called as Baugh-Wooley multiplier. 

 

Consider two signed numbers A and B, 

 

 

 Speed 

Conventional Shift and Add technique of multiplication requires n cycles to perform the 

multiplication of two n bit numbers. Whereas in parallel multipliers the time required will be the 

longest path delay in the combinational circuit used. As DSP applications generally require very high 

speed, it is desirable to have multipliers operating at the highest possible speed by having parallel 

implementation. 

 

 Bus Widths 

Consider the multiplication of two n bit numbers X and Y. The product Z can be at most 2n 

bits long. In order to perform the whole operation in a single execution cycle, we require two buses of 

width n bits each to fetch the operands X and Y and a bus of width 2n bits to store the result Z to the 

memory. Although this performs the operation faster, it is not an efficient way of implementation as it 

is expensive. Many alternatives for the above method have been proposed. One such method is to use 

the program bus itself to fetch one of the operands after fetching the instruction, thus requiring only 

one bus to fetch the operands. And the result Z can be stored back to the memory using the same 

operand bus. But the problem with this is the result Z is 2n bits long whereas the operand bus is just n 

bits long. We have two alternatives to solve this problem, a. Use the n bits operand bus and save Z at 

two successive memory locations. Although it stores the exact value of Z in the memory, it takes two 

cycles to store the result. 

b. Discard the lower n bits of the result Z and store only the higher order n bits into the memory. It is 

not applicable for the applications where accurate result is required. Another alternative can be used 

for the applications where speed is not a major concern. In which latches are used for inputs and 

outputs thus requiring a single bus to fetch the operands and to store the result (Fig 2.2). 
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Fig 2.2: A Multiplier with Input and Output Latches 
 

 Shifters 
 

Shifters are used to either scale down or scale up operands or the results. The following 

scenarios give the necessity of a shifter 

a. While performing the addition of N numbers each of n bits long, the sum can grow up to n+log2 N 

bits long. If the accumulator is of n bits long, then an overflow error will occur. This can be overcome 

by using a shifter to scale down the operand by an amount of log2N. 

b. Similarly while calculating the product of two n bit numbers, the product can grow up to 2n bits 

long. Generally the lower n bits get neglected and the sign bit is shifted to save the sign of the product. 

c. Finally in case of addition of two floating-point numbers, one of the operands has to be shifted 

appropriately to make the exponents of two numbers equal. 

From the above cases it is clear that, a shifter is required in the architecture of a DSP. 

 

 Barrel Shifters 

 
In conventional microprocessors, normal shift registers are used for shift operation. As it 

requires one clock cycle for each shift, it is not desirable for DSP applications, which generally 

involves more shifts. In other words, for DSP applications as speed is the crucial issue, several shifts 

are to be accomplished in a single execution cycle. This can be accomplished using a barrel shifter, 

which connects the input lines representing a word to a group of output lines with the required shifts 

determined by its control inputs. For an input of length n, log2 n control lines are required. And an 

dditional control line is required to indicate the direction of the shift. 

The block diagram of a typical barrel shifter is as shown in figure 2.3. 
 

Fig 2.3 A Barrel Shifter 
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Fig 2.4 Implementation of a 4 bit Shift Right Barrel Shifter 
 

Figure 2.4 depicts the implementation of a 4 bit shift right barrel shifter. Shift to right by 0, 1, 2 or 3 

bit positions can be controlled by setting the control inputs appropriately. 

 
2.3 Multiply and Accumulate Unit 

Most of the DSP applications require the computation of the sum of the products of a series of 

successive multiplications. In order to implement such functions a special unit called a multiply and 

Accumulate (MAC) unit is required. A MAC consists of a multiplier and a special register called 

Accumulator. MACs are used to implement the functions of the type A+BC. A typical MAC unit is as 

shown in the figure 2.5. 
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Fig 2.5 A MAC Unit 
 

Although addition and multiplication are two different operations, they can be performed in parallel. 

By the time the multiplier is computing the product, accumulator can accumulate the product of the 

previous multiplications. Thus if N products are to be accumulated, N-1 multiplications can overlap 

with N-1 additions. During the very first multiplication, accumulator will be idle and during the last 

accumulation, multiplier will be idle. Thus N+1 clock cycles are required to compute the sum of N 

products. 

 

2.3.1 Overflow and Underflow 

While designing a MAC unit, attention has to be paid to the word sizes encountered at the 

input of the multiplier and the sizes of the add/subtract unit and the accumulator, as there is a 

possibility of overflow and underflows. Overflow/underflow can be avoided by using any of the 

following methods viz 

a. Using shifters at the input and the output of the MAC 

b. Providing guard bits in the accumulator 

c. Using saturation logic 

 
Shifters 

Shifters can be provided at the input of the MAC to normalize the data and at the output to de 

normalize the same. 

 
Guard bits 

As the normalization process does not yield accurate result, it is not desirable for some 

applications. In such cases we have another alternative by providing additional bits called guard bits in 

the accumulator so that there will not be any overflow error. Here the add/subtract unit also has to be 

modified appropriately to manage the additional bits of the accumulator. 
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Saturation Logic 

Overflow/ underflow will occur if the result goes beyond the most positive number or below 

the least negative number the accumulator can handle. Thus the overflow/underflow error can be 

resolved by loading the accumulator with the most positive number which it can handle at the time of 

overflow and the least negative number that it can handle at the time of underflow. This method is 

called as saturation logic. A schematic diagram of saturation logic is as shown in figure 2.7. In 

saturation logic, as soon as an overflow or underflow condition is satisfied the accumulator will be 

loaded with the most positive or least negative number overriding the result computed by the MAC 

unit. 

 

 
 

 

Fig 2.7: Schematic Diagram of the Saturation Logic 

 

Arithmetic and Logic Unit 

A typical DSP device should be capable of handling arithmetic instructions like ADD, SUB, 

INC, DEC etc and logical operations like AND, OR , NOT, XOR etc. The block diagram of a typical 

ALU for a DSP is as shown in the figure 2.8. 

It consists of status flag register, register file and multiplexers. 
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Fig 2.8 Arithmetic Logic Unit of a DSP 

 

Status Flags 

ALU includes circuitry to generate status flags after arithmetic and logic operations. These flags 

include sign, zero, carry and overflow. 

 
Overflow Management 

Depending on the status of overflow and sign flags, the saturation logic can be used to limit the 

accumulator content. 

 
Register File 

Instead of moving data in and out of the memory during the operation, for better speed, a large set of 

general purpose registers are provided to store the intermediate results. 

 

 

 
Bus Architecture and Memory 

Conventional microprocessors use Von Neumann architecture for memory management 

wherein the same memory is used to store both the program and data (Fig 2.9). Although this 

architecture is simple, it takes more number of processor cycles for the execution of a single 

instruction as the same bus is used for both data and program. 
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Fig 2.9 Von Neumann Architecture 
 

In order to increase the speed of operation, separate memories were used to store program and 

data and a separate set of data and address buses have been given to both memories, the architecture 

called as Harvard Architecture. It is as shown in figure 2.10. 

 

Fig 2.10 Harvard Architecture 
 

Although the usage of separate memories for data and the instruction speeds up the processing, 

it will not completely solve the problem. As many of the DSP instructions require more than one 

operand, use of a single data memory leads to the fetch the operands one after the other, thus 

increasing the delay of processing. This problem can be overcome by using two separate data 

memories for storing operands separately, thus in a single clock cycle both the operands can be fetched 

together (Figure 2.11). 
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Fig 2.11 Harvard Architecture with Dual Data Memory 
 

Although the above architecture improves the speed of operation, it requires more hardware 

and interconnections, thus increasing the cost and complexity of the system. Therefore there should be 

a trade off between the cost and speed while selecting memory architecture for a DSP. 

 
 On-chip Memories 

In order to have a faster execution of the DSP functions, it is desirable to have some memory 

located on chip. As dedicated buses are used to access the memory, on chip memories are faster. 

Speed and size are the two key parameters to be considered with respect to the on-chip memories. 

Speed 

On-chip memories should match the speeds of the ALU operations in order to maintain the single 

cycle instruction execution of the DSP. 

Size 

In a given area of the DSP chip, it is desirable to implement as many DSP functions as possible. Thus 

the area occupied by the on-chip memory should be minimum so that there will be a scope for 

implementing more number of DSP functions on- chip. 

 

 Organization of On-chip Memories 

Ideally whole memory required for the implementation of any DSP algorithm has to reside on- 

chip so that the whole processing can be completed in a single execution cycle. Although it looks as a 

better solution, it consumes more space on chip, reducing the scope for implementing any functional 

block on-chip, which in turn reduces the speed of execution. Hence some other alternatives have to be 

thought of. The following are some other ways in which the on-chip memory can be organized. 
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a. As many DSP algorithms require instructions to be executed repeatedly, the instruction can be 

stored in the external memory, once it is fetched can reside in the instruction cache. 

b. The access times for memories on-chip should be sufficiently small so that it can be accessed more 

than once in every execution cycle. 

c. On-chip memories can be configured dynamically so that they can serve different purpose at 

different times. 

 

Data Addressing Capabilities 

 

Data accessing capability of a programmable DSP device is configured by means of its 

addressing modes. The summary of the addressing modes used in DSP is as shown in the table below. 

 

 Immediate Addressing Mode 

In this addressing mode, data is included in the instruction itself. 

 

 Register Addressing Mode 

In this mode, one of the registers will be holding the data and the register has to be specified in 

the instruction. 

 
 Direct Addressing Mode 

In this addressing mode, instruction holds the memory location of the operand. 

 
 Indirect Addressing Mode 

In this addressing mode, the operand is accessed using a pointer. A pointer is generally a 

register, which holds the address of the location where the operands resides. Indirect addressing mode 

can be extended to inculcate automatic increment or decrement capabilities, which has lead to the 

following addressing modes. 
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Special Addressing Modes 

For the implementation of some real time applications in DSP, normal addressing modes will 

not completely serve the purpose. Thus some special addressing modes are required for such 

applications. 

 
 Circular Addressing Mode 

While processing the data samples coming continuously in a sequential manner, circular 

buffers are used. In a circular buffer the data samples are stored sequentially from the initial location 

till the buffer gets filled up. Once the buffer gets filled up, the next data samples will get stored once 

again from the initial location. This process can go forever as long as the data samples are processed in 

a rate faster than the incoming data rate. 

Circular Addressing mode requires three registers viz 

a. Pointer register to hold the current location (PNTR) 

b. Start Address Register to hold the starting address of the buffer (SAR) 

c. End Address Register to hold the ending address of the buffer (EAR) 

 
There are four special cases in this addressing mode. They are 
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a. SAR < EAR & updated PNTR > EAR 

b. SAR < EAR & updated PNTR < SAR 

c. SAR >EAR & updated PNTR > SAR 

d. SAR > EAR & updated PNTR < EAR 

The buffer length in the first two case will be (EAR-SAR+1) whereas for the next tow cases (SAR- 

EAR+1) 

The pointer updating algorithm for the circular addressing mode is as shown below. 



DSP Processor and Architecture BEENE701T 

Page 17 Dept.ETRX,KDKCE,NGP 
SJBIT 

 

 

 

 
 

Fig 2.12 Special Cases in Circular Addressing Mode 
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 Bit Reversed Addressing Mode 

To implement FFT algorithms we need to access the data in a bit reversed manner. Hence a 

special addressing mode called bit reversed addressing mode is used to calculate the index of the next 

data to be fetched. It works as follows. Start with index 0. The present index can be calculated by 

adding half the FFT length to the previous index in a bit reversed manner, carry being propagated from 

MSB to LSB. 

Current index= Previous index+ B (1/2(FFT Size)) 
 

Address Generation Unit 

The main job of the Address Generation Unit is to generate the address of the operands 

required to carry out the operation. They have to work fast in order to satisfy the timing constraints. As 

the address generation unit has to perform some mathematical operations in order to calculate the 

operand address, it is provided with a separate ALU. 

Address generation typically involves one of the following operations. 

a. Getting value from immediate operand, register or a memory location 

b. Incrementing/ decrementing the current address 

c. Adding/subtracting the offset from the current address 

d. Adding/subtracting the offset from the current address and generating new address according to 

circular addressing mode 

e. Generating new address using bit reversed addressing mode 

 
The block diagram of a typical address generation unit is as shown in figure 2.13. 

 

 

Fig 2.13 Address generation unit 
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Programmability and program Execution 

A programmable DSP device should provide the programming capability involving branching, 

looping and subroutines. The implementation of repeat capability should be hardware based so that it 

can be programmed with minimal or zero overhead. A dedicated register can be used as a counter. In a 

normal subroutine call, return address has to be stored in a stack thus requiring memory access for 

storing and retrieving the return address, which in turn reduces the speed of operation. Hence a LIFO 

memory can be directly interfaced with the program counter. 

 

 Program Control 

Like microprocessors, DSP also requires a control unit to provide necessary control and timing 

signals for the proper execution of the instructions. In microprocessors, the controlling is micro coded 

based where each instruction is divided into microinstructions stored in micro memory. As this 

mechanism is slower, it is not applicable for DSP applications. Hence in DSP the controlling is 

hardwired base where the Control unit is designed as a single, comprehensive, hardware unit. 

Although it is more complex it is faster. 
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Review Questions 

Question 1: Investigate the basic features that should be provided in the DSP architecture to be used to 

implement the following Nth order FIR filter. 

Solution:- 

y(n)= ∑h(i) x(n-i) n=0,1,2… 

 

In order to implement the above operation in a DSP, the architecture requires the 

following features 

 

i. A RAM to store the signal samples x (n) 

ii. A ROM to store the filter coefficients h (n) 

iii. An MAC unit to perform Multiply and Accumulate operation 

iv. An accumulator to store the result immediately 

v. A signal pointer to point the signal sample in the memory 

vi. A coefficient pointer to point the filter coefficient in the memory 

vii. A counter to keep track of the count 

viii. A shifter to shift the input samples appropriately 
 

1). It is required to find the sum of 64, 16 bit numbers. How many bits should the 

accumulator have so that the sum can be computed without the occurrence of 

overflow error or loss of accuracy? 

The sum of 64, 16 bit numbers can grow up to (16+ log2 64 )=22 bits long. Hence 

the accumulator should be 22 bits long in order to avoid overflow error from occurring. 
 

1. In the previous problem, it is decided to have an accumulator with only 16 bits 

but shift the numbers before the addition to prevent overflow, by how many bits 

should each number be shifted? 

As the length of the accumulator is fixed, the operands have to be shifted by an 

amount of log2 64 = 6 bits prior to addition operation, in order to avoid the condition of 

overflow. 

2. If all the numbers in the previous problem are fixed point integers, what is the 

actual sum of the numbers? 

The actual sum can be obtained by shifting the result by 6 bits towards left side after the sum 

being computed. Therefore 

Actual Sum= Accumulator content X 2 6 

3. If a sum of 256 products is to be computed using a pipelined MAC unit, and if the MAC 

execution time of the unit is 100nsec, what will be the total time required to complete the 

operation? 
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As N=256 in this case, MAC unit requires N+1=257execution cycles. As the single MAC 

execution time is 100nsec, the total time required will be, (257*100nsec)=25.7usec 

 

4. Consider a MAC unit whose inputs are 16 bit numbers. If 256 products are to be 

summed up in this MAC, how many guard bits should be provided for the 

accumulator to prevent overflow condition from occurring? 

As it is required to calculate the sum of 256, 16 bit numbers, the sum can be as 

long as (16+ log2 256)=24 bits. Hence the accumulator should be capable of handling 

these 22 bits. Thus the guard bits required will be (24-16)= 8 bits. 

The block diagram of the modified MAC after considering the guard or extention bits is as shown in 

the figure 
 

 

Question 2: What are the memory addresses of the operands in each of the following cases of 

indirect addressing modes? In each case, what will be the content of the addreg after the memory 

access? Assume that the initial contents of the addreg and the offsetreg are 0200h and 0010h, 

respectively. 

a. ADD *addreg 

b.ADD +*addreg 

c. ADD offsetreg+,*addreg 

d. ADD *addreg,offsetreg- 
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Question 3: A DSP has a circular buffer with the start and the end addresses as 0200h and 020Fh 

respectively. What would be the new values of the address pointer of the buffer if, in the course of 

address computation, it gets updated to 

a. 0212h 

b. 01FCh 

Buffer Length= (EAR-SAR+1) = 020F-0200+1=10h 

a. New Address Pointer= Updated Pointer-buffer length = 0212-10=0202h 

b. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch 

 

Question 4: Repeat the previous problem for SAR= 0210h and 

EAR=0201h Buffer Length= (SAR-EAR+1)= 0210-0201+1=10h 

c. New Address Pointer= Updated Pointer- buffer length = 0212-10=0202h 

d. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch 

 

Question 5: Compute the indices for an 8-point FFT using Bit reversed 

Addressing Mode Start with index 0. Therefore the first index would be (000) 

Next index can be calculated by adding half the FFT length, in this case it is (100) 

to the previous index. i.e. Present Index= (000)+B (100)= (100) 

Similarly the next index can be calculated as 

Present Index= (100)+B (100)= (010) 

The process continues till all the indices are calculated. The following table summarizes 

the calculation. 
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UNIT IV:Programmable Digital Signal Processors 
 

 Introduction: 

Leading manufacturers of integrated circuits such as Texas Instruments (TI), Analog devices & 

Motorola manufacture the digital signal processor (DSP) chips. These manufacturers have developed a 

range of DSP chips with varied complexity. 

The TMS320 family consists of two types of single chips DSPs: 16-bit fixed point &32-bit floating- 

point. These DSPs possess the operational flexibility of high-speed controllers and the numerical 

capability of array processors 

 

 Commercial Digital Signal-Processing Devices: 

There are several families of commercial DSP devices. Right from the early eighties, when 

these devices began to appear in the market, they have been used in numerous applications, such as 

communication, control, computers, Instrumentation, and consumer electronics. The architectural 

features and the processing power of these devices have been constantly upgraded based on the 

advances in technology and the application needs. However, their basic versions, most of them have 

Harvard architecture, a single-cycle hardware multiplier, an address generation unit with dedicated 

address registers, special addressing modes, on-chip peripherals interfaces. Of the various families of 

programmable DSP devices that are commercially available, the three most popular ones are those 

from Texas Instruments, Motorola, and Analog Devices. Texas Instruments was one of the first to 

come out with a commercial programmable DSP with the introduction of its TMS32010 in 1982. 

 
Summary of the Architectural Features of three fixed-Points DSPs 
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 The architecture of TMS320C54xx digital signal processors: 

 
TMS320C54xx processors retain in the basic Harvard architecture of their predecessor, 

TMS320C25, but have several additional features, which improve their performance over it. Figure 4.1 

shows a functional block diagram of TMS320C54xx processors. They have one program and three 

data memory spaces with separate buses, which provide simultaneous accesses to program instruction 

and two data operands and enables writing of result at the same time. Part of the memory is 

implemented on-chip and consists of combinations of ROM, dual-access RAM, and single-access 

RAM. Transfers between the memory spaces are also possible. 

The central processing unit (CPU) of TMS320C54xx processors consists of a 40- bit arithmetic 

logic unit (ALU), two 40-bit accumulators, a barrel shifter, a 17x17 multiplier, a 40-bit adder, data 

address generation logic (DAGEN) with its own arithmetic unit, and program address generation logic 

(PAGEN). These major functional units are supported by a number of registers and logic in the 

architecture. A powerful instruction set with a hardware-supported, single-instruction repeat and block 

repeat operations, block memory move instructions, instructions that pack two or three simultaneous 

reads, and arithmetic instructions with parallel store and load make these devices very efficient for 

running high-speed DSP algorithms. 

Several peripherals, such as a clock generator, a hardware timer, a wait state generator, parallel 

I/O ports, and serial I/O ports, are also provided on-chip. These peripherals make it convenient to 

interface the signal processors to the outside world. In these following sections, we examine in detail 

the various architectural features of the TMS320C54xx family of processors. 
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Figure 4.1.Functional architecture for TMS320C54xx processors. 
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Bus Structure: 

The performance of a processor gets enhanced with the provision of multiple buses to provide 

simultaneous access to various parts of memory or peripherals. The 54xx architecture is built around 

four pairs of 16-bit buses with each pair consisting of an address bus and a data bus. As shown in 

Figure 4.1, these are The program bus pair (PAB, PB); which carries the instruction code from the 

program memory. Three data bus pairs (CAB, CB; DAB, DB; and EAB, EB); which interconnected 

the various units within the CPU. In Addition the pair CAB, CB and DAB, DB are used to read from 

the data memory, while The pair EAB, EB; carries the data to be written to the memory. The ‘54xx 

can generate up to two data-memory addresses per cycle using the two auxiliary register arithmetic 

unit (ARAU0 and ARAU1) in the DAGEN block. This enables accessing two operands 

simultaneously. 

 

Central Processing Unit (CPU): 

The ‘54xx CPU is common to all the ‘54xx devices. The ’54xx CPU contains a 40-bit 

arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a barrel shifter; a 

17 x 17-bit multiplier; a 40-bit adder; a compare, select and store unit (CSSU); an exponent 

encoder(EXP); a data address generation unit (DAGEN); and a program address generation unit 

(PAGEN). 

The ALU performs 2’s complement arithmetic operations and bit-level Boolean operations on 

16, 32, and 40-bit words. It can also function as two separate 16-bit ALUs 

and perform two 16-bit operations simultaneously. Figure 3.2 show the functional diagram of the ALU 

of the TMS320C54xx family of devices. 

 

Accumulators A and B store the output from the ALU or the multiplier/adder block and provide a 

second input to the ALU. Each accumulators is divided into three parts: guards bits (bits 39-32), high- 

order word (bits-31-16), and low-order word (bits 15- 0), which can be stored and retrieved 

individually. Each accumulator is memory-mapped and partitioned. It can be configured as the 

destination registers. The guard bits are used as a head margin for computations. 
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Figure 4.2.Functional diagram of the central processing unit of the TMS320C54xx 

processors. 

 

Barrel shifter: provides the capability to scale the data during an operand read or write. 

No overhead is required to implement the shift needed for the scaling operations. The’54xx barrel 

shifter can produce a left shift of 0 to 31 bits or a right shift of 0 to 16 bits on the input data. The shift 

count field of status registers ST1, or in the temporary 

register T. Figure 4.3 shows the functional diagram of the barrel shifter of TMS320C54xx processors. 

The barrel shifter and the exponent encoder normalize the values in an accumulator in a single cycle. 

The LSBs of the output are filled with0s, and the MSBs can be either zero filled or sign extended, 

depending on the state of the sign-extension mode bit in the status register ST1. An additional shift 

capability enables the processor to perform numerical scaling, bit extraction, extended arithmetic, and 

overflow prevention operations. 
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Figure 4.3.Functional diagram of the barrel shifter 
 

Multiplier/adder unit: The kernel of the DSP device architecture is multiplier/adder unit. The 

multiplier/adder unit of TMS320C54xx devices performs 17 x 17 2’s complement multiplication with 

a 40-bit addition effectively in a single instruction cycle. 

In addition to the multiplier and adder, the unit consists of control logic for integer and 

fractional computations and a 16-bit temporary storage register, T. Figure 4.4 show the functional 

diagram of the multiplier/adder unit of TMS320C54xx processors. The compare, select, and store unit 

(CSSU) is a hardware unit specifically incorporated to accelerate the add/compare/select operation. 

This operation is essential to implement the Viterbi algorithm used in many signal-processing 

applications. The exponent encoder unit supports the EXP instructions, which stores in the T register 

the number of leading redundant bits of the accumulator content. This information is useful while 

shifting the accumulator content for the purpose of scaling. 
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Figure 4.4. Functional diagram of the multiplier/adder unit of TMS320C54xx processors. 
 

Internal Memory and Memory-Mapped Registers: 

The amount and the types of memory of a processor have direct relevance to the efficiency and 

performance obtainable in implementations with the processors. The ‘54xx memory is organized into 

three individually selectable spaces: program, data, and I/O spaces. All ‘54xx devices contain both 

RAM and ROM. RAM can be either dual-access type (DARAM) or single-access type (SARAM). The 

on-chip RAM for these processors is organized in pages having 128 word locations on each page. 

The ‘54xx processors have a number of CPU registers to support operand addressing and 

computations. The CPU registers and peripherals registers are all located on page 0 of the data 
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memory. Figure 4.5(a) and (b) shows the internal CPU registers and peripheral registers with their 

addresses. The processors mode status (PMST) registers 

that is used to configure the processor. It is a memory-mapped register located at address 1Dh on page 

0 of the RAM. A part of on-chip ROM may contain a boot loader and look-up tables for function such 

as sine, cosine, μ- law, and A- law. 

 
 

 

Figure 4.5(a) Internal memory-mapped registers of TMS320C54xx processors. 
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Figure 4.5(b).peripheral registers for the TMS320C54xx processors 
 

Status registers (ST0,ST1): 

ST0: Contains the status of flags (OVA, OVB, C, TC) produced by arithmetic operations 

& bit manipulations. 

ST1: Contain the status of various conditions & modes. Bits of ST0&ST1registers can be set or clear 

with the SSBX & RSBX instructions. 

PMST: Contains memory-setup status & control information. 
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Figure 4.6(a). ST0 diagram 
 

ARP: Auxiliary register pointer. 

TC: Test/control flag. 

C: Carry bit. 

OVA: Overflow flag for accumulator A. 

OVB: Overflow flag for accumulator B. 

DP: Data-memory page pointer. 
 

 

Figure 4.6(b). ST1 diagram 

BRAF: Block repeat active flag 

BRAF=0, the block repeat is deactivated. 

BRAF=1, the block repeat is activated. 

 
CPL: Compiler mode 

CPL=0, the relative direct addressing mode using data page pointer is selected. 

CPL=1, the relative direct addressing mode using stack pointer is selected. 

 
HM: Hold mode, indicates whether the processor continues internal execution or acknowledge for 

external interface. 

 
INTM: Interrupt mode, it globally masks or enables all interrupts. 

INTM=0_all unmasked interrupts are enabled. 

INTM=1_all masked interrupts are disabled. 

0: Always read as 0 

 
OVM: Overflow mode. 

OVM=1_the destination accumulator is set either the most positive value or the most negative value. 

OVM=0_the overflowed result is in destination accumulator. 

 
SXM: Sign extension mode. 

SXM=0 _Sign extension is suppressed. 
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SXM=1_Data is sign extended 

 
C16: Dual 16 bit/double-Precision arithmetic mode. 

C16=0_ALU operates in double-Precision arithmetic mode. 

C16=1_ALU operates in dual 16-bit arithmetic mode. 

 
FRCT: Fractional mode. 

FRCT=1_the multiplier output is left-shifted by 1bit to compensate an extra sign bit. 

 
CMPT: Compatibility mode. 

CMPT=0_ ARP is not updated in the indirect addressing mode. 

CMPT=1_ARP is updated in the indirect addressing mode. 

 
ASM: Accumulator Shift Mode. 

5 bit field, & specifies the Shift value within -16 to 15 range. 

 
Processor Mode Status Register (PMST): 

 

INTR: Interrupt vector pointer, point to the 128-word program page where the interrupt vectors 

reside. 

MP/MC: Microprocessor/Microcomputer mode, 

MP/MC=0, the on chip ROM is enabled. 

MP/MC=1, the on chip ROM is enabled. 

 
OVLY: RAM OVERLAY, OVLY enables on chip dual access data RAM blocks to be mapped into 

program space. 

 
AVIS: It enables/disables the internal program address to be visible at the address pins. 

DROM: Data ROM, DROM enables on-chip ROM to be mapped into data space. 

CLKOFF: CLOCKOUT off. 

 
SMUL: Saturation on multiplication. 

SST: Saturation on store. 
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Data Addressing Modes of TMS320C54X Processors: 

 
Data addressing modes provide various ways to access operands to execute instructions and place 

results in the memory or the registers. The 54XX devices offer seven basic addressing modes 

1. Immediate addressing. 

2. Absolute addressing. 

3. Accumulator addressing. 

4. Direct addressing. 

5. Indirect addressing. 

6. Memory mapped addressing 

7. Stack addressing. 

 
 Immediate addressing: 

The instruction contains the specific value of the operand. The operand can be short (3,5,8 or 9 

bit in length) or long (16 bits in length). The instruction syntax for short operands occupies one 

memory location, 

Example: LD #20, DP. 

RPT #0FFFFh. 

 
 Absolute Addressing: 

The instruction contains a specified address in the operand. 

1. Dmad addressing. MVDK Smem,dmad, MVDM dmad,MMR 

2. Pmad addressing. MVDP Smem,pmad, MVPD pmem,Smad 

3. PA addressing. PORTR PA, Smem, 

4.*(lk) addressing . 

 Accumulator Addressing: 

Accumulator content is used as address to transfer data between Program and Data memory. 

Ex: READA *AR2 

 
 Direct Addressing: 

Base address + 7 bits of value contained in instruction = 16 bit address. A page of 128 

locations can be accessed without change in DP or SP.Compiler mode bit (CPL) in ST1 register is 

used. 

If CPL =0 selects DP 

CPL = 1 selects SP, 

It should be remembered that when SP is used instead of DP, the effective address is 

computed by adding the 7-bit offset to SP. 
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Figure 4.7 Block diagram of the direct addressing mode for TMS320C54xx Processors. 
 

 Indirect Addressing: 

TMS320C54xx have 8, 16 bit auxiliary register (AR0 – AR 7). Two auxiliary register arithmetic units 

(ARAU0 & ARAU1) 

Used to access memory location in fixed step size. AR0 register is used for indexed and bit reverse 

addressing modes. 

– operand addressing 

MOD _ type of indirect addressing 

ARF _ AR used for addressing 

ARP depends on (CMPT) bit in ST1 

CMPT = 0, Standard mode, ARP set to zero 

CMPT = 1, Compatibility mode, Particularly AR selected by ARP 
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Table 4.2 Indirect addressing options with a single data –memory operand. 

Circular Addressing; 

 

➢ Used in convolution, correlation and FIR filters. 

➢ A circular buffer is a sliding window contains most recent data. Circular buffer of size R must 

start on a N-bit boundary, where 2N > R . 

➢  

➢ Effective base address (EFB): By zeroing the N LSBs of a user selected AR (ARx). 

➢  

If 0 _ index + step < BK ; index = index +step; 

else if index + step _ BK ; index = index + step - BK; 

else if index + step < 0; index + step + BK 
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Bit-Reversed Addressing: 

o Used for FFT algorithms. 

o AR0 specifies one half of the size of the FFT. 

o The value of AR0 = 2N-1: N = integer FFT size = 2N 

o AR0 + AR (selected register) = bit reverse addressing. 

o The carry bit propagating from left to right. 

 
Dual-Operand Addressing: 

Dual data-memory operand addressing is used for instruction that simultaneously 

perform two reads (32-bit read) or a single read (16-bit read) and a parallel store (16-bit 

store) indicated by two vertical bars, II. These instructions access operands using indirect addressing 

mode. 

If in an instruction with a parallel store the source operand the destination operand point to the 

same location, the source is read before writing to the destination. Only 2 bits are available in the 

instruction code for selecting each auxiliary register in this mode. Thus, just four of the auxiliary 

registers, AR2-AR5, can be used, The ARAUs together with these registers, provide capability to 

access two operands in a single cycle. Figure 4.11 shows how an address is generated using dual data- 

memory operand addressing. 
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Memory-Mapped Register Addressing: 

➢ Used to modify the memory-mapped registers without affecting the current data page 

➢ pointer (DP) or stack-pointer (SP) 

o Overhead for writing to a register is minimal 

o Works for direct and indirect addressing 

o Scratch –pad RAM located on data PAGE0 can be modified 

➢ STM #x, DIRECT 

➢ STM #tbl, AR1 

 
 

4.4.7 Stack Addressing: 

• Used to automatically store the program counter during interrupts and subroutines. 

• Can be used to store additional items of context or to pass data values. 

• Uses a 16-bit memory-mapped register, the stack pointer (SP). 

• PSHD X2 
 
 



DSP Processor and Architecture BEENE701T 

Page 42 Dept.ETRX,KDKCE,NGP 
SJBIT 

 

 

 

Memory Space of TMS320C54xx Processors 

➢ A total of 128k words extendable up to 8192k words. 

➢ Total memory includes RAM, ROM, EPROM, EEPROM or Memory mapped peripherals. 

➢ mapped 

registers. 
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Figure 3.14 Memory map for the TMS320C5416 Processor. 
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Program Control 

➢ It contains program counter (PC), the program counter related H/W, hard stack, repeat  

counters &status registers. 

➢ PC addresses memory in several ways namely: 

➢ Branch: The PC is loaded with the immediate value following the branch instruction 

➢ Subroutine call: The PC is loaded with the immediate value following the call instruction 

➢ Interrupt: The PC is loaded with the address of the appropriate interrupt vector. 

➢ Instructions such as BACC, CALA, etc ;The PC is loaded with the contents of the accumulator 

low word 

➢ End of a block repeat loop: The PC is loaded with the contents of the block repeat program 

address start register. 

➢ Return: The PC is loaded from the top of the stack. 
 

Problems: 
 

1. Assuming the current content of AR3 to be 200h, what will be its contents after 

each of the following TMS320C54xx addressing modes is used? Assume that the 

contents of AR0 are 20h. 

a. *AR3+0 

b. *AR3-0 

c. *AR3+ 

d. *AR3 

e. *AR3 

f. *+AR3 (40h) 

g. *+AR3 (-40h) 

Solution: 

a. AR3 ← AR3 + AR0; 

AR3 = 200h + 20h = 220h 

b. AR3← AR3 - AR0; 

AR3 = 200h - 20h = 1E0h 

c. AR3 ← AR3 + 1; 

AR3 = 200h + 1 = 201h 

d. AR3 ← AR3 - 1; 

AR3 = 200h - 1 = 1FFh 

e. AR3 is not modified. 

AR3 = 200h 

f. AR3 ← AR3 + 40h; 

AR3 = 200 + 40h = 240h 

g. AR3 ← AR3 - 40h; 

AR3 = 200 - 40h = 1C0h 
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