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UNIT 1

Discrete Fourier Transform

1.1 Introduction:

Before we introduce the DFT we consider the sampling of the Fourier transform of an
aperiodic discrete-time sequence. Thus we establish the relation between the sampled Fourier
transform and the DFT.A discrete time system may be described by the convolution sum, the
Fourier representation and the z transform as seen in the previous chapter. If the signal is
periodic in the time domain DTFS representation can be used, in the frequency domain the
spectrum is discrete and periodic. If the signal is non-periodic or of finite duration the
frequency domain representation is periodic and continuous this is not convenient to
implement on the computer. Exploiting the periodicity property of DTFS representation the
finite duration sequence can also be represented in the frequency domain, which is referred to
as Discrete Fourier Transform DFT.

DFT is an important mathematical tool which can be used for the software
implementation of certain digital signal processing algorithms .DFT gives a method to
transform a given sequence to frequency domain and to represent the spectrum of the sequence
using only k frequency values, where k is an integer that takes N values, K=0, 1, 2,.....N-1.
The advantages of DFT are:

1. Itis computationally convenient.
2. The DFT of a finite length sequence makes the frequency domain analysis much

simpler than continuous Fourier transform technique.

1.2 FREQUENCY DOMAIN SAMPLING AND RECONSTRUCTION OF DISCRETE
TIME SIGNALS:

Consider an aperiodic discrete time signal x (n) with Fourier transform, an aperiodic finite

energy signal has continuous spectra. For an aperiodic signal x[n] the spectrum is:



Suppose we sample X[w] periodically In frequency at a sampling of dw radians between
successive samples. We know that DTFT is periodic with 2m, therefore only samples in the

fundamental frequency range will be necessary. For convenience we take N equidistant
. . . : 2
samples in the interval (O<=w<2r ). The spacing between samples will be dw = Wﬁ as shown

below in Fig.1.1.
X[w]
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Fig 1.1 Frequency Domain Sampling
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Let us first consider selection of N, or the number of samples in the frequency domain.

If we evaluate equation (1) atw = %

N

N=-—o0

x{%J: 3 X[nje iz K=0L2, oot (N =) oo (1.2)

We can divide the summation in (1) into infinite number of summations where each sum

contains N terms.
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If we then change the index in the summation from n to n-I N and interchange the order of

summations we get:



{%Jz ZLix[n—lN]Je‘jz”k”’N for k=012,....,(N-1).......(1.3)

Denote the quantity inside the bracket as xp[n]. This is the signal that is a repeating version of

X[n] every N samples. Since it is a periodic signal it can be represented by the Fourier series.
N-1 )
X,[n]=Y celz* N n=012,......,(N -1)
k=0

With FS coefficients:

-1

X, [nfe 12N k=012,.ccc, (N =2) .oevvenn.... (1.4)
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Comparing the expressions in equations (1.4) and (1.3) we conclude the following:

1 27
C, —WX[WKJ k=0L1....... J(IN=D .o (1.5)

Therefore it is possible to write the expression xp[n] as below:

N-1
x [n]= L3 x| 27 g [gienar N=0L....(N=1).......... (L.6)
=N &N

The above formula shows the reconstruction of the periodic signal xp[n] from the samples of

the spectrum X[w]. But it does not say if X[w] or x[n] can be recovered from the samples.

Let us have a look at that:
Since xp[n] is the periodic extension of x[n] it is clear that x[n] can be recovered from xp[n] if
there is no aliasing in the time domain. That is if x[n] is time-limited to less than the period N

of xp[n].This is depicted in Fig. 1.2 below:
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Fig. 1.2 Signal Reconstruction

Hence we conclude:
The spectrum of an aperiodic discrete-time signal with finite duration L can be exactly

recovered from its samples at frequencies w, = % if N>=L.

We compute xp[n] for n=0, 1,....., N-1 using equation (1.6)
Then X[w] can be computed using equation (1.1).

1.3 Discrete Fourier Transform:

The DTFT representation for a finite duration sequence is
o0 -jon
X (o)=Y x(n)e
n= -oo
jon
X (n)=12n X (jw)e do, Whereo=2nk/n



2n
Where x(n) is a finite duration sequence, X(jm) is periodic with period 2z.It is

convenient sample X(jo) with a sampling frequency equal an integer multiple of its period =m
that is taking N uniformly spaced samples between 0 and 2.
Let k= 2xnk/n, 0<k<N-1
0 -j2mkn/N
Therefore X(jo) =), x(n) e
n=—o0
Since X(jw) is sampled for one period and there are N samples X(jo) can be expressed
as
N-1 -j2mkn/N
X(K) = X(Go) | o2en =Y, x(n) € 0<k<N-1
n=0

1.4  Matrix relation of DFT
The DFT expression can be expressed as
[X] = [x(n)] [WN]

Where [X] = [X(0), X(1),........ ]

[X] is the transpose of the input sequence. WN is a N x N matrix

WN= 1 1 I 1 1
1 wnl wn2 wn3.................. wn n-1
1  wn2 wnd wné ............... wn2(n-1)
Lo, WN (N-1)(N-1)
ex;
4 pt DFT of the sequence 0,1,2,3

X(0) 1 1 1 1

X(1) 1 ] -1 J

X(2) = 1 -1 1 -1

X(@3) 1 i -1 ]

Solving the matrix X(K) = 6 , -2+2j, -2, -2-2j

1.5 Relationship of Fourier Transforms with other transforms



1.5.1 Relationship of Fourier transform with continuous time signal:

Suppose that xa(t) is a continuous-time periodic signal with fundamental period Tp,= 1/Fo.The

signal can be expressed in Fourier series as
o0
Xq(t} = E cpel 2k F
k=—05C

Where {ck} are the Fourier coefficients. If we sample Xa(t) at a uniform rate Fs = N/Tp = 1/T,

we obtain discrete time sequence

o0 oc
x(im=x,nT) = Z crped TRt — Z cpot RN
b=—nc b=—og
N—| o
- Z |: Z CL-JN} (szﬂkll/N
k=l ==

X{ky=N Z Goiv=Ney

==

Thus {ci} is the aliasing version of {c«}
1.5.2 Relationship of Fourier transform with z-transform

Let us consider a sequence x(n) having the z-transform

o0

X()= Y x(mz™"
n=-—-00
With ROC that includes unit circle. If X(z) is sampled at the N equally spaced points on the
unit circle Zx = e #™*Nfor K= 0,1,2,........... N-1 we obtain

X(k) = X(Z)I:=,jznu.w k =0. 1, ...,N -1

oc

Z x(n)e"—jz.ﬂ'nk/h'

n==-00

I

The above expression is identical to Fourier transform X(w) evaluated at N equally spaced
frequencies wk = 2nk/N for K= 0,1,2,........... N-1.



IT the sequence X(n) has a Tinite duration of length N or less. I'he sequence can be recovered
from its N-point DFT. Consequently X(z) can be expressed as a function of DFT as

X(z) =

X(2) =

X(z) =

N-—-1
Zx(n)z"'
n=0

N=1 l N-=-1 Akn/N
JTKn _’—ﬂ

g [ﬁ ; X (k)e’ } z
1 N-1 N-1 )
il Z: X(k) Z (e;lﬂk,’Nz—l)n
N kne() n=0
1—z-¥ "Z':‘ X k)

N it 1 — ejZJrk/Nz—l

Fourier transform of a continuous time signal can be obtained from DFT as

X(w)=

1 — e-JeN &)

X (k)

— o~ Jiw—21k/N)
N k=01 e~ Jiw=2rk/



Recommended Questions with solutions

Question 1

The first five points of the 8-point DFT of a real valued sequence are {0.25, 0.125-j0.318, O,
0.125-j0.0518, 0}. Determine the remaining three points

Ans: Since x(n) is real, the real part of the DFT is even, imaginary part odd. Thus the
remaining points are {0.125+j0.0518,0,0, 0.125+j0.318}.

Question 2

Compute the eight-point DFT circular convolution for the following sequences.
X2(n) = sin 37n/8

Ans:
(a)
Fl) = zo(l), 0<ISN-1
= 5(l+N), —-(N-1)gl<g-1
() = sin(%’fj, 0<igT
= sn(XT@+s),  -Tsi<o
= sin(Zy, W<T
8
3
Therefore, I‘]Eﬂ]l‘g(ﬂ} = Z #?(n - m)
m=0
. .3 . a3
= sin(XT nl) + sin(GFn = 1) + .+ sin( | = 3)
= {1.25,2.55,2.55,1.25,0.25,—1.06, —1.06,0.25}
Question 3

Compute the eight-point DFT circular convolution for the following sequence
X3(n) = cos 3nn/8

Iy(n) = cos{a—;[n}, 07
= -cos(%’n), -7<i<-1

[2u(n) - 1] cos(av——s’in), In| <7

3 1 m_
Therefore, :,(n)zg(n) = Z(;) z’(n — m)

m=0

{0.96,0.62,—0.55, —1.06, —0.26, —0.86,0.92, -0.15}



Question 4
Define DFT. Establish a relation between the Fourier series coefficients of a continuous time
signal and DFT

Solution

The DTFT representation for a finite duration sequence is
o0
X (jo) =Y x (n) en

n=-o0

X (n)=12n JX (jo) e dow, Where = _2nk/n
2n
Where x(n) is a finite duration sequence, X(jo) is periodic with period 2m.It is
convenient sample X(jo) with a sampling frequency equal an integer multiple of its period =m
that is taking N uniformly spaced samples between 0 and 2.
Let ok= 2nk/n, 0<k<N

(e8]
Therefore X(jo) =Y x(n) 2N
n=—oo
Since X(jw) is sampled for one period and there are N samples X(jo) can be expressed
as
N-1 ‘
X(k) = X(0) | o2dan =Y x(n) €725N - 0<k<N-1
n=0
Question 5
5.7 I X (k) is the DFT of the sequence x(n), determine the N-point DFTs of the sequences
x,(n):x(n)coshkn O<n<N-1
and
X,(n) = x(n)sin 0<n<N-1
in terms of X (k).
Solution:-

N-1

Xy = ¥ ga(n) (o5 4 e 5HE) o1

2

B -

=0

N=-1 N=1 AT
Z :(n)e'fﬁ'!k_*nzn + % E :(n)e"’ (hthp)
n=0

n=0

1
X (k- ko)modn + §X(k + “'D)modN

1,_.|olo-

1
=X (k = ko)podn — 57X (k4 ko)modw

similarly, X, (k) r o ,-

L&)



Question 6
Find the 4-point DFT of sequence x(n) = 6+ sin(2an/N), n=0,1,

Solution :-

Here x(n) = 6+sin(%’l J, with N =4

Il

x(n) ()+sin(22” ) n=0,1,23

6+sin(zzt-n } n =01223

I

{6, 7, 6, 51.

The N-point DFT is given as,

Xy = [Wylxy

L 3 1 .21.p/%
1 =g = § 7
X, = J ]

1 =1 1 -4l |6

1 j -1 —j] |5

[ 647 +6+45 24
_|6-j7-6+j5| |-j2
" 16-7+6-5] | 0

|6+7 —6—j5 +j2

Question 7

Determine the eight-point DFT of the signal
m=(1,1111100

and sketch its magnitude and phase.

Solution



: -
X(k) = Y o(m)ei¥en
=0
= {6,-0.7071- jLT071,1~ ,0.7071 + j0.2929,0,0.7071 - j0.2029, 14 j
-0.7071 4 j1.7071}
IX(K) = {6,1.8478,14142,0.7654,0,0.7654, 1 4142, 1.8478)

LX(H) = {o,-1.9635,%’,0.3927,0,-0.3927,%,1.9635}

Question 8

Compute the N -point DFTs of the signal
2n
x{n):coswkon O0<neN-1

Solution

N-1
X(ky = 3 ¥k migkn

ot
= 3 ei¥Gokon
= ;:r=6o(k - ko)
z(n) = Lig it
2 2
From (e) we obtain X(k) = -]; [6(k = ko) + (k= N + ko]
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Unit 2
Properties of DFT

2.1 Properties:-

The DFT and IDFT for an N-point sequence x(n) are given as

v=1
DFT: X(k) = > x(mWy k=01, N-1
=0

1 = ~kn
IDFT:x(n):FgX(k)WN n=01,...N-1

where Wy is defined as
Wy = 8-‘"72”/"

In this section we discuss about the important properties of the DFT. These properties are
helpful in the application of the DFT to practical problems.
The notation used below to denote the N-point DFT pair x(n) and X (k) is
x(m) S5 X (k)
Periodicity:-

If x(n) and X(k) are an N-point DFT pair, then
x(n+ N)=x(n) for alln
X+ N)Y= Xk for all k

2.1.2 Linearity: If

x1(n) 3?—» X1 (k)

x2(n) P%T» X2 (k)



Then A x1 (n) + b x2 (n) «— a X1(k) + b X2(k)

2.1.3 Circular shift:

In linear shift, when a sequence is shifted the sequence gets extended. In circular shift the
number of elements in a sequence remains the same. Given a sequence X (n) the shifted
version x (n-m) indicates a shift of m. With DFTs the sequences are defined for 0 to N-1.

If x (n) =x(0), x (1), x (2), x (3)

X (n-1) = x(3),x(0),x(1).x(2)

X (n-2)= x(2),x(3),x(0),x ()

2.1.4 Time shift:
If X (n) «— X (K)

mk
Then x (n-m) «~—> WN X (k)

2.1.5 Frequency shift

If x(n)<——> X(k)
+nok
Whn x(n) «—X(k+no)
N-1 kn
Consider x(k) =X x(n) Wn
n=0
N-1
(k+ no)n
X(k+no)=2\ x(n) WN
n=0
kn non
=2 x(n) WN WN
non
- X(k+no)«——x(n) WN

2.1.6 Symmetry:



For a real sequence, If x(n)<—— X(k)
X(N-K) = X* (k)

For a complex sequence
DFT(x*(n)) = X*(N-K)

If x(n) then  X(k)

Real and even | real and even

Real and odd | imaginary and odd
Odd and imaginary | real odd

Even and imaginary | imaginary and even

2.2 Convolution theorem;
Circular convolution in time domain corresponds to multiplication of the DFTs
If y(n) = x(n) ® h(n) then Y (k) = X(k) H(k)

Exletx(n)=1,2,2,1 and h(n)=1,2,2,1
Theny (n) = x(n) ® h(n)

Y(n) =9,10,9,8

N pt DFTs of 2 real sequences can be found using a single DFT

If g(n) & h(n) are two sequences then let x(n) = g(n) +j h(n)

G(K) =% (X(k) + X*(K))

H(k) = 1/2j (X(K) +X*(k))

2N pt DFT of a real sequence using a single N pt DFT

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT
Let y(n) = x(2n) and g(2n+1)

X (k) =Y (k) + WN kG (k)

Using DFT to find IDFT

The DFT expression can be used to find IDFT



X(n) = N |DFT(X*(K)|*

Recommended Questions with solutions

Question 1

State and Prove the Time shifting Property of DFT
Solution

The DFT and IDFT for an N-point sequence x(n) are given as

~=I
DFT: X(k) = ) x(m)Wy'  k=0.1,....N-1
n=0

1 ¥l .
IDFr:x(n)=F;_:6X(k)w~ n=01,..N-1

where Wy is defined as
Wy = e'j 2n /N

Time shift:

If X (n) «— X (k)

mk
Then x (n-m) «—> WN X (k)
Question 2

State and Prove the: (i) Circular convolution property of DFT; (ii) DFT of Real and even
sequence.

Solution

(i) Convolution theorem

Circular convolution in time domain corresponds to multiplication of the DFTs
If y(n) = x(n) ® h(n) then Y (k) = X (k) H(K)

Ex let x(n) =1,2,2,1 and h(n) =1,2,2,1 Theny (n) = x(n) ® h(n)

Y(n) =9,10,9,8
N pt DFTs of 2 real sequences can be found using a single DFT



IT g(n) & h(n) are two sequences then let X(n) = g(n) +J h(n)

G(K) = V2 (X(K) + X*(k))

H(K) = 1/2j (X(K) +X*(k))

2N pt DFT of a real sequence using a single N pt DFT

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT
Let y(n) = x(2n) and g(2n+1)

X (K) =Y (K) + WNS G (K)

Using DFT to find IDFT

The DFT expression can be used to find IDFT
X(n) = 1/N [DFT(X*(K)]*

(i)DFT of Real and even sequence.
For a real sequence, if x(n)«<—— X(k)
X (N-K) = X* (k)

For a complex sequence
DFT(x*(n)) = X*(N-K)

If x(n) then  X(k)

Real and even | real and even

Real and odd | imaginary and odd
Odd and imaginary | real odd

Even and imaginary | imaginary and even
Question 3

Distinguish between circular and linear convolution
Solution

1) Circular convolution is used for periodic and finite signals while linear convolution is
used for aperiodic and infinite signals.

2) In linear convolution we convolved one signal with another signal where as in circular
convolution the same convolution is done but in circular pattern depending upon the
samples of the signal

3) Shifts are linear in linear in linear convolution, whereas it is circular in circular
convolution.

Question 4



For the sequences
x{n) = cos Z-NEn xz(n) = sin %’In O<n<N-1

determine the N-point:

(a) Circular convolution x,(n) @xz{n)
(b) Circular correlation of x;(») and x:(n)
(c) Circular autocorrelation of x;(n)

(d) Circular autocorrelation of xz(n)

Solution(a)
2i(n) = 3 (F 4B
Xi(k) = %[6(k—~1)+6(k+1)]
also Xa(k) = %[6(&—1)—6(k+1)]
So Xa(k) = X,(k)X2(k)
2
- f—j[é(k —1)— 6k + 1)]
and z3(n) = %sin(z—Nﬂ:n)
Solution(b)
Rey(k) = Xa(k)X3(k)
N2
= ——[5(k—-1)—6(k+1)
4;
N . 2
=  Tg(n) = —;sm(—%n)
Solution(c)

Rs:(k) = A’l(k)-xl“(k)

= %ﬁ[é(k—l)+6(k+l)]
= fzz(n) = ﬂcos(z—wn)

2 N

Solution(d)



Ryy(k) Xa(k) X3 (k)

= NTz[a(k ~ 1)+ 8(k + 1))

- N 27
= Fyln) = —2—308(?“)

Question 5

Use the four-point DFT and IDFT to determine the sequence

13(n) = x1{n) @n(ﬂ)
where x;(n) and x;(n) are the sequence given
x:(n) = {1. 2,3, 1}
T
x2(n) = {4, 3, 2,2}
1

Solution

y(n) = z,(n)dzs(n)

3
= 2 21(M)mode2(" = M)mods
m=0

= {17,19,22,19}

Xl(k) = {7!—2—3--19_2"'3.}
Xqo(k) = {11,2-3j1,2+ j}
= Xa(k) = Xi(k)X2(k)
= {17,19,22,19}
Question 6

A linear time-invariant system with frequency response H(w) is excited with the
periodic input

[= =]

x(n) = Z 5(n — kN)

k=—00

Suppose that we compute the N-point DFT Y (k) of the samples y(n),0 <nh < N ~1
of the output sequence. How is Y (k) related to H(w)?

Solution



z(n) = i é(n —iN)

i=—00
un) = Y h(m)z(n—m)

Eh(m] [z §(n—m — :'N]]
= Y _h(n-iN)

Therefore, y(.) is a periodic sequence with period N. So

N=1
Y(k) = 3 y(n)WA"
n=0

= H(w)lu=33s

27k

Y (k) H(ZZ) k=0,1,....N-1
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FAST-FOURIER-TRANSFORM (FFT) ALGORITHMS

3.1 Digital filtering using DFT

In a LTI system the system response is got by convoluting the input with the impulse
response. In the frequency domain their respective spectra are multiplied. These spectra are
continuous and hence cannot be used for computations. The product of 2 DFT s is equivalent
to the circular convolution of the corresponding time domain sequences. Circular convolution
cannot be used to determine the output of a linear filter to a given input sequence. In this case a
frequency domain methodology equivalent to linear convolution is required. Linear
convolution can be implemented using circular convolution by taking the length of the

convolution as N >=nl1+n2-1 where nl and n2 are the lengths of the 2 sequences.

3.1.1 Overlap and add

In order to convolve a short duration sequence with a long duration sequence x(n) ,x(n)
is split into blocks of length N x(n) and h(n) are zero padded to length L+M-1 . circular
convolution is performed to each block then the results are added. These data blocks may be

represented as

x1(n) = {x(0), x(1),...,x(L-1),0,0,...,0}
[ —
M-1 zeros
xz(n) = {X(L),I(L + 1)! e lx(ZL - 1)10! 0? L] 90}
LA
M—1 zeros
x3(n) = {x(2L),...,x(3L - 1),0,0,...,0)
— s

M—1 zeros
The two N-point DFTs are multiplied together to form
Ymk) = Hk)Xa(k) k=01,...,N-1

The IDFT vyields data blocks of length N that are free of aliasing since the size of the
DFTs and IDFT is N = L+M -1 and the sequences are increased to N-points by appending
zeros to each block. Since each block is terminated with M-1 zeros, the last M-1 points from
each output block must be overlapped and added to the first M-1 points of the succeeding



pblock. Rence this methoa 1S called the overlap method. Inis overlapping and aading yields the

output sequences given below.

ym) = {(y(0), ), ... (L =Dy (L) + »(0), (L + 1) +
M. o nN=-1)+»M-1), nM),..}

Input data

f— L —= L t L—
i
Xy (n)
N
M-1
Zeros
Xaln) 7
\
M-1
zeros
Xatm) y
Output data

w2
M-1 Poinis/m
add — Ll
1ogether
M-1 pomtv/% Va(n) %
Figure 5.11 Linear FIR filtering by the

together overlap-add method.

2.1.2 Overlap and save method

In this method x (n) is divided into blocks of length N with an overlap of k-1 samples.
The first block is zero padded with k-1 zeros at the beginning. H (n) is also zero padded to
length N. Circular convolution of each block is performed using the N length DFT .The output
signal is obtained after discarding the first k-1 samples the final result is obtained by adding

the intermediate results.



In this method the size ot the I/P data blocks Is N= L+IVI-1 and the size ot the DFts and
IDFTs are of length N. Each data block consists of the last M-1 data points of the previous
data block followed by L new data points to form a data sequence of length N= L+M-1. An N-
point DFT is computed from each data block. The impulse response of the FIR filter is
increased in length by appending L-1 zeros and an N-point DFT of the sequence is computed
once and stored.
The multiplication of two N-point DFTs {H(k)} and {Xm(Kk)} for the mth block of data yields

Ymk) = HE)Xn(k) k=0,1,....N—1
Then the N-point IDFT yieids the result
Fm() = (5m @5 (1) -+ - 5 (M — 1)F(M) - - - 5 (N ~ 1))

Since the data record is of the length N, the first M-1 points of Ym(n) are corrupted by
aliasing and must be discarded. The last L points of Ym(n) are exactly the same as the result

from linear convolution and as a consequence we get

YmR) =y, n =M M~+1,...,N -1

x1(n) =1{0,0,..., 0, x(@), x(1),...,x(L — 1)}
e e ——
M—1 poims
xa(n) ={x(L -M~+1),..., x(L—1),x(L),..., x(2L - 1)}
M-1 d;;a_ points L new d;ta points
from xy(n)

x3(n) = [3:(2L -—M+1D.,....x2L - l),i(ZL), o x(3L - 1))

M—1 dawa points L new data points
from x3(n)

and so forth. The resulting data sequences from the IDFT are given by (5.3.8),
where the first M — ] points are discarded due to aliasing and the remaining L
points constitute the desired result from linear convolution. This segmentation of
the input data and the fitting of the output data blocks together to form the output
sequence are graphically illustrated in Fig. 5.10.
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M-1 7/
points 7
Discard
M-l A ]
points /
Discard
M-1 Figure 510 Linear FiR filtering by the
points overlap-save method.

3.2 Direct Computation of DFT

The problem:
Given signal samples: x[0], . . . , X[N - 1] (some of which may be zero), develop a procedure
to compute

N—1

XK =" wn]WwEn

1. =10

fork=0,...,N-1where

We would like the procedure to be fast, simple, and accurate. Fast is the most important, so we will
sacrifice simplicity for speed, hopefully with minimal loss of accuracy

3.3 Need for efficient computation of DFT (FFT Algorithms)
Let us start with the simple way. Assume that Wx"  has been precompiled and stored in a

W m
table for the N of interest. How big should the table be? I s periodic in m with period N,

S0 we just need to tabulate the N values:



: 2w 2w
Wi = em‘(ﬁr—__m) —78in (ﬂr—__m)

(Possibly even less since Sin is just Cos shifted by a quarter periods, so we could save just Cos
when N is a multiple of 4.)
Why tabulate? To avoid repeated function calls to Cos and sin when computing the DFT. Now

we can compute each X[k] directly form the formula as follows

N-1
X[k =Y xp] WEr = 2[0] WY + 2] WE +2[2] W2 + - 2]V — 1w
n=>0

For each value of k, there are N complex multiplications, and (N-1) complex additions. There

are N values of k, so the total number of complex operations is

N-N+N(N-1)=2N?—-N =0O(N?).
Complex multiplies require 4 real multiplies and 2 real additions, whereas complex additions
require just 2 real additions N?> complex multiplies are the primary concern.
N? increases rapidly with N, so how can we reduce the amount of computation? By exploiting
the following properties of W:
e Symmetry inmw.rlj,': LIT"" = -W§ =" W§

» Periodicity property: Wit = Wk
o Recursion property: Wi = Wy 5

The first and third properties hold for even N, i.e., when 2 is one of the prime factors of N.

There are related properties for other prime factors of N.

Divide and conquer approach

We have seen in the preceding sections that the DFT is a very computationally
intensive operation. In 1965, Cooley and Tukey published an algorithm that could be used to
compute the DFT much more efficiently. Various forms of their algorithm, which came to be
known as the Fast Fourier Transform (FFT), had actually been developed much earlier by
other mathematicians (even dating back to Gauss). It was their paper, however, which

stimulated a revolution in the field of signal processing.

It is important to keep in mind at the outset that the FFT is not a new transform. It is

simply a very efficient way to compute an existing transform, namely the DFT. As we saw, a



stralght Torward implementation ot the DF1 can be computationally expensive because the
number of multiplies grows as the square of the input length (i.e. N2 for an N point DFT). The
FFT reduces this computation using two simple but important concepts. The first concept,
known as divide-and-conquer, splits the problem into two smaller problems. The second
concept, known as recursion, applies this divide-and-conquer method repeatedly until the

problem is solved.

Recommended Questions with solutions

Questionl

A designer has available a number of eight-point FFT chips. Show explicitly how he
should interconnect three such chips in order to compute a 24-point DFT.

Solution:-

Create three subsequences of 8-pts each

21 23

22
Yo Wt + Y ymWEr+ Y y(mwRe

Y(k) =
n=03,6,... n=1,47,... n=25,..
7 7 7
= D YBIWE + D B+ DWEWE + ) y3i + 2)WEWR
i=0 i=0 1=0

np

Yi(k) + Wy Ya(k) + Wi Ys(k)

where Y}, Y;, Y3 represent the 8-pt DFTs of the subsequences.

Question 2

Let x(n) be a real-valued N-point (N = 2") sequence. Develop a method to compute
an N-point DFT X'(k). which contains only the odd harmonics [i.e., X'(k) = 0 if k is
even] by using only a real N /2-spoint DFT.

Solution:-



N-1
X(k) = Y z(m)Wy" O0<k<N-1

n=0
&-1 N-1
= 3 z(n)WRM+ Y z(n)WR"
n=0 n=§-
51 F-1
= Y zmWrr+ Y 2(r+ %}WL’*?“
n=0 r=0
LetX'(¥) = X(2k+1), 0<k < %—1
i 'L N E)2k'41
Then, X'(K) = Y [z(m)WF**" 4 2(n+ E)WL"" 3Nk ’]
n=0
Using the fact that W™ = W;:", wi =1
§_1 F JH‘T I- '
X'(K) = 3 |z(n)WRWE" +2(n+ E)w};"wg wf]
n=0 *
*‘l [ N ,
= Z z(n)—z(n+ E)] WR,WE“
n=0 *

Question 3

The z-transform of the sequence x(n) = u(n) — u(n — 7) is sampled at five points on
the unit circle as follows

x(k) = X(2)|. = &/#*P k=0,1,2.3,4

Solution:-

X(z) = 142704, +2°°
X(k) = X(2)|_,%
= 14e?F LI 4 g i
= 2429% 4eiN 4 4N

(n) = {2,2,1,1,1}
Z'(n) = Zr{n+7m], n=0,1,....4

Temporal aliasing occuts in first two points of z/(n) because X(z) is not sampled at sufficiently
small spacing on the unit circle.



Question 4
Consider a finite-duration sequence x(n), 0 < n < 7, with z-transform X(z). We wish
to compute X (z) at the following set of values:
%= 0.8/ Brs-ix /8] D<k<7

(a) Skeich the points {z,} in the complex plane.
(b) Determine a sequence s(n) such that its DFT provides the desired samples of
X(z).

Solution:- (a)

Z, = 086 (4]

(b)
z-plane 2n
z 8
1
3 4 n
=
14 !'/?
25
circle of radius 0.8

I

XIE} .:':(I”;:;.

= i z(n) [n,aei[‘l“ff]] -

n=0

s(n) = z(n)0.8e~ "
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RADIX-2 FFT ALGORITHM FOR THE COMPUTATION OF DFT AND
IDET

4.1 Introduction:

Standard frequency analysis requires transforming time-domain signal to frequency
domain and studying Spectrum of the signal. This is done through DFT computation. N-point
DFT computation results in N frequency components. We know that DFT computation
through FFT requires N/2 logoN complex multiplications and N log2N additions. In certain
applications not all N frequency components need to be computed (an application will be
discussed). If the desired number of values of the DFT is less than 2 logzN than direct
computation of the desired values is more efficient that FFT based computation.

4.2 Radix-2 FFT

Useful when N is a power of 2: N =r¥ for integers r and v. ‘r’ is called the radix, which
comes from the Latin word meaning .a root, and has the same origins as the word radish.

When N is a power of r = 2, this is called radix-2, and the natural .divide and conquer
approach. is to split the sequence into two sequences of length N=2. This is a very clever trick

that goes back many years.

4.2.1 Decimation in time

(0 x(2) o) N=2)

1) xl3) NZ-Point
DFT

Fi) £ F2a

Fig 4.1 First step in Decimation-in-time domain Algorithm



N = 8-point decimation-in-time FFT algorithm
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4.2.2 Decimation-in-frequency Domain

Another important radix-2 FFT algorithm, called decimation-in-frequency algorithm is
obtained by using divide-and-conquer approach with the choice of M=2 and L= N/2.This
choice of data implies a column-wise storage of the input data sequence. To derive the
algorithm, we begin by splitting the DFT formula into two summations, one of which involves
the sum over the first N/2 data points and the second sum involves the last N/2 data points.

Thus we obtain

(N/2)—-1 N=1
Xk)= Y x(WF+ D x(m)WK
nw=(} n=Nj2
N/2)-1 (N1 N
= Y W +w? 3 (n + —2-) win
nal) n=0

Since Wi¥/% = (—1)*, the expression (6.1.33) can be rewritten as

(Nj2y=1 . N £
X(ky= >_ [x(n) + (—D*x (n + -2—)] Wy

n=>0

Now, let us split X(k) into the even and odd-numbered samples. Thus we obtain

(N/2)-1 N . N
X(2k) = ; [x(n)+x(n+5)]WN’}2 k=0,1,....-2--—1 (6.1.35)_
and
(Nﬂ)—l N . N
X2Zk+1)= E I[x(n)—x(n+-2-)]W;]W~'}z k-_-(],l....,-i—-l
(6.1.36)

where we have used the fact that W2 = Wy .

If we define the N/2-point sequences g;(n) and gz(n) as

g1(m) = x(n) + x (n + %)

g2(n) = [x(n)—x(n-i—%)] wy n=0,12 ..., — -1

then
(N/2)—1
X2k = Y ;(mWh,
n=0
(N/2)—1
X2k+1) = > gamW,

n=0



Data Dala

decimation 1 decimation 2
Memory address Memory
(decimal} (binary)
0 000 x(Q) x(0) x(0)
1 001 x(1) x(2) >< x(4)
2 010 x(2) x(4) x2)
3 011 x(3) x(6} x(6)
4 100 x(4) x(1) x(1)
5 101 x(5) x(3) >< x(5)
6 110 x(6) x(5) x(3)
7 I x(7) - x(7) x(7)
Natural Bit-reversed
order order
(a)
(namyng) — (nomn,) — (agn|na)
000) —- W00 - (@00
0o = (100 — (100
010y - (OO0 —- (OID®
011 - a1o0n - (F10)
{(100) —- (©10) =—=- (OOD
{(101) —- (110 —= (101
Q1) = ©OI1nH = (01D
(111) = (111 - (a1
(b)

Fig 4.2 Shuffling of Data and Bit reversal

The computation of the sequences g1 (n) and g2 (n) and subsequent use of these
sequences to compute the N/2-point DFTs depicted in fig we observe that the basic

computation in this figure involves the butterfly operation.



‘I'he computation proceaure can be repeated through aecimation ot the N/2-point DF1's,
X(2k) and X(2k+1). The entire process involves v = log> N of decimation, where each stage

involves N/2 butterflies of the type shown in figure 4.3.

x(0) = F—= X(0)
x(1) — X(2)
4-point
DFT
x(2) » —— X(4)
x(3) - ——e X{6)

——— X(1)

x(4)

x(5) = X(3)

4-point
DFT

x(6) e X(5)

/ i
w
x(7) & —" —-e X(7)

Fig 4.3 First step in Decimation-in-time domain Algorithm
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X(4)

. X(2)

3 [}
w
x5) » é . 8 We x5
2 0
/ w w
x(6) & /\\l 8 3 e X(3)
w?l w2 wo
x(7) - LA >~ . e X(D

Fig 4.4 N=8 point Decimation-in-frequency domain Algorlthm
4.2 Example: DTMF — Dual Tone Multi frequency
This is known as touch-tone/speed/electronic dialing, pressing of each button generates a
unique set of two-tone signals, called DTMF signals. These signals are processed at exchange
to identify the number pressed by determining the two associated tone frequencies. Seven
frequencies are used to code the 10 decimal digits and two special characters (4x3 array)




In this application tfrequency analysis requires adetermination ot possible seven (eignt)
DTMF fundamental tones and their respective second harmonics .For an 8 kHz sampling freq,
the best value of the DFT length N to detect the eight fundamental DTMF tones has been
found to be 205 .Not all 205 freq components are needed here, instead only those
corresponding to key frequencies are required. FFT algorithm is not effective and efficient in
this application. The direct computation of the DFT which is more effective in this application
is formulated as a linear filtering operation on the input data sequence.

This algorithm is known as Goertzel Algorithm

This algorithm exploits periodicity property of the phase factor. Consider the DFT definition

N -

X (k) =D x(mW* @

n=

=

W —kN
Since " s equal to 1, multiplying both sides of the equation by this results in;

N-1 N-1
X (K) =W, (W = 3 x(mw, < 0
m=0 m=0

This is in the form of a convolution Yic(n) =x(n)*hy (n)

Y, (n) = Z XMW, ©)
h()=W,“u(n) (4

Where yi(n) is the out put of a filter which has impulse response of hk(n) and input x(n).
The output of the filter at n = N yields the value of the DFT at the freq wx = 2nk/N

The filter has frequency response given by

H@-—s O

The above form of filter response shows it has a pole on the unit circle at the frequency ok =
2nk/N.

Entire DFT can be computed by passing the block of input data into a parallel bank of N
single-pole filters (resonators)



I'he above Torm of Tilter response shows It has a pole on the unit circle at the Trequency mk =
2nk/N.

Entire DFT can be computed by passing the block of input data into a parallel bank of N
single-pole filters (resonators)

1.3 Difference Equation implementation of filter:

From the frequency response of the filter (eq 6) we can write the following difference
equation relating input and output;

H@=nB_ L1
X(z) 1-wz*
y () =Wy, (n-1)+x(n) Y, (-1)=0 (7)

The desired output is X(k) = yk(n) for k = 0,1,...N-1. The phase factor appearing in the
difference equation can be computed once and stored.

The form shown in eq (7) requires complex multiplications which can be avoided
doing suitable modifications (divide and multiply by 1-W,z™). Then frequency response of
the filter can be alternatively expressed as

1-Wiz™

H, (2)=
(2) 1-2cos(27k /N)zt+272

©)

This is second —order realization of the filter (observe the denominator now is a second-order
expression). The direct form realization of the above is given by

v, (n) = 2cos(27K / N)v, (N —1) —v, (n—2) + x(n) (9)
Yi (n) =V (n) _WI\II(Vk (n _1) Vi (_1) =V (_2) =0 (10)



The recursive relation in (9) is iterated for n=0,1,...... N, but the equation in (10) is computed
only once at time n =N. Each iteration requires one real multiplication and two additions.
Thus, for a real input sequence x(n) this algorithm requires (N+1) real multiplications to yield
X(k) and X(N-K) (this is due to symmetry). Going through the Goertzel algorithm it is clear
that this algorithm is useful only when M out of N DFT values need to be computed where M<
2log2N, Otherwise, the FFT algorithm is more efficient method. The utility of the algorithm
completely depends on the application and number of frequency components we are looking
for.

4.2. Chirp z- Transform

4.2.1 Introduction:

Computation of DFT is equivalent to samples of the z-transform of a finite-length
sequence at equally spaced points around the unit circle. The spacing between the samples is
given by 2n/N. The efficient computation of DFT through FFT requires N to be a highly
composite number which is a constraint. Many a times we may need samples of z-transform
on contours other than unit circle or we my require dense set of frequency samples over a

small region of unit circle. To understand these let us look in to the following situations:

1. Obtain samples of z-transform on a circle of radius ‘a’ which is concentric to unit circle
The possible solution is to multiply the input sequence by a™

2. 128 samples needed between frequencies o = -n/8 to +n/8 from a 128 point sequence



From the given specitications we see that the spacing between the trequency samples IS
7/512 or 2n/1024. In order to achieve this freq resolution we take 1024- point FFT of
the given 128-point seq by appending the sequence with 896 zeros. Since we need
only 128 frequencies out of 1024 there will be big wastage of computations in this

scheme.

For the above two problems Chirp z-transform is the alternative.
Chirp z- transform is defined as:

N-1
X(z,)=) x(n)z." k=01,....L-1 a1
n=0
Where z is a generalized contour. z is the set of points in the z-plane falling on an arc which
begins at some point zo and spirals either in toward the origin or out away from the origin such

that the points {z«}are defined as,

z, =1,e'* (Re') k=01,..L-1 (12)



Note that,

a. if Ro< 1 the points fall on a contour that spirals toward the origin
b. If Ro > 1 the contour spirals away from the origin

c. If Ro= 1 the contour is a circular arc of radius

d.If ro=1 and Ro=1 the contour is an arc of the unit circle.

(Additionally this contour allows one to compute the freq content of the sequence x(n) at

dense set of L frequencies in the range covered by the arc without having to

compute a large

DFT (i.e., a DFT of the sequence x(n) padded with many zeros to obtain the desired resolution

in freq.))

e. If ro= Ro=1 and 0p=0 ®o=2n/N and L = N the contour is the entire unit circle similar to the

standard DFT. These conditions are shown in the following diagram.
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fy< 1
Substituting the value of zk in the expression of X(zk)

)z = 3 x(n)(ne) W 13

N =
n=0 n=0

X (Zk) =
where \ _ R,e* (14)

4.2.2 Expressing computation of X(zk) as linear filtering operation:

By substitution of
nk:%(n2+k2—(k—n)2) (15)

we can express X(zx) as

X (z,) =W ™"y (k) = y(k)/ h(k) K=0L ...
Where
h(n) :WHZ/2 g(n) — X(n)(roeieo)*nw -n?/2

y(k) =Y g(mh(k—n) 17)

both g(n) annaoh(n) are complex valued sequences

4.2.3 Why it is called Chirp z-transform?
If Ro =1, then sequence h(n) has the form of complex exponential with argument wn =

n?®o/2 = (n ®o/2) n. The quantity (n ®o/2) represents the freq of the complex exponential



signal, which Increases linearly with time. Such signals are usea In radar systems are called

chirp signals. Hence the name chirp z-transform.

Chirp Signal

amp
(=]
N o)
T T
_»—'—'_'__'_'_'_n
Y S
| 1

4.2.4 How to Evaluate linear convolution of eq (17)
1. Can be done efficiently with FFT

2. The two sequences involved are g(n) and h(n). g(n) is finite length seq of length N and
h(n) is of infinite duration, but fortunately only a portion of h(n) is required to compute
L values of X(z), hence FFT could be still be used.

3. Since convolution is via FFT, it is circular convolution of the N-point seq g(n) with an

M- point section of h(n) where M > N

4. The concepts used in overlap —save method can be used

5. While circular convolution is used to compute linear convolution of two sequences we
know the initial N-1 points contain aliasing and the remaining points are identical to
the result that would be obtained from a linear convolution of h(n) and g(n), In view of
this the DFT size selected is M = L+N-1 which would yield L valid points and N-1
points corrupted by aliasing. The section of h(n) considered is for —(N-1) < n< (L-1)
yielding total length M as defined

6. The portion of h(n) can be defined in many ways, one such way is,



ni(n) =n(n-N+1) n=0,1,....M-1
7. Compute Hi(k) and G(k) to obtain

Y1(k) = G(K)H1(k)
8. Application of IDFT will give yi(n), for

n=0,1,...M-1. The starting N-1 are discarded and desired values are y1(n) for
N-1 <n < M-1 which corresponds to the range 0 <n < L-1 i.e.,

y(n)=y1(n+N-1) n=0,1,2,.....L-1
9. Alternatively ho(n) can be defined as
h, (n) = h(n) 0<n<L-1

=h(n—(N+L-1)) L<n<M-1
10. Compute Y2(k) = G(K)H2(K), The desired values of y»(n) are in the range

0<n<L-li.e.,

y(n) = y2(n) n=0,1,....L-1
11. Finally, the complex values X(zk) are computed by dividing y(k) by h(k)
Fork=0,1,...... L-1

4.3 Computational complexity

In general the computational complexity of CZT is of the order of M logoM complex
multiplications. This should be compared with N.L which is required for direct evaluation.

If L is small direct evaluation is more efficient otherwise if L is large then CZT is more

efficient.

4.3.1 Advantages of CZT
a. Not necessary to have N =L
b.Neither N or L need to be highly composite

c.The samples of Z transform are taken on a more general contour that includes the unit
circle as a special case.

4.4 Example to understand utility of CZT algorithm in freq analysis
(ref: DSP by Oppenheim Schaffer)

CZT is used in this application to sharpen the resonances by evaluating the z-transform

off the unit circle. Signal to be analyzed is a synthetic speech signal generated by exciting a



Tive-pole system with a periodic impulse train. 1'he system was simulated to correspond to a

sampling freq. of 10 kHz. The poles are located at center fregs of 270,2290,3010,3500 & 4500
Hz with bandwidth of 30, 50, 60,87 & 140 Hz respectively.

Solution: Observe the pole-zero plots and corresponding magnitude frequency response for
different choices of |w|. The following observations are in order:

The first two spectra correspond to spiral contours outside the unit circle with a resulting
broadening of the resonance peaks

|w| = 1 corresponds to evaluating z-transform on the unit circle

The last two choices correspond to spiral contours which spirals inside the unit circle and
close to the pole locations resulting in a sharpening of resonance peaks.
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4.5 Implementation of CZT In haraware to compute the DFT signals
The block schematic of the CZT hardware is shown in down figure. DFT computation

requires ro =Ro =1, 6o = 0 ®o = 2t/N and L = N.

The cosine and sine sequences in h(n) needed for pre multiplication and post multiplication are
usually stored in a ROM. If only magnitude of DFT is desired, the post multiplications are

unnecessary,

In this case [X(zk)| = |y(k)| k =0,1,....N-1

T i [~ i
‘V ROM ] | FIR .
' filter Lo+
. : m (= O

1

- opne T
: h,(n) = cos N : {
cos n? ; e :
N - y |
X \I ] 1
_/
— _
FIR
filter

h;(n) = sin

- ! ] yn)l
v(n)— ' ! Ci‘)——-— v ——

FIR
filter

hin) = s an?
h,(n) = sin N

sin 2" f f FIR I | +
M : flter | : 4 ‘
HE n? rone U B ()
h(n)=cos ' -

N
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Recommended Questions with solutions

Question 1

Compultce the 16-point DFT of the sequence

x(n) = Ccos g—n O<n=<15

using the radix-4 decimation-in-time algorithm.

Solution:-

1 1
a1l =J
A=,

1 J

2, = [ z(0) z(4)
2 2(1) z(5)

= [ z(2) z(6)

1 1
-1 j
1 =1
-1 -j

z(8) z(12) )7
2(9) z(13) |7

z(10) z(14) )7

2223 =) (1) z(5) )

[ F(0) ]
F(4)

| F(12) |

C R T
F(5)

| F(13)

E

F(2)
F(8)

F(l0) | =4%s=

F(14)

F(3)
F(T) | _
F(11) | = 4%

F(15)

Fs) | =40 =

Fo) |=4%=

=

-

[ 4

r
oo o
1

r ]
oo o oo oo
L J

o0 oo



As every F(i) = 0 except F(0)=-F(2) = 4,

z(0) F(0) 0
2(7) | _ F(1) 8
z(8) | =424 | p(2) 0
z(12) F(3) 8

which means that X(4) = X(12) = 8. X(k) = 0 for other K.

Question 2

Draw the flow graph for the decimation-in-frequency (DIF) SRFFT algorithm for
N = 16. What is the number of nontrivial multiplications?

Solution :- There are 20 real , non trial multiplications

x(0) c‘ =N O X0
x( —O X(8)
x(2) f- & Q X(4)
x(3) > - T,;j S Q X(i2)
(1]
x(4) — o0 xa
3 2
. 3 R
x6) | 5 -0 X(6)
j
: w‘ -1
1)) - - =0 X(14)
£~ \'0 o
x(8) ra X
-j o >
x(9) QX9
J w?
x(10) > > ; -0 X(5)
4 v
1
x(i1) o— P~y Qx(13)
. 3] '0
x(12) > SH—O X
.1 ] 3
w
> 11
x(13) ] ] . O X(11)
w
x(14) R }_u\.v : 1 : o Xm
v >? :
x(15) > = 0 T80 xu%
! +j 3)

Figure 4.1 DIF Algorithm for N=16



Question 3

Explain how the DFT can be used to compute N equispaced samples of the z-
transform, of an N-point sequence, on a circle of radius r.

Solution:-

N-1
X@z) = ) zn)™"
o -
Hence, X(z:) = Zz(n),-nc—;i’tn
n=0

where z; = re~? ¥* k = 0,1,...,N = 1 are the N sample points. It is clear that X(z¢).k =
0.1,...,N — 1is equivalent to the DFT (N-pt) of the sequence z(n)r~",n € [O,N=1].

Question 4

Let X (k) be the N-point DFT of the sequence xin), 0 < rn < N — 1. What is the
N-point DFT of the sequence s(n) = X(n}, 0 <n < N —1?

Solution:-

N-1

X(k) =Y z(n)WR"

n=0

Let F(t), t=0,1,...,N—1 be the DFT of the sequence on k X (k).

N-1
F(t) = X(E)W
’ k=0
N-1[N-1
= [ 4mwy]wg
k=0 Ln=0
N-1 N-1
- z(n) [z W;("'H)]
n=0 k=
N-1
= Y z(n)6(n+t)mod N
n=0
N-1

= z(n)§(N-=1-n—-t) t=01,... ,N—1

=;IﬂN—1LdN-2L~wﬂUJWH



Question o

Develop a radix-3 decimation-in-time FFT algorithm for N = 3" and draw the corre-
sponding flow graph for N = 9. What is the number of required complex multiplica-
tions? Can the operations be performed in place?

Solution:-

Y(k) = Y yn)wgt
=0

= Y ymwet+ Y ymwet+ Y y(mwet

n=036 n=14,7 n=253

2 2 2
k
= S yEmWP + 3 yBm+ DWE 4 Y y3m + 2w

m=0 m=0 m=0
2 2 2
= Y yEmWE™ + 3 yBm+ YWPEWE + ) y(3m + )Wt Wt
m=0 m=0 m=0

Question 6

Determine the system function H(z) and the difference equation for the system that
uses the Goertzel algorithm to compute the DFT value X{N — k).

Solution:-
N-1
X(k) = z(m)Wy™

m=0
N=-1

= z :(m)W‘f;'“ W;t‘” since WA',"N =1
m=0

. N-1

= z(m)wy -
m=0

This can be viewed as the convolution of the N-length sequence x(n) with implulse

response of a linear filter

Wi u(n), evaluated at time N

[o.+]
Z W;’nz-ﬂ

n=0

ne

hi(n)
Hi(2)



ye(n)
ye(N)

o

1
1- W,’f,:z‘1
Yu2)
X(z)
WEyi(n - 1) + z(n),
X(k)

yw(-1)=10
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Unit 5
Design of IIR Filters

5.1 Introduction
A digital filter is a linear shift-invariant discrete-time system that is realized using finite

precision arithmetic. The design of digital filters involves three basic steps:

+«+ The specification of the desired properties of the system.
+«+ The approximation of these specifications using a causal discrete-time system.

¢+ The realization of these specifications using finite precision arithmetic.

These three steps are independent; here we focus our attention on the second step. The
desired digital filter is to be used to filter a digital signal that is derived from an analog signal
by means of periodic sampling. The specifications for both analog and digital filters are often
given in the frequency domain, as for example in the design of low pass, high pass, band pass
and band elimination filters.

Given the sampling rate, it is straight forward to convert from frequency specifications
on an analog filter to frequency specifications on the corresponding digital filter, the analog
frequencies being in terms of Hertz and digital frequencies being in terms of radian frequency
or angle around the unit circle with the point Z=-1 corresponding to half the sampling
frequency. The least confusing point of view toward digital filter design is to consider the filter
as being specified in terms of angle around the unit circle rather than in terms of analog

frequencies.
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Figure 5.1: Tolerance limits for approximation of ideal low-pass filter

A separate problem is that of determining an appropriate set of specifications on the
digital filter. In the case of a low pass filter, for example, the specifications often take the form

of a tolerance scheme, as shown in Fig. 5.1.

1-6, <|H(E) |1, |w|Sw,

!::.. "I,_:'

| H(e)

Many of the filters used in practice are specified by such a tolerance scheme, with no

":_ 52. u..-'c-_ 'C_| !

constraints on the phase response other than those imposed by stability and causality
requirements; i.e., the poles of the system function must lie inside the unit circle. Given a set
of specifications in the form of Fig. 5.1, the next step is to and a discrete time linear system
whose frequency response falls within the prescribed tolerances. At this point the filter design
problem becomes a problem in approximation. In the case of infinite impulse response (IIR)
filters, we must approximate the desired frequency response by a rational function, while in the

finite impulse response (FIR) filters case we are concerned with polynomial approximation.

5.1 Design of IIR Filters from Analog Filters:



‘I'he traditional approach to the design of IIR digital Tilters involves the transtormation
of an analog filter into a digital filter meeting prescribed specifications. This is a reasonable
approach because:

RS

% The art of analog filter design is highly advanced and since useful results can be
achieved, it is advantageous to utilize the design procedures already developed for
analog filters.

« Many useful analog design methods have relatively simple closed-form design
formulas.

Therefore, digital filter design methods based on analog design formulas are rather simple to

implement. An analog system can be described by the differential equation

N “;I.-\ Hn IIL.I M “;' J':I?.n |'|r' II

Yoot = dp——

k=0 u!"" 0 il-!r- B
And the corresponding rational function is

1 T P
M drs® ya(s)

sk wa(s)

Hals) =

h:D

The corresponding description for digital filters has the form

N M
S apy(n—k) =Y bpx(n — k)
k=0 k=0

and the rational function

=) Mo bz Y(2)

Z;‘::, apzk X(=2)

In transforming an analog filter to a digital filter we must therefore obtain either H(z)
or h(n) (inverse Z-transform of H(z) i.e., impulse response) from the analog filter design. In
such transformations, we want the imaginary axis of the S-plane to map into the nit circle of
the Z-plane, a stable analog filter should be transformed to a stable digital filter. That is, if the
analog filter has poles only in the left-half of S-plane, then the digital filter must have poles

only inside the unit circle. These constraints are basic to all the techniques discussed here.



5.2 Characteristics of Commonly Used Analog Filters:

From the previous discussion it is clear that, IIT digital filters can be obtained by
beginning with an analog filter. Thus the design of a digital filter is reduced to designing an
appropriate analog filter and then performing the conversion from Ha(s) to H (z). Analog filter
design is a well - developed field, many approximation techniques, viz., Butterworth,
Chebyshev, Elliptic, etc., have been developed for the design of analog low
pass filters. Our discussion is limited to low pass filters, since, frequency transformation can
be applied to transform a designed low pass filter into a desired high pass, band pass and band

stop filters.

5.2.1 Butterworth Filters:

Low pass Butterworth filters are all - pole filters with monotonic frequency response in
both pass band and stop band, characterized by the magnitude - squared frequency response

1 B 1
14 (02/Q)2V 1 +€2(2/Q,)2N
Where, N is the order of the filter, Qc is the -3dB frequency, i.e., cutoff frequency, Qp is the

| Ha(Q) [*=

pass band edge frequency and 1= (1 /1+€2) is the band edge value of | Ha(Q) | 2, Since the
product Ha(s) Ha(-s) and evaluated at s = jQ is simply equal to | Ha(Q) | 2_ it follows that

1
T+ ()

\ 2

H (s)H, (—s) =

The poles of Ha(s)Ha(-s) occur on a circle of radius Qc at equally spaced points. From Eq.

(5.29), we find the pole positions as the solution of

2

—_

0z (1YY = F@EURIN ] N — ]

And hence, the N poles in the left half of the s-plane are

sp = Q2NN g _01,... N =1

= o+ 8k



Note that, there are no poles on the Imaginary axis ot s-plane, and for N odd there will
be a pole on real axis of s-plane, for N even there are no poles even on real axis of s-plane.
Also note that all the poles are having conjugate symmetry. Thus the design methodology to

design a Butterworth low pass filter with 62 attenuation at a specified frequency Qs is Find N,

Ic e [ | 1 f"g = ]. e 1 Ir’l £)
21og(€2,/Q.)  log(€%/Q,)

Where by definition, 82 = 1//1+8% Thus the Butterworth filter is completely
characterized by the parameters N, 62, € and the ratio Qs/Qp or Qc.Then, from Eq. (5.31) find
the pole positions Sk; k =0,1, 2,........ (N-1). Finally the analog filter is given by

N 1
Hn[..h'.] = H

k==1

(s — s¢)

5.2.2 Chebyshev Filters:

There are two types of Chebyshev filters. Type | Chebyshev filters are all-pole filters
that exhibit equiripple behavior in the pass band and a monotonic characteristic in the stop
band. On the other hand, type Il Chebyshev filters contain both poles and zeros and exhibit a
monotonic behavior in the pass band and an equiripple behavior in the stop band. The zeros of
this class of filters lie on the imaginary axis in the s-plane. The magnitude squared of the
frequency response characteristic of type | Chebyshev filter is given as

1
1+ e2T2(Q/Q,)

| H,(Q) |*=

Where ¢ is a parameter of the filter related to the ripple in the pass band as shown in Fig.
(5.7), and Tn is the Nth order Chebyshev polynomial defined as

- cos( N cos~1 ), |z |<1
To(z) — 4 COS(NC | <
N | { |.'|:_|-C]'_]_|:_"". I,";l":h._l Ii":l_ | T | - 1

The Chebyshev polynomials can be generated by the recursive equation



I:«;_Fll_r_:l"] == '.-_}.II:'\ IZ:?!'E] — I:-\-'_l['.'u!':l. N=12. ..

Where To(x) = 1 and T1(x) = x.
At the band edge frequency Q="Qp, we have

1 "
=1—-m

V14 el

2
N H(o)!
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iy |-
b‘uf

QS
Figure 5.2: Type | Chebysehev filter characteristic

Or equivalently
5 1

= —

(1 —d1)2
Where 61 is the value of the pass band ripple.

The poles of Type | Chebyshev filter lie on an ellipse in the s-plane with major axis

3241
ry = {1,
213
And minor axis
B B2—-1
2= P05

Where B is related to € according to the equation



VIt e+ 1y

£

B=]
The angular positions of the left half s-plane poles are given by
T (2k4+ 1w

r_-:-.t;=§—|—'-Tl h=01.--.N—1

Then the positions of the left half s-plane poles are given by

sp = + 38, k=01--- . N—-1
Where ok = I, Cos ¢k and ‘Qk = I'1 Singk. The order of the filter is obtained from

log[lj‘,“e"ll — &+ ‘h,f"l — 03(1 + €2)) /edq]

_"‘I'u'r = —_——————
log[é—z + V’ |_'_%;‘]2 — 1]

cosh ™ E"]

~ cosh™Y{ ﬂ“ J

Where, by definition &, = 1N1+52.
Finally, the Type | Chebyshev filter is given by

N 1
H,(s) = H

k=1

|k.—l-.|[||

A Type Il Chebyshev filter contains zero as well as poles. The magnitude squared response is
given as

1

T 14 e2[TR(52)/ T ()]

| Ha.(—2)

Where Tn(X) is the N-order Chebyshev polynomial. The zeros are located on the imaginary
axis at the points

2, ]
= k=0,1,...,N—1
S1I0 iy

and the left-half s-plane poles are given

Sp=0r+ %, k=0,1,....N =1



where

(1,1 cOS Oy,

k=T 2 i 2
\/ 12 cos? O + 1y sin” O

and

()ory sin ¢y

£ k=

V r§ cos? oy, + risin® ¢y

Finally, the Type Il Chebyshev filter is given by

Hﬂ | = :I =

The other approximation techniques are elliptic (equiripple in both passband and
stopband) and Bessel (monotonic in both passband and stopband).

5.3 Analog to Analog Frequency Transforms

Frequency transforms are used to transform lowpass prototype filter to other filters like
highpass or bandpass or bandstop filters. One possibility is to perform frequency transform in
the analog domain and then convert the analog filter into a corresponding digital filter by a
mapping of the s-plane into z-plane. An alternative approach is to convert the analog lowpass
filter into a lowpass digital filter and then to transform the lowpass digital filter into the

desired digital filter by a digital transformation.

Suppose we have a lowpass filter with pass edge Qp and if we want convert that into
another lowpass filter with pass band edge Q’p then the transformation used is

Q
§— -Q—fs (lowpass to lowpass)

P

Thus we obtain a lowpass filter with system function Hi(s) = H,[(Q,/%,)s],
where H,(s) is the system function of the prototype filter with passband edge
frequency ,.

To convert low pass filter into highpass filter the transformation used is



2,4, |
= = (lowpass to highpass)

5

The system function of the highpass filter is Hy(s) = H, (R, /s).

The transformation for converting a lowpass analog filter with passband edge
frequency €, into a band filter, having a lower band edge frequency € and an
upper band edge frequency £2,, can be accomplished by first converting the lowpass

52 + QJQH
— O (lowpass to bandpass)
Thus we obtain
2
s°+ Q0
Hy(s) = H, (ﬂp ——— )
5{8, - Q)

Fipally, if we wish to convert a lowpass analog filter with band edge frequency
$2, into a bandstop filter, the transformation is simply the inverse of (8.4.3) with
the additional factor Q, serving to normalize for the band edge frequency of the
lowpass filter. Thus the transformation is

S(Qu - Qi)
Q ——
$= B o) (lowpass to bandstop)
The filter function is
s(S — )
Hys(s) = Hp | S0y ———
5+ 8,8,



Recommended Questions with answers

Question 1

I Design a digital filter to satisfy the following characteristics.
+«+ -3dB cutoff frequency of 0:5_ rad.
+«+ Magnitude down at least 15dB at 0:75_ rad.
+«+ Monotonic stop band and pass band Using
% Impulse invariant technique
+«+ Approximation of derivatives

+¢+ Bilinear transformation technique

[He! ™|
0 dB
3 dB -
:
i
15 dB{ -~~~} mmmmm e T
i
@ =0.5% =051 ®

Figure 5.8: Frequency response plot of the example
Solution:-
a) Impulse Invariant Technique

From the given digital domain frequency, _nd the corresponding analog domain frequencies.

Where T is the sampling period and 1/T is the sampling frequency and it always corresponds
to 2I1 radians in the digital domain. In this problem, let us assume T = 1sec.
Then Qc = 0:5IT and Qs = 0:75I1

Let us find the order of the desired filter using



Where &2 is the gain at the stop band edge frequency ws.

—15 dB = 201og d,

Order of filter N =5.
Then the 5 poles on the Butterworth circle of radius Q¢ = 0:5 IT are given by

g = 0.57eT+5) = —0.485 + j1.403
81 0.57e?F+15) = —1.27 + j0.923
So 0.5me?(F+T6) = —1.57 + 50.0

gy — 0.5medEFHE) = 197 — j0.023
& = 0.57ed(3+F) — _0.485 — j1.493

Then the filter transfer function in the analog domain is

. 1
H.s) = - - -
\9) (s+0.485 — 71.493)(s + 1.27 — 50.923)(s + L.57) (s + 1.27 4 50.923) (s + 0.485 + 70.923)
_ 25: Ap
io (8= si)

where A's are partial fractions coefficients of Ha(s).
Finally, the transfer function of the digital filter is
5 Ap

H(z)=Y"

k=1

E = where s;'s are the poles on the Butterworth circle
|1 — g%kz72)



D)

5 1

Hiz)=%" T

k=1 \ Z70 — 8k

c) For the bilinear transformation technique, we need to pre-warp the digital frequencies
into corresponding analog frequencies.

2

Le, {1 = Ftan(s)
0.5
€1, = 2tan(——) = 2 rad
and
: 0.T5m .
(1, = 2tan( o) = 4.828 rad.
Then the order of the filter
1 \
- oelgmmer — U
2log(£2E)

The pole locations on the Butterworth circle with radius ‘Qc = 2 are
sp = 2958 = _1.414 4+ j1.414

sy = 205+ = 1414 — j1.414

Then the filter transfer function in the analog domain is

. 1
Hﬂ.lr';"l = i = i . )
: (s 4+ 1414 — 51414 )(s + 1414 4+ j1.414)

Finally, the transfer function of the digital filter is



H(z) = thjl I

=T IL=T 21T
1
H(z) = -
' —I—l—ll—l—jl-Ll—l,ll"’ o+ 1.414 + j1.414)
Question 2

Design a digital filter using impulse invariant technique to satisfy following
characteristics

(i) Equiripple in pass band and monotonic in stop band

(ii) -3dB ripple with pass band edge frequency at 0:5I1 radians.

(iii) Magnitude down at least 15dB at 0:75 IT radians.

Solution: Assuming T=1,Q=0:5ITand s =0:75I1

The order of desired filter is

log[[\jl — &2 + \j'll —03(1 — €2)) Jedy]

o [Ee iz _ 1]
log[np e =1

when
20 log — = = —3|mboxrdB
W14 e*
lLe.,
101log(1+ €*) = 3dB
€2 = 10°% — 1 = 0.0052
e = 0.0076

and

20logdy = —15 dB



by — 107078 — 01778

Hence

(/1= (0.1778)2 + /1 — (0.1778)%(1 +0.0952)) /0.9976 x 0.1778]

log[§57 + v/ (55 )* — 1]

0.5x

I
)

The order of filter, N = 3.

The 3 poles on the ellipse are determined by

q_[w,.-’f]—i-t'z—i-].;_'_[x-fl-l—[]'.gg?ﬁz—l-]_%_lail}
oo e T 00076 - °

o= ] s

(1.341)2 + 1

= .57
T Ty L1

= 1.639

re = QP

The angles,

The poles are at

S = g COS iy + jiry sin gy



0.469 cos(_%) + 71.639 Sillf%)

gy =
— _0.2345 4+ j1.410
5 = 0469 cos(m) + 71.639sin(m)
— 0469+ j0.0
s3 — 0.460 cos(_hﬁ—ﬂ) 4516939 sm(%”)

= —0.2345 — j1.419

The analog filter transfer function is given by

1

H —
als) s+ 02345 — j1.410)(s + 0.469) + (s + 0.2345 + ;j1.410)

E—1 (5 - Sk)
where A.’s are the partial fraction coefficients.

Finally, the digital filter transfer function is given by

H(z) = ii’ﬂ‘*
(L — ezl



Question 3

An IIR digital low-pass filter is required to meet the following specifications:

Passband ripple (or peak-to-peak ripple): < 0.5 dB
Passband edge: 1.2 kHz

Stopband attenuation: > 40 dB
Stopband edge: 2.0 kHz
Sample rate: 8.0 kHz
Use the design formulas in the book to determine the required filter order for
(a) A digital Butterworth filter
(b) A digital Chebyshev filter
(c) A digital elliptic filter

Solution:-
For the design specifications we have
€ = 0.349
6§ = 99.995
1.2
fr = —J =015
2
= =< =0.25
fs 3
w
2, = 2tan—> = 1.019
w
Q, = 2tan—-2— = 2
é— = 286.5
€
$2, = 1.963
2,
x(n)




y(n)

@ 3’“@

0.5
........ M4 )
logn
: D> —=8393 = N=9
Butterworth filter: N, 2 Togk
cosh™1n
: ; =490 2 N=5
Chebyshev filter: Npipn 2 Tk
k) B - g
Elliptic filter: Npin 2 : = N=4¢

Question 4

Determine the system function H(z) of the lowest-order Chebyshev digital filter that
meets the following specifications:

(8) 3-dB ripple in the passband 0 < |w| < 0.247.

(b) At least 50-dB attenuation in the stopband (.35 < |w| < x. Use the bilinear
transformation.

Solution:-

Passband ripple = 0.5dB = ¢ = 0.349
Stopband attenuation = 50dB

wp, = 0.247r
w, = 0.357
Q, = 2tan=Z = 0.792
P 2
Q, = 2tan321 = 1.226
&
= - =906.1
n €
k = _gi = 1.547
Qp
cosh='n _ 7.502 _ _
Nmin 2 =748 = N =8

cosh-1k ~ 1.003
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Implementation of Discrete-Time Systems

6.1 Introduction
The two important forms of expressing system leading to different realizations of FIR & IIR
filters are

a) Difference equation form

y(n) = —Z a,y(n—k)+ Zbkx(n —k)

b) Ration of polynomials

M
> bz

H@Z)=—=2

The following factors influence choice of a specific realization,
Computational complexity

Memory requirements

Finite-word-length

Pipeline / parallel processing

6.1.1 Computation Complexity

This is do with number of arithmetic operations i.e. multiplication, addition & divisions. If
the realization can have less of these then it will be less complex computationally.
In the recent processors the fetch time from memory & number of times a comparison between
two numbers is performed per output sample is also considered and found to be important
from the point of view of computational complexity.

6.1.2 Memory requirements

This is basically number of memory locations required to store the system parameters,
past inputs, past outputs, and any intermediate computed values. Any realization requiring less
of these is preferred.

6.1.3 Finite-word-length effects

These effects refer to the quantization effects that are inherent in any digital
implementation of the system, either in hardware or in software. No computing system has
infinite precision. With finite precision there is bound to be errors. These effects are basically
to do with truncation & rounding-off of samples. The extent of this effect varies with type of
arithmetic used(fixed or floating). The serious issue is that the effects have influence on
system characteristics. A structure which is less sensitive to this effect need to be chosen.



6.1.4 Pipeline / Parallel Processing

This is to do with suitability of the structure for pipelining & parallel processing. The
parallel processing can be in software or hardware. Longer pipelining make the system more
efficient.

6.2 Structure for FIR Systems:
FIR system is described by,

M-1
y(n) = > bx(n—k)
k=0
Or equivalently, the system function
M-1
H(Z)=)bZ™
k=0

b 0<n<n-1
0 otherwise

Different FIR Structures used in practice are,
1. Direct form
2. Cascade form
3. Frequency-sampling realization
4. Lattice realization

n

Where we can identify h(n) = {

6.2.1 Direct — Form Structure
Convolution formula is used to express FIR system given by,

y(n) = Zh(k) x(n - k)

e |tis Non recursive in structure

win)

¥ h0) hil) h(?) hi) hirm-2) hirm-1)

yin)

e As can be seen from the above implementation it requires M-1 memory locations for
storing the M-1 previous inputs

e It requires computationally M multiplications and M-1 additions per output point

e Itis more popularly referred to as tapped delay line or transversal system

e Efficient structure with linear phase characteristics are possible where
h(n) =+h(M -1-n)



Prob:
Realize the following system function using minimum number of multiplication

W HE@) =111z 720 70, 70 7
3 4 4 3
We recognize h(n) = Ll, l, l, l, l, 1J
3443
M is even = 6, and we observe h(n) = h(M-1-n) h(n) = h(5-n)
i.e h(0) = h(5) h(1) = h(4) h(2) = h(3)

Direct form structure for Linear phase FIR can be realized

i w0l -7

= BT
- 1:' A
10 CHRCI:
= ™ x(n-4)
dn-o) — e __| «n-o)
._I_.I:'n':l ¥ I-]ID|:] W hl.-1-.|=1 I b h'f'zL'lr‘}
—(+) (R

Exercise: Realize the following using system function using minimum number of

multiplication.
H(2Z) :1+EZ’l +12’2 +EZ’3 —32’5 —EZ’6 —12*7 A
4 3 2 2 3 4
m=9 h(n) = 1,1,£’l,_1,_1’_£,_1
432 2 3 4
odd symmetry
h(n) = -h(M-1-n); h(n) = -h(8-n); h(m-1/2) =h(4) =0

h(0) = -h(8); h(1) =-h(7); h(2) =-h(6); h(3)=-h(5)



¥ ()= T hity=1/4

6.2.2 Cascade — Form Structure

The system function H(Z) is factored into product of second — order FIR system
K

H(Z)=]]H«@)
k=1

Where H, (Z) =b, +b,Z"+b,,Z? k=1,2,....K
and K = integer part of (M+1) / 2

The filter parameter bo may be equally distributed among the K filter section, such that bo
=bi1o b2 .... bko oOr it may be assigned to a single filter section. The zeros of H(z) are grouped

in pairs to produce the second — order FIR system. Pairs of complex-conjugate roots are
formed so that the coefficients {bxi} are real valued.

*{n) =41 (n) ¥ Vo) Yo, v, (n=yin)
®x2(n) | Wamy * "
4 (n)
X {n)
> 21 > Z-'I
| ko bk bk2

Yi{n)=%,,(N)
ol + ol + -



In case of linear —phase FIR Tilter, the symmetry In n(n) implies that the zeros or H(z)
also exhibit a form of symmetry. If zk and zk* are pair of complex — conjugate zeros then

1/zk and 1/zk* are also a pair complex —conjugate zeros. Thus simplified fourth order
sections are formed. This is shown below,

H (2)=Cl-z2 )~z *2)1-2"/z,)1-2"12.)
=C,, +Cyz*+C,z2+Cz %+

x,(n)

N

S

Sk

Cio

® @ n

Problem: Realize the difference equation
y(n) = x(n) + 0.25x(n —1) + 0.5x(n — 2) + 0.75x(n — 3) + x(n — 4)
in cascade form.

Y(z) = X(2)f1+0.252 7" +0.52 % +0.752° + z7*)
H(z)=1+0.252"+0.527% +0.75z-°* + z°*
Soln:

"H(z) = (1-1.1219z7" +1.2181z 2)(1+1.3719z " + 0.821z %)
H(z) =H,(2)H,(2)

Z-W Z-W Z"I Z"I

: -1.1219 1.218 1 113179 0.821

® + g u
6.3 Frequency sampling realization:
We can express system function H(z) in terms of DFT samples H(k) which is given by

HO -0



I'nis Torm can be realized with cascade of FIR and IR structures. 1'he term (1-z™) IS realized

N-1
as FIR and the term iZLk)& as |IR structure.
N k=0 1- N

The realization of the above freq sampling form shows necessity of complex arithmetic.
Incorporating symmetry in h(n) and symmetry properties of DFT of real sequences the
realization can be modified to have only real coefficients.

+
W, 0

S G
W,

6.4 Lattice structures
Lattice structures offer many interesting features:

1. Upgrading filter orders is simple. Only additional stages need to be added instead of
redesigning the whole filter and recalculating the filter coefficients.

2. These filters are computationally very efficient than other filter structures in a filter
bank applications (eg. Wavelet Transform)

3. Lattice filters are less sensitive to finite word length effects.

Consider
Y@ 1.8 (i
H(z) = X2 _1+iZ:1:am(|)z

m is the order of the FIR filter and am(0)=1

whenm=1 Y(2)/ X(z) = 1+ai(1) z*1



y(n)=Xx(n)+ a(1)x(n-1)
f1(n) is known as upper channel output and r1(n)as lower channel output.

fo(n)= ro(n)=x(n)

»1,(n)

The outputs are

f.(n)=f,(n)+kr,(n-1) la
nn)=kf(n+rn-1) b
if k,=a,(),then f (n)=y(n)

If m=2

Y(z) a1 2

X(2) =l+a,Nz" +a,(2)z

y(n) =x(n)+a, x(n-1)+a,(2)x(n-2)
y(n) = f,(n)+k,r(n-1) (2)

Substituting 1a and 1b in (2)

y(n) = fo(N) + K (N =1) + K[k fo (N =1) + r, (N = 2)]
= f,(n) +kir,(n—=1) + k,k, f,(n=1) +Kk,r,(n—2)]
since f,(n)=r,(n) =x(n)
y(n) = x(n) + k,x(n —1) + k,k x(n —1) + k,x(n—2)]
= X(n) + (k; + kk,)x(n-1) + k,x(n—2)

We recognize



a, (1) = k1 + k1k2
a, (1) = kz

Solving the above equation we get

Q)
' 1va,(2)

and k, =a,(2) (4)

Equation (3) means that, the lattice structure for a second-order filter is simply a cascade of

two first-order filters with k1 and k2 as defined in eq (4)

fol) oY
»{ +

f2(n)=y(n)

k2

Similar to above, an Mth order FIR filter can be implemented by lattice structures with

M — stages

fn) B B
] Stage 1 Stage 2

i - bl .
r(n) ryn) r,(n)

8.4.1 Direct Form —I to lattice structure
For m=M,M-1, ........... 2,1do
Ky = a, (m)
am_l(i):am(l)_am(m)am(m_l) 1<i<m-1

1-k2

Stage
(M-1)

fq(n)=y(n)

e

—

Myt (N)



e The above expression fails If km=1. This Is an indication that there isa zero on the unit
circle. If km=1, factor out this root from A(z) and the recursive formula can be applied
for reduced order system.

form=2and m=1
k,=28,(2) & k =a/()

form=2&i=1
a (1) = &2 D) -2,(22,(1) _2a,(O1-2,(2] _ a,Q)
1 1-k; 1-a2(2)  1+3,(2)
Thus k, = 3,1
1+a,(2)

8.4.2 Lattice to direct form —I
Form=12,....... M-1

a,0)=1
a,(m) =k,
a,@)=a,,()+a,(ma,  ,(m-i) 1<i<m-1

Problem:

Given FIR filter H(Z) =1+2Z +1Z obtain lattice structure for the same
Given a,() =2, a,(2)=%

Using the recursive equation for

m=M, M-I, ...... ,2,1

here M=2 therefore m=2,1

ifm=2 k, =a,(2)=%

ifm=1k, =a,(1)

also, when m=2 and i=1

al(l) = 2, () = 2 = §

1+a,(2) 1+% 2
Hence k; =a,() =%

(T o o f E; ni=yin)

«(n)

r(n)
i



Recommended questions with solution

Problem:1

Consider an FIR lattice filter with co-efficients k, = % k, :%, Ky = % Determine the FIR
filter co-efficient for the direct form structure
(H(Z)=2a,(0) + as(l)zil + as(z)ziz +a, (3)273)

1
a,(0)=1 a;(3) =k, = a,(2)=k, ==
:(0) @)=k, =Y )=k, =

1

a‘l(l) = k1 = E
form=2, i=1
a,H=a0)+a,(2a @)
1 1
=a,([1+a,(2)] = iu §J
_4_2
6 3
for m=3, i=1
;) =a,)+a;(3)a,(2)
2 11
=—4+ =
3 43
2 1 8+1
:—+ —_
3 12 12
_9_3
12 4
form=3 & i=2

a;(2) =a,(2) +a;(3)a, (1)
2
3

2+1

11
_é Z
211 2+
36 6



3.1
6 2
3 1 1
a3(0)=1, 3.3(1)22, a3(2)25, a3(3):Z
«{n) N _ ~ T
T all)=1 q:;h =0/4 %a :?:TI _1/7
Mt R i)

6.5 Structures for IIR Filters

The IR filters are represented by system function;
M

D bz
H(Z)=—2%
1+> az™
k=1
and corresponding difference equation given by,

Y =3 2,y(-K) + 3 b X(-K)

Different realizations for IIR filters are,

1. Direct form-I
2. Direct form-II
3. Cascade form
4, Parallel form
5. Lattice form

6.5.1 Direct form-I

This is a straight forward implementation of difference equation which is very simple.
Typical Direct form — | realization is shown below . The upper branch is forward path and
lower branch is feedback path. The number of delays depends on presence of most previous
input and output samples in the difference equation.



6.5.2 Direct form-II
The given transfer function H(z) can be expressed as,

= Y@) V@ Y@
X(z) X(2) V(2)
where V(z) is an intermediate term. We identify,

\)/((z) N e -all poles
(Z) 1+Zakzik
k=1

Y@ (1.8 ok |
V@) £1+k2;‘bz J all zeros

The corresponding difference equations are,

v(n) = x(n) - ZN:akv(n —k)

y(n) =v(n) + ibkv(n -1)
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This realization requires M+N+! multiplications, M+N addition and the maximum of
{M, N} memory location

6.5.3 Cascade Form

The transfer function of a system can be expressed as,



H(z)=H,(2)H,(2)...H,(2)

Where H, (Z) could be first order or second order section realized in Direct form — Il form
ie.,
H.(2) = b, +b,Z " +b,Z7
(2)=

1+a,Z " +a,27°
where K is the integer part of (N+1)/2

Similar to FIR cascade realization, the parameter bo can be distributed equally among the
k filter section Bo that bo = biob2o.....bko. The second order sections are required to realize
section which has complex-conjugate poles with real co-efficients. Pairing the two complex-
conjugate poles with a pair of complex-conjugate zeros or real-valued zeros to form a
subsystem of the type shown above is done arbitrarily. There is no specific rule used in the
combination. Although all cascade realizations are equivalent for infinite precision arithmetic,
the various realizations may differ significantly when implemented with finite precision
arithmetic.

6.5.4 Parallel form structure

In the expression of transfer function, if N > M we can express system function
N N
H(Z)=C+ZL_1 =C+)Y H (2)
al—pZ k=1
Where {p«} are the poles, {Ax} are the coefficients in the partial fraction expansion, and the
constant C is defined as C =b, /a, , The system realization of above form is shown below.

a WO )

*

(7 K‘l. - y I f I
HL-_: @

Gl
=

b, +b,Z7"

Where H, (Z) =
(2) 1+a,Z2 " +a,Z

-2



Once agaln choice of using Tirst- order or second-order sections depends on poles or the
denominator polynomial. If there are complex set of poles which are conjugative in nature then
a second order section is a must to have real coefficients.

Problem 2

Determine the

(i)Direct form-I (ii) Direct form-11 (iii) Cascade &
(iv)Parallel form realization of the system function

100-1z -2z i+ 2z )
R T (R CRN VA (ORI EVAY)

100-1Z21+1z2f1+2z2 )
Wrizt+ 3z -21+127)

32

H(Z):(l

100+821-222+277%)
(-sziisiz2_vz7%4374)

H(Z) =

(-14.75-12.90z)  (24.50 + 26.82z ")
+

1.

H(z) = 3
A+-z'+ =77 (l-z"+>z
8 32 2

Oirect Form |

ollnd

It




o 70. )

Uirect Form |l

Cascade Form
H(z) = Hi(z) H2(2)

Where
1—22l +>-27°
Hl(z)_ 7
1-—z'+ 77
8
10(1+2z7"
Hl(z)= ( )

1-z1+=272




Parallel Form
H(z) = Hi(2) + Ha(2)

(-14.75-12.902) (24.50+26.82")

3 1
1+—z7%+ =772 1-zt+=27
( 3 2 ) 5 )

H(z) =

tnd
o) J

Problem: 3
Obtain the direct form — I, direct form-II
Cascade and parallel form realization for the following system,
y(n)=-0.1 y(n-1)+0.2y(n-2)+3x(n)+3.6 x(n-1)+0.6 x(n-2)

Solution:
The Direct form realization is done directly from the given i/p — o/p equation, show in below
diagram

Direct form —I1 realization
Taking ZT on both sides and finding H(z)

Y(z) 3+3.6z"'+0.6z7
X(z) 1+0.1z'-02z

H(z) =



Tiny

Cascade form realization
The transformer function can be expressed as:

H(2) = 3+ O.6i‘l)(1+ z‘ll
(L+0.527%)(1-0.4z7)

which can be re written as

340677 1z
where H (z2) = ———— and H,(2) = ———
1(2) 14057 2 (2) 1-0.4z7"
I---------———, Frmmim - - =5
; =
1‘ - 53&&
; .
. V
' By | g !
- : 1
" Ho o=y ' Hheay :

o m w

Parallel Form realization

The transfer function can be expressed as
H(z) = C + Hi(z) + Ha(z) where Hi(z) & H2(2) is given by,

7 1

H(z)=-3+ -
(2) 1-04z" 1+05z7




6.6 Lattice Structure for IIR System:
Consider an All-pole system with system function.
1 1

1+ Y a,(0z* M@

H(Z) =

The corresponding difference equation for this IIR system is,
N
y(n) == ay (k)y(n—k)+x(n)
k=1
OR
N
x(n) = y(n) + > a, (k)y(n—k)
k=1

For N=1
x(n) =y(n)+a,@Q)y(n-1)
Which can realized as,

ron Yy = «fu(v\)

. tv “’X
<+—E
9ty
We observe
x(n) = f,(n)
y(n) = fo(n) = f,(n) -k, g,(n-1)
=x(n) —k,y(n-1) K, = a (1)
9,(n) =k, fo () + g, (N=1) =k, y(n) + y(n-1)
For N=2, then

y(n) =x(n)-a,y(n-1) -a,(2)y(n-2)



‘I'nis output can be obtained Trom a two-stage lattice Tilter as snown in below Tig

(!o(n)x_‘
xen) 4 FOD oy . 1
Yo : e
z

g XI 21 Flgeees

f,(n) =x(n)

fl(n) = fz (n)_kzgl(n_l)

gz(n) = kz fl(n) + gl(n -1

f0 (n) = fl(n) - klgo(n )

gl(n) = kl f0 (n)+ go(n -1

y(n) = 1:o (n) = go(n) = fl(n) - klgo(n )

= f,(n)—k,9,(n-1) —k;g,(n-1)

= fz(n)_kz[klfo(n_1)+go(n_z)]_klgo(n_l)

= x(n) -k, [k,y(n-1) + y(n - 2)] - k,y(n 1)

=x(n) -k @+k;)y(n-1) -k, y(n—2)
Similarly

9,(N) =k, y(n) +k 1+k;)y(n-1) + y(n-2)
We observe

a, 0) =% a, ®= k1(1+ kz); a, (2= kz
N-stage IIR filter realized in lattice structure is,

Al ’fm—l () 'f)—(V‘ )
= T
Ky
~I<y
-1 -
anm L
fy (n) =x(n)
fm—l(n) = fm (n) - kmgm—l (n _1) m:N, N'l,"'l

9 (N) =Ky T s (M) +9,,(n-1) m=N, N-1,---1



y(n) = fo(n) =g,(n)
8.6.1 Conversion from lattice structure to direct form:

a,(m =K,  a,(0)=1
a, (k) =a, (k) +a,(Ma,, (m—K)

Conversion from direct form to lattice structure
a,,(0)=1 Ky =a,(m)

a, (k) -a,(m) a, (m—k)
1-ag (m)

A (k) =

6.6.2 Lattice — Ladder Structure:

A general IR filter containing both poles and zeros can be realized using an all pole
lattice as the basic building block.

If,
D by (K)Z™
H(Z): BM (Z) — k:ON
MA@y e Kz
Where N> M ;

A lattice structure can be constructed by first realizing an all-pole lattice co-efficients
K,, 1<m<N for the denominator An(Z), and then adding a ladder part for M=N. The

output of the ladder part can be expressed as a weighted linear combination of {gm(n)}.
Now the output is given by

M
y(n) =2.C,9,(n)
m=0
Where {Cn} are called the ladder co-efficient and can be obtained using the recursive relation,

M
C, =b, - > Cia(i—m); m=M, M-1, ....0

i=m+1



fn. ™) folm)

Problem:4
Convert the following pole-zero IIR filter into a lattice ladder structure,

-1 -2 -3

H(Z) = 1+1322,1 +52272+1Z .

1+5,Z27 +527+3Z

Solution:

Given b, (Z)=1+2Z*'+227%+2Z"

And A (Z)=1+8Z27"+527%+17°°
a,(0)=L aM=7 a@=3 a@)=3

ks =ad, (3) :%
Using the equation
a (k)—a_.(m)a. (m-k
. () = 2009 =2 (May (k)
1-a"m(m)
for m=3, k=1
_ 13_15
a2 (1) — a3 (l) a32(3)a3 (2) — 24 3'28 :%
1-a;(3) 1-(3)
for m=3, & k=2
a2 (2) — k2 — a3 (2) - a3‘2(3)a3 (1)
1_a3 (3)
5_1 13 4513
8 38'24 T2 _ 1
2
-5t
form=2, & k=1
al (1) — kl — a‘2 (1) - 3.2 (2)a2 (1)

1-a,(2)



S
B
1—

for lattice structure k, =%, k, =1, k; =
For ladder structure

M
C,=b,- > C,.a(-m) m=M, M-1,1,0
i=m+1

Cs = b3 =1 Cz = bz _Csas(l)
=2-1.(%) =1.4583

3
b,->.cai-m m=1
i=2

—b, —[c,a,(© + Csas(2>]
= 2-[(1.4583)(3) + 3] = 0.8281

3
Co = by _chal(i —m)
i1

=b, - [Cla'l @) +c,a,(2) +c,a, (3)]
—1-[08281(%) +1.4583(2) + 1] = —02695

Wl

M=3

C,

To convert a lattice- ladder form into a direct form, we find an equation to obtain

a, (k) from k, (m=1,2,......... N) then equation for ¢, is recursively used to computeb,,
(m=0,1,2,......... M)
(n)
0 £ o)
f;(") /
/ 3 1/4
p /
/ \\J 3 1/4
/
i \ 7! -1 + 7! -
3(")
1.0 0.8281 y -0.2695
Y
(n)
i (=

Problem 5



A z-plane pole-zero plot for a certain digital filter is shown in figure 7. The filter has
unity gain at DC. Determine the system function in the form

(1 +alz°])(l +blz'2 +bzz'2)
A+ciz ) +dz7 +d,z72)

A, ay,by,b,,c,,d, and d,. Sketch the direct form-II and cascade realizations of the
system. [91

H(z)=A giving the numerical values for parameters

2=13  §ime)
[z| =1

/) Re{z)

57

3 zeros

@z=-1

Fig. 7
<1.3
Sol. : H@) = A— (l”l) 1
(1"52-1 )(1—52—] +ZZ-])
B w (1+z'1)(1+22'1+z'2)
(1—%2’] )(1—%24 +—‘1Iz_])
H(z)|z=] = 1

- 4 = %,a1=1,b1=2,b2=1,c1=—%,d1=—%andd2=%



3/64
x(n)

Fig. 8 (b)

Question 6

Consider a FIR filter with system function:
H(z) = 1+2.82 Z1 +3.4048z-2 +1.74z 3. Sketch the direct form and lattice
realizations of the filter.



Sol. : A4(2) = H(z) = 1+2822™" +3404827 +17427
B4(2) 174 + 34048z 7" +282:72 427

Hence k, = 174
A 4(2)-k4B4(2)

A,(2) = =
1-k
_ 1428227 43404827 +17427° — 30276592432 - 490682 ~17427
(-2.0276)
-1 - -2
_ C20276-31043 -150227 1, I
(~2.0276)
B,(2) = 07407 +1531z7" 4272
k, = 07407
A -k B.(z
A2) = »(2) 22 »(2)
1-k;
_ 14 1.531z7" + 0740727 - 05486 -1134z " - 07407272
04514
= 1+08795z"
k, = 08795

ljirect fox-';n réalization :

x(n) »f 1 o -1 ~1

1.74

y(n)

Fig. 5



Lattice realization :

() y(n)
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T7
Design of FIR Filters

7.1 Introduction:
Two important classes of digital filters based on impulse response type are
Finite Impulse Response (FIR)

Infinite Impulse Response (IIR)

The filter can be expressed in two important forms as:

1) System function representation;
HO) =—S—— O

2) Difference Equation representation;
N M
2 ay(n-k)=>bx(n-k) (2
k=0 k=0

Each of this form allows various methods of implementation. The eq (2) can be viewed
as a computational procedure (an algorithm) for determining the output sequence y(n) of the
system from the input sequence x(n). Different realizations are possible with different
arrangements of eq (2)

The major issues considered while designing a digital filters are :

* Realiability (causal or non causal)

* Stability (filter output will not saturate)

® Sharp Cutoff Characteristics

® Order of the filter need to be minimum (this leads to less delay)

* Generalized procedure (having single procedure for all kinds of filters)
® Linear phase characteristics



‘I'he Tactors considered with tiiter implementation are ,
a. It must be a simple design

b. There must be modularity in the implementation so that any order filter can be obtained with
lower order modules.

c. Designs must be as general as possible. Having different design procedures for different
types of filters( high pass, low pass,...) is cumbersome and complex.

d. Cost of implementation must be as low as possible

e. The choice of Software/Hardware realization

7.2 Features of 1IR:

The important features of this class of filters can be listed as:

* Out put is a function of past o/p, present and past i/p’s

* Itis recursive in nature

* Ithas at least one Pole (in general poles and zeros)

* Sharp cutoff chas. is achievable with minimum order

* Difficult to have linear phase chas over full range of freq.

* Typical design procedure is analog design then conversion from analog to digital

7.3 Features of FIR : The main features of FIR filter are,

They are inherently stable

Filters with linear phase characteristics can be designed

» Simple implementation — both recursive and nonrecursive structures possible

» Free of limit cycle oscillations when implemented on a finite-word length digital system

7.3.1 Disadvantages:

 Sharp cutoff at the cost of higher order
» Higher order leading to more delay, more memory and higher cost of implementation

7.4 Importance of Linear Phase:

The group delay is defined as
__do(w)

T =
9 dw

which is negative differential of phase function.

Nonlinear phase results in different frequencies experiencing different delay and arriving
at different time at the receiver. This creates problems with speech processing and data



communication applications. Having linear phase ensures constant group delay ftor all
frequencies.

The further discussions are focused on FIR filter.
6.5 Examples of simple FIR filtering operations: 1.Unity Gain Filter

y(n)=x(n)
2. Constant gain filter
y(n)=Kx(n)
3. Unit delay filter
y(n)=x(n-1)
4. Two - term Difference filter
y(n) = x(n)-x(n-1)
5. Two-term average filter
y(n) = 0.5(x(n)+x(n-1))
6. Three-term average filter (3-point moving average filter)
y(n) = 1/3[x(n)+x(n-1)+x(n-2)]
7. Central Difference filter

y(n)= 172[ x(n) - x(n-2)]

When we say Order of the filter it is the number of previous inputs used to compute the
current output and Filter coefficients are the numbers associated with each of the terms x(n),
X(n-1),.. etc
The table below shows order and filter coefficients of above simple filter types:



Ex. |order a0 al a2
1 0 1 - -

2 0 K - -

3 1 0 1 -
4(HP) 1 1 1 |
5(LP) |1 112 2 |
I6(LP) |2 1/3 W3 |13
7(HP)[2 1/2 |0 -1/2

7.6 Design of FIR filters:

The section to follow will discuss on design of FIR filter. Since linear phase can be
achieved with FIR filter we will discuss the conditions required to achieve this.

7.6.1 Symmetric and Antisymmetric FIR filters giving out Linear Phase characteristics:

Symmetry in filter impulse response will ensure linear phase

An FIR filter of length M with i/p x(n) & o/p y(n) is described by the difference equation:

y(n)=bo x(n) + b1 x(n-1)+....... +b m-1 X(N-(M-1)) = MZﬁlbkx(n —-k) -(1)

k=0

Alternatively. it can be expressed in convolution form
M-1

y(n) = > h(k)x(n-k) -(2)
k=0

i.e b= h(k), k=0,1,....M-1

Filter is also characterized by



H(z) = Mz_:lh(k)z‘k

polynomial constitute zeros of the filter.

An FIR filter has linear phase if its unit sample response satisfies the condition

h(n)= £ h(M-1-n) n=0,1,....... M-1

-(4)

-(3) polynomial of degree M-1 in the variable z. The roots of this

Incorporating this symmetry & anti symmetry condition in eq 3 we can show linear phase

chas of FIR filters
H(z)=h(0)+h®z " +h(2)z7 +..........

If M is odd

+h(M =2)z7 ™2 4y h(M -1z ™MD

M-1 M-1 M-3

=72 2 h0)z2 2 th®z' 2 e
Applying symmetry conditions for M odd

h(0) = =h(M —1)
h(@) = +h(M —2)

M -1 M -1

h(———) ==Nh( )
h(M2+1)=ih(M -3,

-h(I\/I —1) = +h(0)

M-1

H(z)=h(Q)+h@z ™" +.......... +h(MT_1)Z(2

+h(M -=2)z7 ™2 +h(M -1z~ ™M™

)

M +1 M +3
+h(M +1)Z - )+h(M +3)Z (=
L n Mty +h('v'2+3)z2 +

h(M -1)z '

M-1
2

)



M-3

)+ ih(n){z(Mflfzn)IZ + Zf(M7172n)/2}

n=0

M-1
Hz) =z 2 |nM=t

-

similarly for M even

M
-
M-1| 5

H(z) = Z’(T) Zh(n){Z(M—l—Zn)IZ + Z—(M—1—2n)/2}

n=0

7.6.2 Frequency response:

If the system impulse response has symmetry property (i.e.,h(n)=h(M-1-n)) and M is odd
H(e!”)=e!" |H, (') | where

M -3

M _l) + Zih(n) cos a)(% -n)

H.(e"")=|h( 5

o) =D T IH, )]0

:—(MT_l)aH;z if |H,(e)<0

In case of M even the phase response remains the same with magnitude response expressed as

My

H (el°) = ZZZh(n)cosco(MT_l—n)

If the impulse response satisfies anti symmetry property (i.e., h(n)=-h(M-1-n))then for
M odd we will have

h(%) _ —h(%) ie. h(MT_l) 0

H, (') = ZZZ:h(n)sin a)(MT_l -n)

If M is even then,



My

H. (e') = ZZZh(n)sin a)(%— n)

In both cases the phase response is given by

() =—(%)w+ﬂ/z if |H ()0

= —(%)a)+37z/2 if |H,(e')<0
Which clearly shows presence of Linear Phase characteristics.

7.6.3 Comments on filter coefficients:

* The number of filter coefficients that specify the frequency response is (M+1)/2 when is M
odd and M/2 when M is even in case of symmetric conditions

* In case of impulse response antisymmetric we have h(M-1/2)=0 so that there are  (M-1/2)
filter coefficients when M is odd and M/2 coefficients when M is even

7.6.5 Choice of Symmetric and antisymmetric unit sample response

When we have a choice between different symmetric properties, the particular one is
picked up based on application for which the filter is used. The following points give an
insight to this issue.

* If h(n)=-h(M-1-n) and M is odd, H«(w) implies that Hr(0)=0 & H:(n)=0, consequently not
suited for lowpass and highpass filter. This condition is suited in Band Pass filter design.

» Similarly if M is even H¢(0)=0 hence not used for low pass filter

» Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero response
at w = 0 if desired.

Looking at these points, antisymmetric properties are not generally preferred.



1.6.06 Zeros of Linear Phase FIR Filters:

Consider the filter system function

H(z)= Mzi"lh(n)z‘n

Expanding this equation

H(z)=h(0)+h@®z " +h(2)z7 +...... +h(M -2)z7™? th(M -1)z7 ™M
sin ce for Linear — phase we need

h(n)=h(M -1-n) ie,

h(0) =h(M -1); h(2) =h(M -2);......h(M —1) = h(0);

then

H(z)=h(M =) +h(M =2)z " +........ +hz ™2 +h(©)z ™

H(z)=z ™ M -1)z™Y +h(M -2)zM? +.....+h(L)z+h(0)]

M -1
H(z) =z ™Y h(n)(z ) "=z ™ H(zY)
n=0
This shows that if z = z1 is a zero then z=z1 is also a zero

The different possibilities:

1. If z1=1then z; =zt =1 is also a zero implying it is one zero

2. If the zero is real and |z|<1 then we have pair of zeros

3. If zero is complex and |z|=1then and we again have pair of complex zeros.
4. If zero is complex and |z|#1 then and we have two pairs of complex zeros

i’

Unit Q -
circle | i

Fig taken from D3P by Prackis. P 62




‘I'ne plot apbove shows distribution ot zeros Tor a Linear — phase FIR Tilter. As It can be seen
there is pattern in distribution of these zeros.

7.7 Methods of designing FIR filters:
The standard methods of designing FIR filter can be listed as:

1. Fourier series based method
2. Window based method
3. Frequency sampling method

7.7.1 Design of Linear Phase FIR filter based on Fourier Series method:

Motivation: Since the desired freq response Ha(e'®) is a periodic function in o with
period 2m, it can be expressed as Fourier series expansion

Ha('") = > hy(n)e™™
where h,(n) are fourier series coefficients

l T jo jon
hd(n)=g_fﬂHd(e‘ el de

This expansion results in impulse response coefficients which are infinite in duration and non
causal. It can be made finite duration by truncating the infinite length. The linear phase can be
obtained by introducing symmetric property in the filter impulse response, i.e., h(n) = h(-n). It
can be made causal by introducing sufficient delay (depends on filter length)

7.7.2 Stepwise procedure:

1. From the desired freq response using inverse FT relation obtain hq(n)
2. Truncate the infinite length of the impulse response to finite length with  (‘assuming
M odd)

h(n)=h,(n) for—-(M -1)/2<n<(M-1)/2
=0 otherwise
Introduce h(n) = h(-n) for linear phase characteristics

Write the expression for H(z); this is non-causal realization
To obtain causal realization H’(z) = z M2 H(z)

a s w



Exercise Problems

Problem 1 : Design an ideal bandpass filter with a frequency response:

; 3z
H (e')=1 forzga)S—
/") <ot <>

=0 otherwise
Find the values of h(n) for M = 11 and plot the frequency response.

H (eM)

1.0

- _31/4 -TT/4 /4 3m/4 hni W

_ 1 T joya jon
hd(n)—EJ;Hd(e )el dw

27[ -3z/4 nl4

1 —l4 ) 37[/4.
= { J. e'dow+ J.e'””da)}

:i sins—ﬁn—sinzn —0<N<
m 4 4

truncating to11 samples we have h(n) = h,(n) for|n|<5
=0 otherwise
For n = 0 the value of h(n) is separately evaluated from the basic integration

h(0) = 0.5
Other values of h(n) are evaluated from h(n) expression

h(1)=h(-1)=0

h(2)=h(-2)=-0.3183

h(3)=h(-3)=0

h(4)=h(-4)=0

h(5)=h(-5)=0

The transfer function of the filter is



(N-1)/2

H(z) =h(0) + Z[h(n){z“ +27}

=0.5-0.3183(z* +z7?%)

the transfer function of the realizable filter is

H (z) = z7°[0.5-0.3183(z% + z7%)]
=-0.31832°+0.52°-0.31832"'

the filter coeff are

h'(0)=h'(10)=h'1) =h'(®) =h'(2)=h'(8)=h'(4)=h'(6) =0

h'(3) =h'(7) =-0.3183

h'(5) =0.5

The magnitude response can be expressed as
) (N-1)/2
|HEe")|= > a(n)cosen
n=1

comparing this exp with

|H (") |5 z7°[h(0) + 225: h(n) cos wn]|

n=1

We have
a(0)=h(0)
a(1)=2h(1)=0
a(2)=2h(2)=-0.6366
a(3)=2h(3)=0
a(4)=2h(4)=0
a(5)=2h(5)=0
The magnitude response function is
IH(e 1®)| = 0.5 — 0.6366 cos 2m which can plotted for various values of o

o in degrees =[0 20 30 45 60 75 90 105 120 135 150 160 180];



(H(e ™) ndabs=[-1/.5 -38.1/ -14.6 -6.02 -1.7/4 0.4546 1.11 0.4346 -1./4 -6.02 -14.6 -38.1/ -
17.3];

Magnitude freq resp of BP filter
5 T T T T T

mag
resp in dB

20\ f A
| \

L

-25 - "\‘

.30 - \ \ / o

35|

40 I I 1 1 1 1 I 1
0 20 40 60 80 100 120 140 160 180

angle in degrees

Problem 2: Design an ideal lowpass filter with a freq response

H,(e)=1 for-Z<ap<Z
¢ (&) > >

=0 for%s|a)|£7r

Find the values of h(n) for N =11. Find H(z). Plot the magnitude response

From the freq response we can determine hg(n),

. 7n
1 2 sin —
h,(n)=— |e'dw= —o<n<o and n=z0
‘ 2 n
-rl2

Truncating hg(n) to 11 samples

h(0) = 1/2
h(1)=h(-1)=0.3183
h(2)=h(-2)=0
h(3)=h(-3)=-0.106



n(4)=n(-4)=0
h(5)=h(-5)=0.06366

The realizable filter can be obtained by shifting h(n) by 5 samples to right h’(n)=h(n-5)
h’(n)=1[0.06366, 0, -0.106, 0, 0.3183, 0.5, 0.3183, 0, -0.106, 0, 0.06366];
H'(z) =0.06366 —0.106z > +0.3183z* + 0.5z +0.3183z° —0.106z ° +0.063662 *°

Using the result of magnitude response for M odd and symmetry

M-1

)+ Zzlh(n) coS a)(MT_l -n)]

|H, (e')|=[0.5+0.6366 cosw —0.212 cos 3w + 0.127 cos 5] |

H (@) = [h(

Problem 3 :

Design an ideal band reject filter with a frequency response:

H,(e”) =1 for|w|£%and |a>|22?7[

=0 otherwise
Find the values of h(n) for M =11 and plot the frequency response

Ans:h(n)=[0 -0.1378 0 0.2757 0 0.667 0 0.2757 0  -0.1378 0];

7.8 Window based Linear Phase FIR filter design

The other important method of designing FIR filter is by making use of windows. The
arbitrary truncation of impulse response obtained through inverse Fourier relation can lead to
distortions in the final frequency response.The arbitrary truncation is equivalent to multiplying
infinite length function with finite length rectangular window, i.e.,

h(n) = ha(n) w(n) where w(n) = 1 for n = £(M-1)/2
The above multiplication in time domain corresponds to convolution in freq domain, i.e.,



H(e'™)=Hqe’™) ™ W(e'™) where W(e'™ ) I1sthe 1 oTf winaow function w(n).

The FT of w(n) is given by

sin( oM / 2)

W = wr2)

The whole process of multiplying h(n) by a window function and its effect in freq domain are
shown in below set of figures.




convolution of YWiw) and Hd{w)
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Suppose the filter to be designed is Low pass filter then the convolution of ideal filter freq
response and window function freq response results in distortion in the resultant filter freq
response. The ideal sharp cutoff chars are lost and presence of ringing effect is seen at the band
edges which is referred to Gibbs Phenomena. This is due to main lobe width and side lobes of
the window function freq response.The main lobe width introduces transition band and side
lobes results in rippling characters in pass band and stop band. Smaller the main lobe width
smaller will be the transition band. The ripples will be of low amplitude if the peak of the first
side lobe is far below the main lobe peak.

7.8.1 How to reduce the distortions?
1. Increase length of the window

- as M increases the main lob width becomes narrower, hence the transition band width is
decreased

-With increase in length the side lobe width is decreased but height of each side lobe
increases in such a manner that the area under each sidelobe remains invariant to changes in
M. Thus ripples and ringing effect in pass-band and stop-band are not changed.

2. Choose windows which tapers off slowly rather than ending abruptly - Slow tapering

reduces ringing and ripples but generally increases transition width since main lobe width
of these kind of windows are larger.



(.8.2 What Is ideal winhdow characteristics?

Window having very small main lobe width with most of the energy contained with it
(i.e.,ideal window freq response must be impulsive).Window design is a mathematical
problem, more complex the window lesser are the distortions. Rectangular window is one of
the simplest window in terms of computational complexity. Windows better than rectangular
window are, Hamming, Hanning, Blackman, Bartlett, Traingular,Kaiser. The different
window functions are discussed in the following sention.

7.8.3 Rectangular window: The mathematical description is given by,

w,(n)=1for0<n<M-1

7.8.4 Hanning windows:
It is defined mathematically by,

27

) for0<n<M -1
M -1

W,,,(N) =0.5(1—cos
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7.8.5 Hamming windows:
This window function is given by,

Wi, (N) =0.54 - 0.46 cos I\jm

1forognSM—l
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7.8.6 Blackman windows:
This window function is given by,

4 for0<n<M-1

w,, (n) =0.42-0.5cos '\im +0.08cos



7.8.7 Bartlett (Triangular) windows:

The mathematical description is given by,

Wbart(n)zl_—f for0<n<M -1

7.8.8 Kaiser windows: The mathematical description is given by,

-5

w, (n) = for0O<n<M -1

5]




Type of window |Appr. Transition Peak

width of the main lobe |[sidelobe (dB)
[Rectangular A1T/M -13
[Bartlett 311/M -27
[Hanning 811/M -32
[Hamming 811/M -43
|Blackman 12m/M -58

Looking at the above table we observe filters which are mathematically simple do not
offer best characteristics. Among the window functions discussed Kaiser is the most complex

one in terms of functional description whereas it is the one which offers maximum flexibility
in the design.

7.8.9 Procedure for designing linear-phase FIR filters using windows:

1. Obtain hq(n) from the desired freq response using inverse FT relation
2. Truncate the infinite length of the impulse response to finite length with



(assuming M 0dd) choosing proper window

h(n) =h, (n)w(n) where
w(n) is the window function defined for —(M -1)/2<n<(M -1)/2

3. Introduce h(n) = h(-n) for linear phase characteristics
4.  Write the expression for H(z); this is non-causal realization

5. To obtain causal realization H’(z) = z M2 H(z)

Exercise Problems

Prob 1: Design an ideal highpass filter with a frequency response:
H,(e')=1 forzs|a)|£7r
-0 |okZ
4

using a hanning window with M = 11 and plot the frequency response.

H (e™)

1.0

I -TT/4 TT/4 m | w

—-l4 T
h, (n) = i[ [eidw+ [endw]

14



h(n):i[sinﬂn—sin@] for —o<n<ow and n=0
‘ M 4

1 —-l4 Vd 3
hd(0)=5[__|;da)+ j de] = =075

zl4

ha(1) = ha(-1)=-0.225
ha(2) = ha(-2)=-0.159
ha(3) = ha(-3)=-0.075
ha(4) = ha(-4)=0
ha(5) = ha(-5) = 0.045
The hamming window function is given by

2m M- M-t
M -1 2 2

=0 otherwise

w,,(n) =0.5+0.5cos )

for N =11

Whn(n):0.5+0.5cos? -5<n<5

Whn(O) =1

Win(1) = Whn(-1)=0.9045
Whn(2)= Whn(-2)=0.655
Whn(3): Whn('3): 0.345
Whn(4)= Whn(-4)=0.0945
Win(5)= Whn(-5)=0

h(n)= wnn(n)hd(n)

h(n)=[0 0-0.026 -0.104 -0.204 0.75 -0.204 -0.104 -0.026 0 0]

h'(n) = h(n - 5)
H'(z) =-0.0262 2 —0.104z° —0.204z * +0.752 ° —0.204z ° —0.104z " —0.0262 "

Using the equation



H, (™) =Ih(

M-3
_ 2. _
M2 1) +2 h(n) cosa)(MT1 —n)
n=0

) 4
H, (e") =0.75)+2>_h(n)cosw(5—n)
n=0
The magnitude response is given by,

|Hr(e 1®)] = 10.75 - 0.408c0swm - 0.208 cos2w - 0.052¢0s30|

o in degrees = [0 15 30 45 60 75 90 105 120 135 150 165 180]
IH(e )| in dBs = [-21.72 -17.14 -10.67 -6.05 -3.07 -1.297 -0.3726

-0.0087 0.052 0.015 0 0 0.017]

High pass filter with Hanning winoow
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Prob 2 : Design a filter with a frequency response:

Hye)=e  for-Z<p<Z
4 4

=0 Zqoknr
4

using a Hanning window with M =7

Soln:
The freq resp is having a term e 7*M-D"2 which gives h(n) symmetrical about
n=M-1/2 = 3 i.e we get a causal sequence.

1 rl4 ] )
hy (n) =— je-ﬁwe'fmda)
-rl4

. T
sin —(n—-3
_ 4( )

~ z(n-3)
this gives h, (0) = h,(6) =0.075
h, (1) = h, (5) =0.159
h,(2) =h,(4) =0.22
h,(3)=0.25

The Hanning window function values are given by
Whn(0) = wnn(6) =0

Whn(1)= Whn(5) =0.25

Whn(2)= Whn(4) =0.75

Whn(3)=1

h(n)=ha(n) Wnn(n)

h(n)=[0 0.03975 0.165 0.25 0.165 0.3975 0]
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7.9 Design of Linear Phase FIR filters using Frequency Sampling method

7.9.1 Motivation: We know that DFT of a finite duration DT sequence is obtained by  sampling FT
of the sequence then DFT samples can be used in reconstructing original time domain samples if
frequency domain sampling was done correctly. The samples of FT of h(n) i.e., H(K) are sufficient

to recover h(n).

Since the designed filter has to be realizable then h(n) has to be real, hence even
symmetry properties for mag response |H(k)| and odd symmetry properties for phase response
can be applied. Also, symmetry for h(n) is applied to obtain linear phase chas.

Fro DFT relationship we have

N-1

1
h(n) = —
=3
Also we know H(K) = H(z)[y=e 2®N

The system function H(z) is given by
N-1

H(z)=> h(n)z™"
n=0

Substituting for h(n) from IDFT relationship

1-z7V & H (k)
H(z) = N Zl_eJann/NZ—l




Since H(K) Is obtained by sampling H(e™) hence the method Is called Frequency sampling
Technique.

Since the impulse response samples or coefficients of the filter has to be real for filter to be
realizable with simple arithmetic operations, properties of DFT of real sequence can be used.
The following properties of DFT for real sequences are useful:

H*(k) = H(N-k)

|[H(K)|=|[H(N-k)| - magnitude response is even

8(k) = - O(N-k) — Phase response is odd

N-1
h(n) = %Z H (k)e!* "N can be rewritten as (for N odd)

h(n) = LH (0) +Z H (k)e’z”k”’NJ

h(n) = — {H(O)-k _Z:UZH(k)ejZHkn/N_'_ fH(k)ejZHkn/N:|

k=1 k=N-1/2

Using substitution k = N —r or r = N- Kk in the second substitution
with r going from now (N- 1)/2 to 1 as k goes from 1 to (N-1)/2

1 (N-1)/2 N-1)/2
h(n) =S| HO+ 2 H(k)e 2 ZH(N k)e~ JZﬂkﬂ’NJ
L k=1
1[ (N2 N-1)/2
h(n) = | 7@+ D, H(kel2* N + ZH (k)e~ Jzﬂk“’N}
L k=1
1[ (N2 ey (N2 o
= [HO+ 3 e + Z(H(k)e' : )}
1 - (N-1)/2 _ ‘
h(n) =S| HO)+ > (H(k)e 'z +(H(k)e‘2”"”’N)*}
L k=1
1 B (N-1)/2 _
h(n) = | H O +2 ZRe(H(k)eJZ”k”’N}
L k=1

Similarly for N even we have

h(n) = {H (0) + Z(Nillz?e( H (k)e'**'™ J



using the symmetry property n(n)=n (N-1-n) we can obtain Linear phase IR Tilters using the
frequency sampling technique.

Exercise problems

Prob 1 : Design a LP FIR filter using Freq sampling technique having cutoff freq of z/2
rad/sample. The filter should have linear phase and length of 17.

The desired response can be expressed as

H,(")=e for |o|<aC
=0 otherwise

with M =17 and wCc=x/2

H,(e")=e"'® for 0<w<nl2

=0 for #/2<w<nr
Selecting a)k:%:% for k=0,1.....16
M 17

H() = Hy ()] o

17

27K

HKk)=e 7 for 0< KT
17 2

167k
Hk)y=e @ for 0<kg%
=0 for EskﬁE
4 2

The range for “k” can be adjusted to be an integer such as

0<k<4
and 5<k<8



The freq response is given by
27K

H(k)=e 'Y for O<k<4
=0 for 5<k<8

Using these value of H(k) we obtain h(n) from the equation

h(n) =— (H 0) + Z(M_ZD/FZQe(H (K)e 2 MYy

k=1

i.e.,h(n) = —(1+ 22 Re(e /1% /17gi2An/17y)

4 27zk(8 2k (8 1),

h(n) = —(H (0) + 22 cos( for n=01.......16

e Even though k varies from 0 to 16 since we considered ® varying between 0 and m/2
only k values from 0 to 8 are considered

e While finding h(n) we observe symmetry in h(n) such that n varying O to 7 and 9 to 16
have same set of h(n)

7.10 Design of FIR Differentiator
Differentiators are widely used in Digital and Analog systems whenever a derivative

of the signal is needed. Ideal differentiator has pure linear magnitude response in the freq
range —x to +x. The typical frequency response characteristics is as shown in the below figure.

jr




Problem 2: Design an ldeal Ditterentiator using a) rectangular window and b)Hamming
window with length of the system = 7.

Solution:
As seen from differentiator frequency chars. It is defined as

H(e®)=jo between —m to +x

_ coszn
n
The hq(n) is an add function with hg(n)=-hg(-n) and ha(0)=0

hd(n)zij;jcoe”m do —o<n<w and n=0
a) rectangular window

h(n)=ha(n)w:(n)

h(1)=-h(-1)=hd(1)=-1

h(2)=-h(-2)=hd(2)=0.5

h(3)=-h(-3)=hd(3)=-0.33

h’(n)=h(n-3) for causal system
thus,

H'(z)=0.33-05z"'+z%-2z"*+052°-0.33z"°

Also from the equation

. (M-3)/2 M _1
H, (e")=2 > h(n)sin a)(T—n)

n=0
For M=7 and h’(n) as found above we obtain this as

H, (e'”) = 0.66sin 3w —sin 2w+ 2sin @

H(e') = jH, (e') = j(0.66sin 3 —sin 2e + 2sin w)

b) Hamming window
h(n)=ha(n)wn(n)

where wh(n) is given by



w, (n) = 0.54 + 0.46.COS (I\j’m (M -1)/2<n<(M-1)/2

=0 otherwise

For the present problem
w, (n) = 0.54+0.46cos? _3<n<3

The window function coefficients are given by for n=-3 to +3
Wh(n)=1[0.08 0.310.77 1 0.77 0.31 0.08]

Thus h’(n) = h(n-5) = [0.0267, -0.155, 0.77, 0, -0.77, 0.155, -0.0267]

Similar to the earlier case of rectangular window we can write the freq response of
differentiator as
H(e'”) = jH, (') = j(0.0534sin 3w — 0.31sin 2w +1.54sin w)

; hanning
I -
| .
l __ideal
| — - -
- \-K- % .\\x.
SN T rect
H(e") /L
./; ‘_l,.-""_:"r A I|
f.;’_:f__"..—f"#:_’ |I
& |
R W
We observe

e With rectangular window, the effect of ripple is more and transition band width is
small compared with hamming window
e With hamming window, effect of ripple is less whereas transition band is more

7.11 Design of FIR Hilbert transformer:

Hilbert transformers are used to obtain phase shift of 90 degree. They are also called j
operators. They are typically required in quadrature signal processing. The Hilbert transformer



IS very usetul when out of phase component (or Imaginary part) need to be generated Trom
available real component of the signal.

Problem 3: Design an ideal Hilbert transformer using a) rectangular window and b)
Blackman Window with M = 11

[ Hw)
]
™
_'|'|' w
g
Solution:
As seen from freq chars it is defined as
Hy@)=j -7<w<0
=—] O<w<rm
The impulse response is given by
(1—cos 7mn)

0 V4
h, (n) = i[j jejfmdmj— jeldew] = —o<n<ow except n=0
2r 7. 5
Atn =0 itishd(0) =0 and hd(n) is an odd function

a) Rectangular window
h(n) = ha(n) wi(n) = ha(n) for -5 >n >5

h’(n)=h(n-5)

h(n)=[-0.127, 0, -0.212, 0, -0.636, 0, 0.636, 0, 0.212, 0, 0.127]



H, ) = zih(n)sin @(5-n)

n=0

H(e')=j|H, (e')|= j{0.254sin 50+ 0.424sin 3w +1.272sin w}

b) Blackman Window
window function is defined as

w, (n) = 0.42+0.5005% +O.08c052?7m _5<n<5

=0 otherwise
Wy (n) = [0, 0.04, 0.2, 0.509,0.849,1,0.849, 0.509, 0.2, 0.04,0] for -5>n>5
h’(n) = h(n-5) = [0, 0, -0.0424, 0, -0.5405, 0, 0.5405, 0, 0.0424, 0, 0]

H(e'”) = — j[0.0848sin 3¢ +1.0810sin @]

\ //\ blackman
/’ ideal

rect




Recommended questions with solution

Questionl
Design an FIR linear phase, digital filter approximating the ideal frequency response
L forjels %
Hd(ﬂ)) = T
0, for 3 <|wl <mw

(a) Determine the coefficients of a 25-tap filter based on the window method with a
rectangular window.

(b) Determine and plot the magnitude and phase response of the filter.

(¢) Repeat parts (a) and (b) using the Hamming window.

(d) Repeat parts (a) and (b) using a Bartlett window.

Solution:-
(a) To obtain the desired length of 25, a delay of 252—‘1 = 12 is incorporated into Hy(w). Hence,

. T
Hyw) = 17 0<|uw|< 5

0, otherwise
1 (¥ .
- Hy(w)e " dw
27 -'i'
sink(n - 12)
(n - 12)
Then, h(n) = hg(n)w(n)

P
o
—_

P~
—

i

where w(n) is a rectangular window of length N = 25.

(b) Magnitude plot

w T T Ll L T T L) Ll L]

= 0
8
!-w
A
I
I
i

-100

0ol 01 o015 02 02 03 035 04 045 05

—> Froq(H2)



Phase plot

‘ L) L L] L L L) T L] L)
i 2 s -
:' 0
[}
|
-2F 4
4 Fi i 'l . — A A s 'S 4
0 005 01 015 02 025 03 038 04 043 0S5
-=-> Froq(Mz)

(c) Hamming window

50 T T T L] T T

~-~> mag(dB)

-100

105005 0.1 015 02 025 03 035 04 045 05
-3 Freq(Hz)

06 0085 01 0185 02 025 03 035 04 045 08
——> Freq(Hz)

(d) Bartlett window



-0 005 01 015 02 025 03 035 04 045 0S5
—=> Freq(HI)
‘ T T L] L T Ll

iz- ]

89

]

]

1_2_ ]

4 ' e s ' 2 kY A 3 1

0 008 01 015 02 025 03 035 04 045
—==> Froq(Hz)

Question 2

09
Determine the unit sample response {h(n)} of a linear-phase FiR filter of length M = 4
for which the frequency response at @ = 0 and w = n/2 is specified as

—

1
womr n(3)-]
Solution:-
M o= 4, H©O)=1 H()= -;
=2
H(w) = 2 h(n)cos[w(M -1 n)]
nl=0 ,
= 2 Z h(n)cos{w(i - n)]
n=0
1
Atw=0,H(0)=1 = 2 h(n)cos[0]
n=0
2(h(0)+ h(1)] = 1

(1)



T n 1
Atw= E,Hr(-i) =3
—h(0) + A(1)

Solving (1) and (2), we get
h(0)

h(1)

(2)
h(3)
Hence, h(n)

?

|

il

! T3
2n2=:0h(n)cos[§(§ - n)]

0.354 (2)

0.073 and

0.427

h(1)

h(0)
{0.073,0.427,0.427,0.073)

---> mag(dB)

1] 00 0.1 018 02

025 03 035 04 045 0S8

—

—> Freq{Hz)

-l A A -h

T

\

-

0 0.05 0.1 0.15 0.2

025 03 035 04 048 05

—=a> Fragq(H1)



Question 5
Use the window method with a Hamming window to design a 21-tap differentiator

as shown in Fig. P8.9. Compute and plot the magnitude and phase response of the
resulting filter.

|H ()l

-
remsuse.

w
-1 0 g Figure P89
Solution:-
Hyw) = we %™ 0<w<r
—we 110w, ~-r<w<0
1 bl ;
ha(n) = o _'Hd(w)e"‘”"dw
cosw(n — 10)
= —_— n# 10
(n—10) #
= 0, n=10
cosm(n — 10)
= ———_— 0< n<20, 10
hg(n) n —10) <n<20,n#
= 0, n=10
Magnitude and phase response
3 T
2.5¢
g o
-1
g5t 4
ot
0.5}
00 O.JN o.l1 0.‘15 0?2 D.;S 0?! 0.‘35 0:! 0.‘45 0.8

~—> Freq(Hz)

o 0.05 0.1 0.15% 02 025 0.3 0.3% 04 045 05
- Freq(Hz)



Question 4

A digital low-pass filter is required to meet the following specifications:
Passband ripple: <1 dB

Passband edge: 4 kHz
Stopband attenuation: > 40 dB
Stopband edge: 6 kHz
Sample rate: 24 kHz
The filter is to be designed by performing a bilinear transformation on an analog

system function. Determine what order Butterworth, Chebyshev, and elliptic analog
designs must be used to meet the specifications in the digital implementation.

Solu
tion:-

From the design specifications we obtain

= 0.509

6§ = 99.995

4 1

b= 2%

6 1

fr = -3

Yp

Assume t = 1. Then, Q, = 2tan-2—

= 2tannf, = 1.155

and 2, = 2tan-u;—'
= 2annf, =2
6
n = =-=1965

€

304
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UNIT -8

DESIGN OF IIR FILTERS FROM ANALOG FILTERS
(BUTTERWORTH AND CHEBYSHEV)

8.1 Introduction
A digital filter is a linear shift-invariant discrete-time system that is realized using finite

precision arithmetic. The design of digital filters involves three basic steps:

> The specification of the desired properties of the system.
» The approximation of these specifications using a causal discrete-time system.
> The realization of these specifications using _nite precision arithmetic.

These three steps are independent; here we focus our attention on the second step.
The desired digital filter is to be used to filter a digital signal that is derived from an analog
signal by means of periodic sampling. The speci_cations for both analog and digital filters are
often given in the frequency domain, as for example in the design of low

pass, high pass, band pass and band elimination filters. Given the sampling rate, it is straight

|H(ed®)|
1 ; i
5 i
\/\ :
b8, ; |
|
]
i
i
i
Pass band | Stop band
1
i
i
i
| !
82 777777777777777 g 7777777777777777777 W
o w T a

forward to convert from frequency specifications on an analog _lter to frequency
speci_cations on the corresponding digital filter, the analog frequencies being in terms of Hertz

and digital frequencies being in terms of radian frequency or angle around the unit circle with



the point Z=-1 corresponding to half the sampling Trequency. Ine least contusing point ot
view toward digital filter design is to consider the filter as being specified in terms of angle

around the unit circle rather than in terms of analog frequencies.

Figure 7.1: Tolerance limits for approximation of ideal low-pass filter

A separate problem is that of determining an appropriate set of specifications on the digital
filter. In the case of a low pass filter, for example, the specifications often take the
form of a tolerance scheme, as shown in Fig. 4.1

1—4) =| HE) =1, |wl=w,

| H(e™) | < 82, w, <|w|< 7
Many of the filters used in practice are specified by such a tolerance scheme, with no
constraints on the phase response other than those imposed by stability and causality
requirements; i.e., the poles of the system function must lie inside the unit circle. Given a set
of specifications in the form of Fig. 7.1, the next step is to and a discrete time linear system
whose frequency response falls within the prescribed tolerances. At this point the filter design
problem becomes a problem in approximation. In the case of infinite impulse response (IIR)
filters, we must approximate the desired frequency response by a rational function, while in the

finite impulse response (FIR) filters case we are concerned with polynomial approximation.

7.2 Design of IIR Filters from Analog Filters:

The traditional approach to the design of IIR digital filters involves the transformation of an
analog filter into a digital filter meeting prescribed specifications. This is a reasonable
approach because:

» The art of analog filter design is highly advanced and since useful results can be
achieved, it is advantageous to utilize the design procedures already developed for
analog filters.

» Many useful analog design methods have relatively simple closed-form design
formulas.



Therefore, digital filter design methods based on analog design formulas are rather simple to
implement.
An analog system can be described by the differential equation

Noodky(f) M dRa, (1)

e P M

k=0 k=0 e [ 7.1
And the corresponding rational function is
‘ ookt Tals)
----------------- mmmmmmmnnn ey 4
The corresponding description for digital filters has the form
N M
Z apyln — k) = Z bpr(n — k)
k=0 k=0
---------------------------------- 7.3
and the rational function
H() = a”:n bz " _ Y(z)
- f:u agz*  X(z)
----------------- m-mmmmmmees —-m-ee-7.4

In transforming an analog filter to a digital filter we must therefore obtain either H(z)or h(n)
(inverse Z-transform of H(z) i.e., impulse response) from the analog filter design. In such
transformations, we want the imaginary axis of the S-plane to map into the finite circle of the
Z-plane, a stable analog filter should be transformed to a stable digital filter. That is, if the
analog filter has poles only in the left-half of S-plane, then the digital filter must have poles

only inside the unit circle. These constraints are basic to all the techniques discussed

7.3 1IR Filter Design by Impulse Invariance:



I'his technique of transtorming an analog Tiiter design to a digital Tilter aesign corresponds to
choosing the unit-sample response of the digital filter as equally spaced samples of the impulse
response of the analog filter. That is,

h(n) = h,(nT)

----------------- e =-m=-===-7.5
Where T is the sampling period. Because of uniform sampling, we have
H(eT) = 2 S H(j2+ 224
":\-"-"-;‘:_ "'._'E S
(") = = F:=Z—:x- (3924 = k)
----------------------- 7.6
Or
. 1 & 2w
H(2) |omer= = Y Hal(s+j=Fk)
| T it |
----------------------- 7.7
1o
_____________________________
z—plane
s—plame
_____________________________ F ——

Figure 7.2: Mapping of s-plane into z-plane

Where s = jo and Q=w/T, is the frequency in analog domain and o is the frequency in digital
domain.

From the relationship Z = €57 it is seen that strips of width 2/T in the S-plane map into the
entire Z-plane as shown in Fig. 7.2. The left half of each S-plane strip maps into interior of the
unit circle, the right half of each S-plane strip maps into the exterior of the unit circle, and the
imaginary axis of length 2a/T of S-plane maps on to once round the unit circle of Z-plane.
Each horizontal strip of the S-plane is overlaid onto the Z-plane to form the digital filter
function from analog filter function. The frequency response of the digital filter is related to
the frequency response of the
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Figure 7.3: Illustration of the effects of aliasing in the impulse invariance technique

analog filter as

. ]. - Lt 2ﬁ
HE) = =~ S H(G2 + j2Zk)
(%) T . Ug +igk)

Unfortunately, any practical analog filter will not be band limited, and consequently there is
interference between successive terms in Eq. (7.8) as illustrated in Fig. 7.3. Because of the
aliasing that occurs in the sampling process, the frequency response of the resulting digital
filter will not be identical to the original analog frequency response. To get the filter design
procedure, let us consider the system function of the analog filter expressed in terms of a
partial-fraction expansion

, N oA,
Hrz[-‘i_} — Z -

=15 — Sk

The corresponding impulse response is



N
Z ‘s._l"[
k=1 e 7.10
And the unit-sample response of the digital filter is then
h(n) = h,(nT) = Z Ape®sT =3 Ap(e " U(n)
k=1 e 7.11
The system function of the digital filter H(z) is given by
i A
} T -1
A:] l — expr 'L JI' ____________________________________________________________ 7.12

In comparing Eqgs. (7.9) and (7.12) we observe that a pole at s=sk in the S-plane transforms to
a pole at exp™T in the Z-plane. It is important to recognize that the impulse invariant design
procedure does not correspond to a mapping of the S-plane to the Z-plane.

8.4 1IR Filter Design By Approximation Of Derivatives:

A second approach to design of a digital filter is to approximate the derivatives in Eq. (4.1) by
finite differences. If the samples are closer together, the approximation to the derivative would
be increasingly accurate. For example, suppose that the first derivative is approximated by the
first backward difference

dya(t)
dit

(n) —y(n—1)

) y
ft=nr — VO[y(n)] = -
T 7.3

Where y(n)=y(nT). Approximation to higher-order derivatives are obtained by repeated
application of Eq. (7.13); i.e.,

d*y,(t) d d*y.(t). | PRSP .
dik |t=n1= E(ri’fj‘—‘] ) =y — V' £) [i"i J] v .?LA ]'[H[”_}'_]

For convenience we define

VO y(n)] = y(n)

..................... - - ---7.15



Applying Egs. (7.13), (/.14) and (/.15) to (/.1), we obtain

N M

3 aV¥y(n)] =Y diV¥[z(n)]

k==l k=0

Where y(n) = ya(nT) and x(n) = xa(nT). We note that the operation AW[ ] is a linear shift-
invariant operator and that AM[ ] can be viewed as a cascade of (k) operators AY[ ]. In
particular

2Ol = EE X ()
And
29O ()] = E2 X (2
VO] = L

Thus taking the Z-transform of each side in Eq. (7.16), we obtain

1k
H(z) = S0 [T
7 oo Neg[H=—F

S— S — 7.17

Comparing Eq. (7.17) to (7.2), we observe that the digital transfer function can be obtained
directly from the analog transfer function by means of a substitution of variables

-------------------------------------- 7.18

So that, this technique does indeed truly correspond to a mapping of the S-plane to the Z-
plane, according to Eq. (7.18). To investigate the properties of this mapping, we must express
z as a function of s, obtaining

1 —sT

Substituting s = jQ, i.e., imaginary axis in S-plane



1 — QT
B 1 1 1
T 1—-4OT "2 2

1 1.1+jQT
— ——|———__

2 21— 071
B 11_1—351}“]
2 T 1—4ar

1

— _[1 4 (_.j‘_‘L:UL“[EI'!':]

Which corresponds to a circle whose center is at z =1/2 and radius is 1/2, as shown in Fig. 7.4.
It is easily verified that the left half of the S-plane maps into the inside of the small circle and
the right half of the S-plane maps onto the outside of the small circle. Therefore, although the
requirement of mapping the jQ-axis to the unit circle is not satisfied, this mapping does satisfy
the stability condition.

s—plane

Figure 4.4: Mapping of s-plane to z-plane corresponding to first backward-difference
approximation to the derivative

In contrast to the impulse invariance technique, decreasing the sampling period T, theoretically
produces a better filter since the spectrum tends to be concentrated in a very small region of
the unit circle. These two procedures are highly unsatisfactory for anything but low pass
filters. An alternative approximation to the derivative is a forward difference and it provides a
mapping into the unstable digital filters.

8.5 IIR Filter Design By The Bilinear Transformation:



In the previous section a digital Tiiter was derived by approximating aerivatives by ditterences.
An alternative procedure is based on integrating the differential equation and then using a
numerical approximation to the integral. Consider the first - order equation

f-'ly;_[f-] + coyalt) = doza(t)

Where y’a(t) is the first derivative of ya(t). The corresponding analog system function is

dp

cg + €18

H, ["‘] =
We can write ya(t) as an integral of y’a(t), as in

[ - )
Ya(t) = [; Yy, (t)dt + yalto)
Ji,

In particular, ift=nT and to = (n - 1)T,

nT

valnT) = [y, (r)dr +ya((n — 1))
(n—1)T
If this integral is approximated by a trapezoidal rule, we can write

‘ 3 3 T ¥ I
9a(nT) = ya((n — DT) + S (nT) + yo(n — )T)]
i — 7.21

However, from Eq. (7.20),

! \ y Ld
-'!Jrrz[}'*T.}' — _:__{]]yu[]"*T_}' + (—OJ.‘“{HT:I

1
Substituting into Eq. (4.21) we obtain
o L T e, W do,
y(n) —y(n—1)] = 5[—t—0[y{ﬂ] +y(n—1))+ {—0[.E'I:Ft:] + z(n —1))]
i

1
Where y(n) = y(nT) and x(n) = x(nT). Taking the Z-transform and solving for H(z) gives

Y= d
10 PR -
X(2) OO VT T T 1.22



From Eq. (7.22) it is clear that H(z) is obtained from Ha(s) by the substitution

21— 21
",_Tl-l—.;‘]
S— S— 7.3
That is,
Hi( tl:Hfl{"]|_L —z—
=2 1=s
---------------------------------------------- 7.24

This can be shown to hold in general since an N - order differential equation of the form of
Eqg. (7.1) can be written as a set of N first-order equations of the form of Eq. (7.20). Solving
Eq. (7.23) for z gives

The invertible transformation of Eq. (7.23) is recognized as a bilinear transformation. To see
that this mapping has the property that the imaginary axis in the s-plane maps onto the unit
circle in the z-plane, consider z = €/, then from Eq. (7.23), s is given by

21 —e @
T1+e i
2 7smiw/2)
T cos(w/2)
2

= ?jtt\.ll{w‘:"‘z}

5 =

= o+ 58
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Figure 7.5: Mapping of analog frequency axis onto the unit circle using the bilinear
Transformation

Thus for z on the unit circle, c =0 and Q and o are related by

T Q/2 =tan (®/2)
or
o =2 tan YT Q/2)

This relationship is plotted in Fig. (7.5), and it is referred as frequency warping. From the
_gure it is clear that the positive and negative imaginary axis of the s-plane are mapped,
respectively, into the upper and lower halves of the unit circle in the z-plane. In addition to the
fact that the imaginary axis in the s-plane maps into the unit circle in the z-plane, the left half
of the s-plane maps to the inside of the unit circle and the right half of the s-plane maps to the
outside of the unit circle, as shown in Fig. (7.6). Thus we see that the use of the bilinear
transformation yields stable digital filter from analog filter. Also this transformation avoids the
problem of aliasing encountered with the use of impulse invariance, because it maps the entire
imaginary axis in the s-plane onto the unit circle in the z-plane. The price paid for this,
however, is the introduction of a distortion in the frequency axis.



A 18 z~plane

s-plane
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Figure 4.6: Mapping of the s-plane into the z-plane using the bilinear transformation

8.6 The Matched-Z Transform:

Another method for converting an analog filter into an equivalent digital filter is to map
the poles and zeros of Ha(s) directly into poles and zeros in the z-plane. For analog filter

o H;‘”:] [" - "L]
= J—
[Te—1(5 — p&) 7 26

Hrj {.‘!']

the corresponding digital filter is

B Hﬂijfl — ezl 5~ 1)

N HE':] [l — (:"I':"f.‘r..__i_]':]

H(z)

Where T is the sampling interval. Thus each factor of the form (s-a) in Ha(s) is mapped
into the factor (1- €37 z'1).



Recommended questions with solution

Question 1
Design a digital band pass filter from a 2 order analog low pass Butterworth
prototype filter using bilinear transformation. The lower and upper cut-off

nd

frequencies for band pass filter are 51/12 and 7/12 . Assume T = 2 sec. [12]
Sol. : ® = N
12
Q)
Q, = 2 tan —
i 2
For T =2
i
Q, = tan—
2
o0, = &
g 12
Q)
Q, = tan—
2
Analog low pass to band pass
s> +0Q,0.
SR o . (1)
S(Q, -Q,)
Analog prototype is,
1
e T St )
s? ++/25 +1
Putting equation (1) in equation (2) and then to get bilinear analog to digital
A g £

R
2+l 1427

Combining above two steps we get




1

Hiz) = 2 =
-z +QQ,0+z") .73 -z +Q,Q,01+27")? s
a-z7%xQ,-Q,) 1-z2%)Q, -Q,)
Question 2
Show that the bilinear transformation maps.
1) The jQ axis in s-plane onto the unit circle, |z| = 1.
ii) The left half s-plane, Re (s) < 0 inside the unit circle, |z < 1].
Sol. :
Im(s) =Q Im(z) z-plane
® é} @ Frane ) =16=0
<0 =0 o0>0 Unit r<1c<0
circle/r>1o>0
Re(s)=¢ \J Re(z)=o
Fig. 3
Here s = 0+jQ andz = re/®
Question 3

Fig. 4 shows the frequency response of an infinite-length ideal multi-band real filter.
Find. h(n), impulse response of this filter. Present the sketch of implementation of
w(n) h(n) (Truncated impulse response of this filter) via block diagram. Where ® (n)

is a finite length window sequence ? [12]
4 H(w)

At mmm e \
1
1
Aq i
1
7 T | P i
|
I

+ - (1)
0 (1)1 (.02 (Ds (.I)4 T

Fig. 4



Question 4
We are interested to design an FIR filter with a stopband attenuation of 64 dB and

Aw=0.057 using windows. Provide the means to achieve precisely this attenuation
using suitable window function. [3]

Sol. : Hamming window will satisfy the stopband attenuation requirement i.e. 64 dB.
Because it has lower transition width.

Hamming window function is given by :

o(n) = 054 —O.46cos(rjn_n ] 0<nsN-1
Question 5
The transfer function of analog low pass filter is given by H(s) = = (s —21) .
(s =1)(s" +s+1)
Find H(z) using impulse invariance method. Take T = 1 sec. [6]
Sol. : HG) = — (s '21)
(s* =1D(s" +s+1)

" (s=-1)

& (s+1)(s—1)(s2 +s5+1)

% (s+l)(52 +s+1)

1
(s +1)(s + 0.5~ 0.866)(s + 0.5 + j 0.866)

G i s ., "6
s+1 s+05-;0866 s+0.5+ )0.866

Using practical fraction expansion, we get
Cl 2 CZ =0‘577‘,-I‘2-62 and C: =0'577ej2.62

1 0.577¢ /%92 0.577¢/%62
- -

H(s) = . ;
s+1 s+05-70866 s+0.5+)0.866

The three poles are :
sy =-1, 5,=-05+j0866 and s; =— 0.5 - j 0.866
We know that,



C.
HE) = 3, —
i=1 1—e™ z

C, G, Cs
X R saT_-1
1=z 1-¢"2"2 1=¢"3" 2
Here ‘C; = C;
HE) = 1 0.577¢ /%% 0.577¢/%%
iz :::Tz—l 1 — p(-05+/0866)T -1 "1 _ (0.5-j0.866)T -1
B 1 0.577¢ 1262 0.577¢/%5
= 1 _L,—-Tz—l 1_6--05Te)‘0.866TZ-1 1 _e-OSTe—j0.866TZ—1
- 1 , 2(0.577) cos(-2.62) - 2(0.577) e T 271 cos(=2.62 — 0.866T)
jprig > 1=0g 08 cos(0.866T)z'1 +e 7272

Multiplying the numerator and denominator of first term on RHS by z and by 1*

for second term on RHS, above equation becomes,

Lg% 1154797 'cos( 5;5 +0.866T J z

Bk & i
z—e ¥ 7* —ge cos(0.866T)z + i

In terms of sampling interval T = 1, transfer function is,

-1 -2
bgz  +by 2z
H@' = = - =
1-a,z" —a,z" —a,z
Where b, = —2¢7°T cos(0.866T) +e™ " +1154¢ 7 cos(§6’-‘ +0.866T ]:1.0773
b, = ¢ T +1154¢757 cos['%n +0866T }0.1254

a, = ) cos(0.866T)=1.1538
= — T =277 c0s(0.866T)=— 0657
e =01353

=2
)
|

=
w
Il



Question 6

Design a linear phase high pass filter using the Hamming window for the following
desired frequency response.

-i3m IESI(;)[SII
e 6
Hy@ =
T
0 |o|<=
6

® (n) = 0.54 — 0.46 cos (Kzlin—l ], where N is the length of the Hamming window.

n .
Sol. : hy(n) = zlj H  (w)e’” do
T
- -n
-it/b n
= L[ pisegienge 1T gideiongeg
2r 2K
-1 /6
= : sm[n(n—3)]—sinr1—t(n—3)] n#3
mn-23) | 6
Also, i s {308 B
2l 6 6 ) 6
Let N =7

Impulse response of FIR filter is :
h(n) = h;(no(n)



n(n = 3)

|

[sinln(n ~3)]= sin[lé‘ G~ 3)]]} { 0.54 — O.46cos( 2—’(:" J} n# 3

§[0.54 > 0.46c05(m ]] =3

G 6
n hy () oln) h(n)
0 - 0.1061 0.08 0.0085
1 - 0.1378 0.31 0.0427
2 - 0.15692 0.77 0.1226
3 0.8333 1 0.8333
4 0.1592 6.77 0.1226
5 0.1378 0.31 0.0427
6 0.1061 0.08 0.0085

Question 7

Design a digital lowpass Butterworth filter using bilinear transformation method to
meet the following specifications. Take T = 2 sec.

Passband ripple < 1.25 dB

Passband edge = 200 Hz

Stopband attenuation > 15 dB

Stopband edge = 400 Hz

Sampling frequency = 2 kHz
Sol. :

[12]
2mx 200=4007rad/sec
2nx 400=800rrad/sec

L

f. 2000

Q,T, = 400mx —— = 02 7 rad
2000

Q,T, = 800nx—— = 0.4 7 rad
2000



Given : T = 2 sec.

Q) = 2tan[ 22 |tanf 227 )= 03249
i I 2

pl = Etan(“’_s }tar{gﬂt)=07265
T |2 2
log[(107*7/'® —1)/a07/® 1) ]
2log (@, /2])
_ 1og(03335/306228) _ o
2 log (0.3249/07265)
Q5
Q, = 107kp/10 _qyV2N = 14050

Referring to normalized lowpass butterworth filter tables

1
H -
3 (s2 +5+1)(s +1)

The required prewarped analog filter is obtained by applying lowpass to lowpass
transformation.

Ha(s) H 3(S)|s —).s_
2
T -
(s +5+1)(s 41| _s

s -

(.2

¥
4
\

1
s+2
1t sy
2
/
1

(252 +4s+8](s+2)

8 2




1

[sz +2s+4 J(s+2)
4 2
8 .} 8
(2 +25+4)(s+2) 53 +25% +25% +45+8
—— 8 .
s +4s% +85+8

Applying bilinear transformation to H ,(s)
-1
H(z) = Hj(s) 2 (1 = ]

b s =7

8

' H(z) =

3 2
-1 -1 -1
l—z1 il l—z].+81—z]
1+z 1+z 1+z




Architectures for Programmable Digital Signal Processing
Devices

Basic Architectural Features

A programmable DSP device should provide instructions similar to a conventional
microprocessor. The instruction set of a typical DSP device should include the following,
a. Arithmetic operations such as ADD, SUBTRACT, MULTIPLY etc
b. Logical operations such as AND, OR, NOT, XOR etc
c. Multiply and Accumulate (MAC) operation
d. Signal scaling operation

In addition to the above provisions, the architecture should also include,
a. On chip registers to store immediate results
b. On chip memories to store signal samples (RAM)
c. On chip memories to store filter coefficients (ROM)

DSP Computational Building Blocks

Each computational block of the DSP should be optimized for functionality and speed and in
the meanwhile the design should be sufficiently general so that it can be easily integrated with other
blocks to implement overall DSP systems.

Multipliers

The advent of single chip multipliers paved the way for implementing DSP functions on a
VLSI chip. Parallel multipliers replaced the traditional shift and add multipliers now days. Parallel
multipliers take a single processor cycle to fetch and execute the instruction and to store the result.
They are also called as Array multipliers. The key features to be considered for a multiplier are:
a. Accuracy
b. Dynamic range
c. Speed

The number of bits used to represent the operands decides the accuracy and the dynamic range
of the multiplier. Whereas speed is decided by the architecture employed. If the multipliers are
implemented using hardware, the speed of execution will be very high but the circuit complexity will
also increases considerably. Thus there should be a tradeoff between the speed of execution and the
circuit complexity. Hence the choice of the architecture normally depends on the application.

Parallel Multipliers
Consider the multiplication of two unsigned numbers A and B. Let A be represented using m
bits as (Am-1 Am-2 ........ A1l A0) and B be represented using n bits as (Bn-1 Bn-2 ........ B1 B0).
Then the product of these two numbers is given by,
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This operation can be implemented paralleling using Braun multiplier whose hardware structure is as
shown in the figure 2.1.
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Fig 2.1 Braun Multiplier for a 4X4 Multiplication
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Multipliers for Signed Numbers

In the Braun multiplier the sign of the numbers are not considered into account. In order to
implement a multiplier for signed numbers, additional hardware is required to modify the Braun
multiplier. The modified multiplier is called as Baugh-Wooley multiplier.

Consider two signed numbers A and B,

m-d .
A= -A, 2™ + 2 AD!
o =0

n-2 .
B=-B,2*! + Z B2J

j=0
Product P= Py 1-.. ... P Py

) 1)

P=Ap 1By 2™ 2 & A0 B Ap, 2011 Ea pomi*
i=0 3=0 =0 F0
Speed

Conventional Shift and Add technique of multiplication requires n cycles to perform the
multiplication of two n bit numbers. Whereas in parallel multipliers the time required will be the
longest path delay in the combinational circuit used. As DSP applications generally require very high
speed, it is desirable to have multipliers operating at the highest possible speed by having parallel
implementation.

Bus Widths

Consider the multiplication of two n bit numbers X and Y. The product Z can be at most 2n
bits long. In order to perform the whole operation in a single execution cycle, we require two buses of
width n bits each to fetch the operands X and Y and a bus of width 2n bits to store the result Z to the
memory. Although this performs the operation faster, it is not an efficient way of implementation as it
is expensive. Many alternatives for the above method have been proposed. One such method is to use
the program bus itself to fetch one of the operands after fetching the instruction, thus requiring only
one bus to fetch the operands. And the result Z can be stored back to the memory using the same
operand bus. But the problem with this is the result Z is 2n bits long whereas the operand bus is just n
bits long. We have two alternatives to solve this problem, a. Use the n bits operand bus and save Z at
two successive memory locations. Although it stores the exact value of Z in the memory, it takes two
cycles to store the result.
b. Discard the lower n bits of the result Z and store only the higher order n bits into the memory. It is
not applicable for the applications where accurate result is required. Another alternative can be used
for the applications where speed is not a major concern. In which latches are used for inputs and
outputs thus requiring a single bus to fetch the operands and to store the result (Fig 2.2).
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Shifters

Shifters are used to either scale down or scale up operands or the results. The following
scenarios give the necessity of a shifter
a. While performing the addition of N numbers each of n bits long, the sum can grow up to n+log2 N
bits long. If the accumulator is of n bits long, then an overflow error will occur. This can be overcome
by using a shifter to scale down the operand by an amount of log2N.
b. Similarly while calculating the product of two n bit numbers, the product can grow up to 2n bits
long. Generally the lower n bits get neglected and the sign bit is shifted to save the sign of the product.
c. Finally in case of addition of two floating-point numbers, one of the operands has to be shifted
appropriately to make the exponents of two numbers equal.

From the above cases it is clear that, a shifter is required in the architecture of a DSP.

Barrel Shifters

In conventional microprocessors, normal shift registers are used for shift operation. As it
requires one clock cycle for each shift, it is not desirable for DSP applications, which generally
involves more shifts. In other words, for DSP applications as speed is the crucial issue, several shifts
are to be accomplished in a single execution cycle. This can be accomplished using a barrel shifter,
which connects the input lines representing a word to a group of output lines with the required shifts
determined by its control inputs. For an input of length n, log2 n control lines are required. And an
dditional control line is required to indicate the direction of the shift.

The block diagram of a typical barrel shifter is as shown in figure 2.3.
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Fig 2.3 A Barrel Shifter
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Fig 2.4 Implementation of a 4 bit Shift Right Barrel Shifter

Figure 2.4 depicts the implementation of a 4 bit shift right barrel shifter. Shift to right by 0, 1, 2 or 3
bit positions can be controlled by setting the control inputs appropriately.

2.3 Multiply and Accumulate Unit

Most of the DSP applications require the computation of the sum of the products of a series of
successive multiplications. In order to implement such functions a special unit called a multiply and
Accumulate (MAC) unit is required. A MAC consists of a multiplier and a special register called

Accumulator. MACs are used to implement the functions of the type A+BC. A typical MAC unit is as
shown in the figure 2.5.
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Fig 2.5 A MAC Unit

Although addition and multiplication are two different operations, they can be performed in parallel.
By the time the multiplier is computing the product, accumulator can accumulate the product of the
previous multiplications. Thus if N products are to be accumulated, N-1 multiplications can overlap
with N-1 additions. During the very first multiplication, accumulator will be idle and during the last
accumulation, multiplier will be idle. Thus N+1 clock cycles are required to compute the sum of N
products.

2.3.1 Overflow and Underflow

While designing a MAC unit, attention has to be paid to the word sizes encountered at the
input of the multiplier and the sizes of the add/subtract unit and the accumulator, as there is a
possibility of overflow and underflows. Overflow/underflow can be avoided by using any of the
following methods viz
a. Using shifters at the input and the output of the MAC
b. Providing guard bits in the accumulator
c. Using saturation logic

Shifters
Shifters can be provided at the input of the MAC to normalize the data and at the output to de
normalize the same.

Guard bits

As the normalization process does not yield accurate result, it is not desirable for some
applications. In such cases we have another alternative by providing additional bits called guard bits in
the accumulator so that there will not be any overflow error. Here the add/subtract unit also has to be
modified appropriately to manage the additional bits of the accumulator.



Saturation Logic

Overflow/ underflow will occur if the result goes beyond the most positive number or below
the least negative number the accumulator can handle. Thus the overflow/underflow error can be
resolved by loading the accumulator with the most positive number which it can handle at the time of
overflow and the least negative number that it can handle at the time of underflow. This method is
called as saturation logic. A schematic diagram of saturation logic is as shown in figure 2.7. In
saturation logic, as soon as an overflow or underflow condition is satisfied the accumulator will be
loaded with the most positive or least negative number overriding the result computed by the MAC
unit.
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Fig 2.7: Schematic Diagram of the Saturation Logic

Arithmetic and Logic Unit

A typical DSP device should be capable of handling arithmetic instructions like ADD, SUB,
INC, DEC etc and logical operations like AND, OR , NOT, XOR etc. The block diagram of a typical
ALU for a DSP is as shown in the figure 2.8.
It consists of status flag register, register file and multiplexers.



Fig 2.8 Arithmetic Logic Unit of a DSP

Status Flags
ALU includes circuitry to generate status flags after arithmetic and logic operations. These flags
include sign, zero, carry and overflow.

Overflow Management
Depending on the status of overflow and sign flags, the saturation logic can be used to limit the
accumulator content.

Register File
Instead of moving data in and out of the memory during the operation, for better speed, a large set of
general purpose registers are provided to store the intermediate results.

Bus Architecture and Memory

Conventional microprocessors use Von Neumann architecture for memory management
wherein the same memory is used to store both the program and data (Fig 2.9). Although this
architecture is simple, it takes more number of processor cycles for the execution of a single
instruction as the same bus is used for both data and program.
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Fig 2.9 Von Neumann Architecture

In order to increase the speed of operation, separate memories were used to store program and
data and a separate set of data and address buses have been given to both memories, the architecture
called as Harvard Architecture. It is as shown in figure 2.10.
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Fig 2.10 Harvard Architecture

—

Although the usage of separate memories for data and the instruction speeds up the processing,
it will not completely solve the problem. As many of the DSP instructions require more than one
operand, use of a single data memory leads to the fetch the operands one after the other, thus
increasing the delay of processing. This problem can be overcome by using two separate data
memories for storing operands separately, thus in a single clock cycle both the operands can be fetched
together (Figure 2.11).
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Fig 2.11 Harvard Architecture with Dual Data Memory

Although the above architecture improves the speed of operation, it requires more hardware
and interconnections, thus increasing the cost and complexity of the system. Therefore there should be
a trade off between the cost and speed while selecting memory architecture for a DSP.

On-chip Memories

In order to have a faster execution of the DSP functions, it is desirable to have some memory
located on chip. As dedicated buses are used to access the memory, on chip memories are faster.
Speed and size are the two key parameters to be considered with respect to the on-chip memories.
Speed
On-chip memories should match the speeds of the ALU operations in order to maintain the single
cycle instruction execution of the DSP.
Size
In a given area of the DSP chip, it is desirable to implement as many DSP functions as possible. Thus
the area occupied by the on-chip memory should be minimum so that there will be a scope for
implementing more number of DSP functions on- chip.

Organization of On-chip Memories
Ideally whole memory required for the implementation of any DSP algorithm has to reside on-
chip so that the whole processing can be completed in a single execution cycle. Although it looks as a
better solution, it consumes more space on chip, reducing the scope for implementing any functional
block on-chip, which in turn reduces the speed of execution. Hence some other alternatives have to be
thought of. The following are some other ways in which the on-chip memory can be organized.



a As many DSP algorithms require instructions to be executed repeatedly, the instruction can be
stored in the external memory, once it is fetched can reside in the instruction cache.

b. The access times for memories on-chip should be sufficiently small so that it can be accessed more
than once in every execution cycle.

¢. On-chip memories can be configured dynamically so that they can serve different purpose at
different times.

Data Addressing Capabilities

Data accessing capability of a programmable DSP device is configured by means of its

addressing modes. The summary of the addressing modes used in DSP is as shown in the table below.
Table 2.1 DSP Addressing Modes

Addressing Operand Sample Format Operation
Mode
Immediate | Immediate Value ADD #imm #imm +A —»A
Register Register Contents ADD reg rec +A —» A
Direct Memory Address Register | ADD mem mem+A —> A
Indirect Memory contents with | ADD *addreg *addreg +A —» A
address in the register

Immediate Addressing Mode
In this addressing mode, data is included in the instruction itself.

Register Addressing Mode
In this mode, one of the registers will be holding the data and the register has to be specified in
the instruction.

Direct Addressing Mode
In this addressing mode, instruction holds the memory location of the operand.

Indirect Addressing Mode
In this addressing mode, the operand is accessed using a pointer. A pointer is generally a
register, which holds the address of the location where the operands resides. Indirect addressing mode
can be extended to inculcate automatic increment or decrement capabilities, which has lead to the
following addressing modes.




Table 2.2 Indirect Addressing Modes

Addressing Mode

Sample Format

Operation

Post Increment

ADD *addreg+

A — A+ *addreg

addreg —  addreg+1

Post Decrement ADD *addreg- A T A +*addreg
addreg —» addreg-1

addreg  —® addreg+1
A —» A+ *addreg

Pre Increment ADD +*addreg

Pre Decrement ADD -*addreg addreg —» addreg-1

A —» A+ *addreg

Post_Add_Offset ADD *addreg, offsetreg+ | A —® A + *addreg

addreg —» addreg+offsetreg
Post_Sub_Offset ADD *addreg, offsetreg- | A —» A + *addreg

addreg — addreg-offsetreg

Pre_Add_Oftset ADD offsetreg+,*addreg | addreg — addreg+offsetreg

A —» A+ *addreg

Pre_Sub_Offset ADD offsetreg-,*addreg | addreg — addreg-offsetreg

A —> A+ *addreg

Special Addressing Modes

For the implementation of some real time applications in DSP, normal addressing modes will
not completely serve the purpose. Thus some special addressing modes are required for such
applications.

Circular Addressing Mode
While processing the data samples coming continuously in a sequential manner, circular

buffers are used. In a circular buffer the data samples are stored sequentially from the initial location
till the buffer gets filled up. Once the buffer gets filled up, the next data samples will get stored once
again from the initial location. This process can go forever as long as the data samples are processed in
a rate faster than the incoming data rate.

Circular Addressing mode requires three registers viz

a. Pointer register to hold the current location (PNTR)

b. Start Address Register to hold the starting address of the buffer (SAR)

c. End Address Register to hold the ending address of the buffer (EAR)

There are four special cases in this addressing mode. They are



a. SAR < EAR & updated PNTR > EAR
b. SAR < EAR & updated PNTR < SAR
c. SAR >EAR & updated PNTR > SAR
d. SAR > EAR & updated PNTR < EAR
The buffer length in the first two case will be (EAR-SAR+1) whereas for the next tow cases (SAR-
EAR+1)
The pointer updating algorithm for the circular addressing mode is as shown below.
: Pomter Updating Alcoritlin

Updated PNTR. «— PNTR * ncrement

If SAR < EAR
A if Updated PNTR > EAR then
New PNTR. 44— Updated PNTR — Buffer size
A if Updated PNTR < SAR then
New PNTR Updated PNTR. + Buffer sze

If SAR = EAR
And if Updated PNTR = SAR then
New PNTR. 4— Updated PNTR — Buffer size
Al if Updated PNTR < EAR. then
New PNTR. w—— Updated PNTR + Buffer size

Else
New PNTR «4+—— Updated PNTR
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Four cases explained earlier are as shown in the figure 2.12.
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Fig 2.12 Special Cases in Circular Addressing Mode



Bit Reversed Addressing Mode
To implement FFT algorithms we need to access the data in a bit reversed manner. Hence a
special addressing mode called bit reversed addressing mode is used to calculate the index of the next
data to be fetched. It works as follows. Start with index 0. The present index can be calculated by
adding half the FFT length to the previous index in a bit reversed manner, carry being propagated from
MSB to LSB.
Current index= Previous index+ B (1/2(FFT Size))

Address Generation Unit
The main job of the Address Generation Unit is to generate the address of the operands
required to carry out the operation. They have to work fast in order to satisfy the timing constraints. As
the address generation unit has to perform some mathematical operations in order to calculate the
operand address, it is provided with a separate ALU.
Address generation typically involves one of the following operations.
a. Getting value from immediate operand, register or a memory location
b. Incrementing/ decrementing the current address
c. Adding/subtracting the offset from the current address
d. Adding/subtracting the offset from the current address and generating new address according to
circular addressing mode
e. Generating new address using bit reversed addressing mode

The block diagram of a typical address generation unit is as shown in figure 2.13.

Fig 2.13 Address generation unit



Programmability and program Execution
A programmable DSP device should provide the programming capability involving branching,
looping and subroutines. The implementation of repeat capability should be hardware based so that it
can be programmed with minimal or zero overhead. A dedicated register can be used as a counter. In a
normal subroutine call, return address has to be stored in a stack thus requiring memory access for
storing and retrieving the return address, which in turn reduces the speed of operation. Hence a LIFO
memory can be directly interfaced with the program counter.

Program Control
Like microprocessors, DSP also requires a control unit to provide necessary control and timing
signals for the proper execution of the instructions. In microprocessors, the controlling is micro coded
based where each instruction is divided into microinstructions stored in micro memory. As this
mechanism is slower, it is not applicable for DSP applications. Hence in DSP the controlling is
hardwired base where the Control unit is designed as a single, comprehensive, hardware unit.
Although it is more complex it is faster.



Review Questions

Question 1: Investigate the basic features that should be provided in the DSP architecture to be used to
implement the following N order FIR filter.

Solution:-

y(n)=>h(i) x(n-i) n=0,1,2...

In order to implement the above operation in a DSP, the architecture requires the
following features

i. A RAM to store the signal samples x (n)

ii. A ROM to store the filter coefficients h (n)

iii. An MAC unit to perform Multiply and Accumulate operation

iv. An accumulator to store the result immediately

v. A signal pointer to point the signal sample in the memory

vi. A coefficient pointer to point the filter coefficient in the memory
vii. A counter to keep track of the count

viii. A shifter to shift the input samples appropriately

1). Itis required to find the sum of 64, 16 bit numbers. How many bits should the
accumulator have so that the sum can be computed without the occurrence of
overflow error or loss of accuracy?

The sum of 64, 16 bit numbers can grow up to (16+ log2 64 )=22 bits long. Hence
the accumulator should be 22 bits long in order to avoid overflow error from occurring.

1. Inthe previous problem, it is decided to have an accumulator with only 16 bits
but shift the numbers before the addition to prevent overflow, by how many bits
should each number be shifted?

As the length of the accumulator is fixed, the operands have to be shifted by an
amount of log2 64 = 6 bits prior to addition operation, in order to avoid the condition of
overflow.

2. If all the numbers in the previous problem are fixed point integers, what is the
actual sum of the numbers?

The actual sum can be obtained by shifting the result by 6 bits towards left side after the sum
being computed. Therefore
Actual Sum= Accumulator content X 2 ©

3. Ifasum of 256 products is to be computed using a pipelined MAC unit, and if the MAC
execution time of the unit is 100nsec, what will be the total time required to complete the
operation?



As N=256 in this case, MAC unit requires N+1=257execution cycles. As the single MAC
execution time is 100nsec, the total time required will be, (257*100nsec)=25.7usec

4. Consider a MAC unit whose inputs are 16 bit numbers. If 256 products are to be
summed up in this MAC, how many guard bits should be provided for the
accumulator to prevent overflow condition from occurring?
As it is required to calculate the sum of 256, 16 bit numbers, the sum can be as
long as (16+ log2 256)=24 bits. Hence the accumulator should be capable of handling
these 22 bits. Thus the guard bits required will be (24-16)= 8 bits.
The block diagram of the modified MAC after considering the guard or extention bits is as shown in
the figure
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Question 2: What are the memory addresses of the operands in each of the following cases of
indirect addressing modes? In each case, what will be the content of the addreg after the memory
access? Assume that the initial contents of the addreg and the offsetreg are 0200h and 0010h,
respectively.

a. ADD *addreg

b.ADD +*addreg

c. ADD offsetreg+,*addreg

d. ADD *addreg,offsetreg-

\\\ /-

Instruction Addressing Operand Address addreg Content
Mode after Access
ADD *addreg- Post Decrement 0200h 0200-01=01FFh
ADD +*addreg Pre Increment 0200+01=0201h 0201h
ADD offsetreg+, *addreg | Pre_Add_Offset | 0200+0010=0210h | 0210h
ADD *addreg,offsetreg- Post_Sub_Offset | 0200h 0200-0010=01FOh




Question 3: A DSP has a circular buffer with the start and the end addresses as 0200h and 020Fh
respectively. What would be the new values of the address pointer of the buffer if, in the course of
address computation, it gets updated to

a. 0212h
b. 01FCh
Buffer Length= (EAR-SAR+1) = 020F-0200+1=10h
a. New Address Pointer= Updated Pointer-buffer length = 0212-10=0202h
b. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

Question 4: Repeat the previous problem for SAR= 0210h and

EAR=0201h Buffer Length= (SAR-EAR+1)= 0210-0201+1=10h
c. New Address Pointer= Updated Pointer- buffer length = 0212-10=0202h
d. New Address Pointer= Updated Pointer+ buffer length = 01FC+10=020Ch

Question 5: Compute the indices for an 8-point FFT using Bit reversed
Addressing Mode Start with index 0. Therefore the first index would be (000)
Next index can be calculated by adding half the FFT length, in this case it is (100)
to the previous index. i.e. Present Index= (000)+B (100)= (100)
Similarly the next index can be calculated as
Present Index= (100)+B (100)= (010)
The process continues till all the indices are calculated. The following table summarizes
the calculation.

Index in Binary BCD value Bit reversed index BCD value
000 0 000 0
001 1 100 4
010 2 010 2
011 3 110 6
100 4 001 1
101 5 101 3
110 6 011 3
111 7 111 7




UNIT IV:Programmable Digital Signal Processors

Introduction:

Leading manufacturers of integrated circuits such as Texas Instruments (T1), Analog devices &
Motorola manufacture the digital signal processor (DSP) chips. These manufacturers have developed a
range of DSP chips with varied complexity.

The TMS320 family consists of two types of single chips DSPs: 16-bit fixed point &32-bit floating-
point. These DSPs possess the operational flexibility of high-speed controllers and the numerical
capability of array processors

Commercial Digital Signal-Processing Devices:

There are several families of commercial DSP devices. Right from the early eighties, when
these devices began to appear in the market, they have been used in numerous applications, such as
communication, control, computers, Instrumentation, and consumer electronics. The architectural
features and the processing power of these devices have been constantly upgraded based on the
advances in technology and the application needs. However, their basic versions, most of them have
Harvard architecture, a single-cycle hardware multiplier, an address generation unit with dedicated
address registers, special addressing modes, on-chip peripherals interfaces. Of the various families of
programmable DSP devices that are commercially available, the three most popular ones are those
from Texas Instruments, Motorola, and Analog Devices. Texas Instruments was one of the first to
come out with a commercial programmable DSP with the introduction of its TMS32010 in 1982.

Summary of the Architectural Features of three fixed-Points DSPs

Architectural Feature  TMS320C25 DSP 56000 ADSP2100
Data representation 16-bit fixed
format 16-bit fixed 24-bit fixed point point
Hardware multiplier 16 x 16 24x 24 16x 16
AL 32 bits 56 bits 40 bits
24-bit program
[nternal buses 16-bit program bus  24-bit program bus  bus
2 X 24-bit data
16-bit data bus buses 16-bit data bus

24-bit global 16-bit result



External buses

On-chip Memory

Off-chip memory

Cache memory
Instruction cycle time
Special addressing
modes

Data address

16-bit
program/data bus

544 words RAM
4K words ROM
64 K words
program

64k words data

100 nsec

Bit reversed

databus
24-bit program/data
bus

512 words PROM

2 X 256 words data
RAM

2 X 256 words data

ROM

64K words program
2 x 64K words data
97.5 nsec.

Modulo
Bit reversed

bus
24-bit program
bus
16-bit data bus

16K words
program

16K words data
16 words
program

125 nsecc.

Modulo
Bit reversed

generators 1 2 2
Synchronous serial

Interfacing features /O Synchronous and DMA
DMA Asynchronous serial

/O DMA

The architecture of TMS320C54xx digital signal processors:

TMS320C54xx processors retain in the basic Harvard architecture of their predecessor,
TMS320C25, but have several additional features, which improve their performance over it. Figure 4.1
shows a functional block diagram of TMS320C54xx processors. They have one program and three
data memory spaces with separate buses, which provide simultaneous accesses to program instruction
and two data operands and enables writing of result at the same time. Part of the memory is
implemented on-chip and consists of combinations of ROM, dual-access RAM, and single-access
RAM. Transfers between the memory spaces are also possible.

The central processing unit (CPU) of TMS320C54xx processors consists of a 40- bit arithmetic
logic unit (ALU), two 40-bit accumulators, a barrel shifter, a 17x17 multiplier, a 40-bit adder, data
address generation logic (DAGEN) with its own arithmetic unit, and program address generation logic
(PAGEN). These major functional units are supported by a number of registers and logic in the
architecture. A powerful instruction set with a hardware-supported, single-instruction repeat and block
repeat operations, block memory move instructions, instructions that pack two or three simultaneous
reads, and arithmetic instructions with parallel store and load make these devices very efficient for
running high-speed DSP algorithms.

Several peripherals, such as a clock generator, a hardware timer, a wait state generator, parallel
I/0 ports, and serial 1/0O ports, are also provided on-chip. These peripherals make it convenient to
interface the signal processors to the outside world. In these following sections, we examine in detail
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System control

Program address generation

Data address generation

interface logic (PAGEN) logic (DAGEN)
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Figure 4.1.Functional architecture for TMS320C54xx processors.




Bus Structure:

The performance of a processor gets enhanced with the provision of multiple buses to provide
simultaneous access to various parts of memory or peripherals. The 54xx architecture is built around
four pairs of 16-bit buses with each pair consisting of an address bus and a data bus. As shown in
Figure 4.1, these are The program bus pair (PAB, PB); which carries the instruction code from the
program memory. Three data bus pairs (CAB, CB; DAB, DB; and EAB, EB); which interconnected
the various units within the CPU. In Addition the pair CAB, CB and DAB, DB are used to read from
the data memory, while The pair EAB, EB; carries the data to be written to the memory. The 54xx
can generate up to two data-memory addresses per cycle using the two auxiliary register arithmetic
unit (ARAUO and ARAU1L) in the DAGEN block. This enables accessing two operands
simultaneously.

Central Processing Unit (CPU):

The ‘54xx CPU is common to all the ‘54xx devices. The ’54xx CPU contains a 40-bit
arithmetic logic unit (ALU); two 40-bit accumulators (A and B); a barrel shifter; a
17 x 17-bit multiplier; a 40-bit adder; a compare, select and store unit (CSSU); an exponent
encoder(EXP); a data address generation unit (DAGEN); and a program address generation unit
(PAGEN).

The ALU performs 2’s complement arithmetic operations and bit-level Boolean operations on
16, 32, and 40-bit words. It can also function as two separate 16-bit ALUs
and perform two 16-bit operations simultaneously. Figure 3.2 show the functional diagram of the ALU
of the TMS320C54xx family of devices.

Accumulators A and B store the output from the ALU or the multiplier/adder block and provide a
second input to the ALU. Each accumulators is divided into three parts: guards bits (bits 39-32), high-
order word (bits-31-16), and low-order word (bits 15- 0), which can be stored and retrieved
individually. Each accumulator is memory-mapped and partitioned. It can be configured as the
destination registers. The guard bits are used as a head margin for computations.
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Figure 4.2.Functional diagram of the central processing unit of the TMS320C54xx
processors.

Barrel shifter: provides the capability to scale the data during an operand read or write.

No overhead is required to implement the shift needed for the scaling operations. The’54xx barrel
shifter can produce a left shift of 0 to 31 bits or a right shift of 0 to 16 bits on the input data. The shift
count field of status registers ST1, or in the temporary

register T. Figure 4.3 shows the functional diagram of the barrel shifter of TMS320C54xx processors.
The barrel shifter and the exponent encoder normalize the values in an accumulator in a single cycle.
The LSBs of the output are filled withOs, and the MSBs can be either zero filled or sign extended,
depending on the state of the sign-extension mode bit in the status register ST1. An additional shift
capability enables the processor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention operations.
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Figure 4.3.Functional diagram of the barrel shifter

Multiplier/adder unit: The kernel of the DSP device architecture is multiplier/adder unit. The
multiplier/adder unit of TMS320C54xx devices performs 17 x 17 2’s complement multiplication with
a 40-bit addition effectively in a single instruction cycle.

In addition to the multiplier and adder, the unit consists of control logic for integer and
fractional computations and a 16-bit temporary storage register, T. Figure 4.4 show the functional
diagram of the multiplier/adder unit of TMS320C54xx processors. The compare, select, and store unit
(CSSU) is a hardware unit specifically incorporated to accelerate the add/compare/select operation.
This operation is essential to implement the Viterbi algorithm used in many signal-processing
applications. The exponent encoder unit supports the EXP instructions, which stores in the T register
the number of leading redundant bits of the accumulator content. This information is useful while
shifting the accumulator content for the purpose of scaling.
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Figure 4.4. Functional diagram of the multiplier/adder unit of TMS320C54xx processors.

Internal Memory and Memory-Mapped Registers:

The amount and the types of memory of a processor have direct relevance to the efficiency and
performance obtainable in implementations with the processors. The ‘54xx memory is organized into
three individually selectable spaces: program, data, and I/O spaces. All ‘54xx devices contain both
RAM and ROM. RAM can be either dual-access type (DARAM) or single-access type (SARAM). The
on-chip RAM for these processors is organized in pages having 128 word locations on each page.
The ‘54xx processors have a number of CPU registers to support operand addressing and
computations. The CPU registers and peripherals registers are all located on page 0 of the data



memory. Figure 4.5(a) and (b) shows the internal CPU registers and peripheral registers with their

addresses. The processors mode status (PMST) registers
that is used to configure the processor. It is a memory-mapped register located at address 1Dh on page

0 of the RAM. A part of on-chip ROM may contain a boot loader and look-up tables for function such
as sine, cosine, u- law, and A- law.

NAME DEC HEX DESCRIPTION

IMR 0 0 Interrupt mask register

IFR 1 1 Interrupt flag register

— 2-5 2-5 Reserved for testing

STO 6 6 Status register 0

ST1 7 7 Status register 1

AL 8 8 Accumulator A low word (15-0)
AH 9 9 Accumulator A high word (31-16)
AG 10 A Accumulator A guard bits (39-32)
BL 1 B Accumulator B low word (15-0)
BH 12 C Accumulator B high word'(31-16)
BG 13 D Accumulator B guard bits (39-32)
TREG 14 E Temporary register

TRN 15 F Transition register

ARO 16 10 Auxiliary register 0

AR1 17 11 Auxiliary register 1

AR2 18 12 Auxiliary register 2

AR3 19 13 Auxiliary register 3

AR4 20 14 Auxiliary register 4

ARS 21 15 Auxiliary register 5

ARG 22 16 Auxiliary register 6

AR/ 23 17 Auxiliary register 7

SP 24 18 Stack pointer register

BK 25 19 Circular buffer size register

BRC 26 1A Block repeat counter

RSA 27 1B Block repeat start address

REA 28 ( 5 Block repeat end address

PMST 29 1D Processor mode status (PMST) register
XPC 30 1E Extended program page register
—_ 31 1F Reserved

Figure 4.5(a) Internal memory-mapped registers of TMS320C54xx processors.



ADCRESS

MAME DEC HEX DESCRIPTION

DRR20 3z 20 McBSP 0 Data Receive Register 2
DRR10 i3 21 McB5P D Data Receive Register 1
DXR20 34 22 McBSP O Data Transmit Register 2
LK 35 23 MoBSP O Pata Tranamit Register 1
Tin 36 24 Timer Register

PRD 37 25 Timer Period Register

TCR 38 26 Timer Control Register

— 39 27 Reserved

SWWVSH a0 28 Software ¥woatl-3tale Register

BSCR 41 29 Bank-Switching Control Register

— 42 2A Reserved

SWOR 43 2B software Watt-State Centrol Register
HPIC a4 2C HP Contiol Register (HMODE = O only)
. Q- f 20D—-2F Raseryed

DRR22 48 30 McBSP 2 Data Receive Register 2
DRR12 49 a McBSP 2 Data Receive Register 1
DXR22 50 32 McBSP 2 Data Transmit Register 2
DXR12 51 33 McB5P 2 Data Transmit Register 1
5P5A2 52 34 MCOESF Z Subbank Addness Regisles
SPSD2 53 as McBSP 2 Subbank Data Register

—_— 5455 36-37 Reserved

SPSAD 56 38 PACBSP O Subbank Addiess Register
SPSDO 57 39 McB5P 0 Subbank Data Register

-— 58-59 3A-3B Reserved

GPIOCR &0 ac General-Purpose MO Control Register
GPIOSR &1 oD General-Purpose MO Status Register
CSIDR 62 3E Device ID Register

= 63 3F Reserved

DRR21 64 40 MCHESF 1 Lhata Kecelve Reglster 2
DRR11 65 41 McBSP 1 Data Receive Register 1
DXR21 (=13 42 MCcBSP 1 Data Transmi: Register 2
DXR11 &7 43 McBSP 1 Data Transmit Reglster 1

— 88-71 4947 Reserved

5P5AT T2 48 McBSP 1 Subbank Address Hegisver
SPSD 73 49 McBSP 1 Subbank Data Register

- 7T4-B3 448-53 Reserved

DMPREC 84 54 DMA Prority and Enable Control Register
DMSA 85 55 DMA Subbank Addres: Register

Figure 4.5(b).peripheral registers for the TMS320C54xx processors

Status registers (ST0,ST1):

STO: Contains the status of flags (OVA, OVB, C, TC) produced by arithmetic operations
& bit manipulations.

ST1: Contain the status of various conditions & modes. Bits of STO&ST1registers can be set or clear
with the SSBX & RSBX instructions.

PMST: Contains memory-setup status & control information.



Status register() diagram:

Figure 4.6(a). STO diagram

ARP: Auxiliary register pointer.

TC: Test/control flag.

C: Carry bit.

OVA: Overflow flag for accumulator A.
OVB: Overflow flag for accumulator B.
DP: Data-memory page pointer.

Status register1 diagram:

Figure 4.6(b). ST1 diagram

BRAF: Block repeat active flag
BRAF=0, the block repeat is deactivated.
BRAF=1, the block repeat is activated.

CPL: Compiler mode
CPL=0, the relative direct addressing mode using data page pointer is selected.
CPL=1, the relative direct addressing mode using stack pointer is selected.

HM: Hold mode, indicates whether the processor continues internal execution or acknowledge for
external interface.

INTM: Interrupt mode, it globally masks or enables all interrupts.
INTM=0_all unmasked interrupts are enabled.

INTM=1_all masked interrupts are disabled.

0: Always read as 0

OVM: Overflow mode.
OVM=1_the destination accumulator is set either the most positive value or the most negative value.
OVM=0_the overflowed result is in destination accumulator.

SXM: Sign extension mode.
SXM=0 _Sign extension is suppressed.



SXM=1_Data is sign extended

C16: Dual 16 bit/double-Precision arithmetic mode.
C16=0_ALU operates in double-Precision arithmetic mode.
C16=1_ALU operates in dual 16-bit arithmetic mode.

FRCT: Fractional mode.
FRCT=1_the multiplier output is left-shifted by 1bit to compensate an extra sign bit.

CMPT: Compatibility mode.
CMPT=0_ ARP is not updated in the indirect addressing mode.
CMPT=1_ARP is updated in the indirect addressing mode.

ASM: Accumulator Shift Mode.
5 bit field, & specifies the Shift value within -16 to 15 range.

Processor Mode Status Register (PMST):
IPTR(15-7)  [MP/MC(6) IIJTL‘;]S} AVIS(4) [DROM3) |ULI~LUFF13] SMUL(T)  [SST(0)

Fig 4.6(c) PMST Register block diagram

INTR: Interrupt vector pointer, point to the 128-word program page where the interrupt vectors
reside.

MP/MC: Microprocessor/Microcomputer mode,

MP/MC=0, the on chip ROM is enabled.

MP/MC=1, the on chip ROM is enabled.

OVLY: RAM OVERLAY, OVLY enables on chip dual access data RAM blocks to be mapped into
program space.

AVIS: It enables/disables the internal program address to be visible at the address pins.
DROM: Data ROM, DROM enables on-chip ROM to be mapped into data space.
CLKOFF: CLOCKOUT off.

SMUL.: Saturation on multiplication.

SST: Saturation on store.



Data Addressing Modes of TMS320C54X Processors:

Data addressing modes provide various ways to access operands to execute instructions and place
results in the memory or the registers. The 54XX devices offer seven basic addressing modes

. Immediate addressing.

. Absolute addressing.

. Accumulator addressing.

. Direct addressing.

. Indirect addressing.

. Memory mapped addressing

. Stack addressing.

~N o ok WD

Immediate addressing:

The instruction contains the specific value of the operand. The operand can be short (3,5,8 or 9
bit in length) or long (16 bits in length). The instruction syntax for short operands occupies one
memory location,

Example: LD #20, DP.
RPT #0FFFFh.

Absolute Addressing:
The instruction contains a specified address in the operand.
1. Dmad addressing. MVDK Smem,dmad, MVDM dmad,MMR
2. Pmad addressing. MVVDP Smem,pmad, MVPD pmem,Smad
3. PA addressing. PORTR PA, Smem,
4.*(lk) addressing .

Accumulator Addressing:
Accumulator content is used as address to transfer data between Program and Data memory.
Ex: READA *AR2

Direct Addressing:

Base address + 7 bits of value contained in instruction = 16 bit address. A page of 128
locations can be accessed without change in DP or SP.Compiler mode bit (CPL) in ST1 register is
used.

If CPL =0 selects DP

CPL =1 selects SP,

It should be remembered that when SP is used instead of DP, the effective address is
computed by adding the 7-bit offset to SP.
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Figure 4.7 Block diagram of the direct addressing mode for TMS320C54xx Processors.

Indirect Addressing:
1 Data space is accessed by address present in an auxiliary register.
TMS320C54xx have 8, 16 bit auxiliary register (ARO — AR 7). Two auxiliary register arithmetic units

(ARAUO & ARAUL)

Used to access memory location in fixed step size. ARO register is used for indexed and bit reverse
addressing modes.

[1For single — operand addressing

MOD _ type of indirect addressing

ARF _ AR used for addressing

ARP depends on (CMPT) bit in ST1

CMPT =0, Standard mode, ARP set to zero

CMPT =1, Compatibility mode, Particularly AR selected by ARP



AROBE 1

AAA
ARRG) T ARATO
AAAA
S{ ARG index | +- 9 0 B
> ARLilG) > :
LS ARIG) — ARD BE 1
—[  ARS(IG) =N AL
> AR4(l6) =
——>|  ARe(16) —
I TS 5] AAA
> BE () s +- 9 0
)
Databus DB(16)
M
Data bus EB(16)

DAB(16) (read)

EAB (16) (write)
of
CAB(16)
(32-bit read)

Figure 4.8Block diagram of the indirect addressing mode for TMS320C54xx Processors,



IOperand syntax Function

< ARX A ddr = ARX:

FARX - A ddr = ARX : ARx = ARx -1
FARX + A ddr = ARX: ARXx = ARx +1

A RX A ddr = ARx+1: ARx = ARx +1
ARx - OB Addr = ARX 1 ARXx = BIARX — ARO)
FARX - O A ddr = Arx ARXx = ARx — ARO
FARX + O A ddr = Arx ARx = ARXx +ARO
AR + OB Addr = ARX : ARX = B(ARX + ARO)
FARX - 90 Addr = ARX 1 ARX =circ(ARXx — 1)
I*+AR — 0% Addr = Arx: ARX = circ(ARXx - ARO)
I=5‘ARX + Y% Addr = ARx ;: ARx =circ (ARx + 1)

Table 4.2 Indirect addressing options with a single data —memory operand.
Circular Addressing;

» Used in convolution, correlation and FIR filters.
» A circular buffer is a sliding window contains most recent data. Circular buffer of size R must
start on a N-bit boundary, where 2N >R .
> [1The circular buffer size register (BK): specifies the size of circular buffer.
» Effective base address (EFB): By zeroing the N LSBs of a user selected AR (ARX).
> [1End of buffer address (EOB) : By repalcing the N LSBs of ARx with the N LSBs of BK.
If 0 _index + step < BK ; index = index +step;
else if index + step _ BK ; index = index + step - BK;
else if index + step < 0; index + step + BK
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I3 N N1 0
I5 N NIl ]
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H  High-order bits
L Low- order bats
15 N Nl 0 L' New low-order bits
New S k4 EL  Low-order bit of corenlar buffer
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Figure 4.9 Block diagram of the circular addressing mode for TMS320C354xx Processors.
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Fizure 4.10 circular addressing mode implementation for TMS320054xx Processors.,

Bit-Reversed Addressing:
o Used for FFT algorithms.
o ARO specifies one half of the size of the FFT.
o The value of ARO = 2N-1: N = integer FFT size = 2N
o ARO + AR (selected register) = bit reverse addressing.
o The carry bit propagating from left to right.
Dual-Operand Addressing:

Dual data-memory operand addressing is used for instruction that simultaneously
perform two reads (32-bit read) or a single read (16-bit read) and a parallel store (16-bit
store) indicated by two vertical bars, Il. These instructions access operands using indirect addressing
mode.

If in an instruction with a parallel store the source operand the destination operand point to the
same location, the source is read before writing to the destination. Only 2 bits are available in the
instruction code for selecting each auxiliary register in this mode. Thus, just four of the auxiliary
registers, AR2-AR5, can be used, The ARAUSs together with these registers, provide capability to
access two operands in a single cycle. Figure 4.11 shows how an address is generated using dual data-
memory operand addressing.



15-8 7.6 5.4 3.1 1-0
Opeade Nmod Xa Ymaod Var

INmm: Function

Opeode This field contains the operation code for the instruction

omod [Defined the type of indirect addressing mode used for accessing the Xmem
pperand

NAR Nmem AR selection field defines the AR that contains the address of Xmem

Y mod |Defies the type of inderect addressing mode used for accessing the Ymem
operand

Y ar Ymem AR selection field defines the AR that contains the address of Ymem

Table 4.3 Function of the different field in dual data memory operand addressing

i Y

ARO BE 1L 1

AL A
i AFRATTD

AA A A

= ARG index = +i-05 0 B
= AR2 16} e ARD BE 1
> ARG = v ¥

= AR (16} Z
= ARs (16) 2 ARAT
AAA
= BE (16) = +i= %5 O
Suy

Data bus DE(16)

| Data bus EB(16)

DAB(18) (read)

EAB (16} (write)
or

CAB{16)
(32-bit read)

Figure 4,11 Block diagram ol the Indirect addressing options with a dual data —memory

operand.




Memory-Mapped Register Addressing:
» Used to modify the memory-mapped registers without affecting the current data page
» pointer (DP) or stack-pointer (SP)
o Overhead for writing to a register is minimal
o Works for direct and indirect addressing

o Scratch —pad RAM located on data PAGEO can be modified
» STM #x, DIRECT

> STM #tbl, AR1

0000h

94, 7 7LSBsfrom instruction register (IR) 0060h
or current auxiliary register

16 007Fh

16-bit memory-mapped register address

Figure 4.12.16 bit memory mapped register address generation.

4.4.7 Stack Addressing:

« Used to automatically store the program counter during interrupts and subroutines.
« Can be used to store additional items of context or to pass data values.

« Uses a 16-bit memory-mapped register, the stack pointer (SP).

* PSHD X2
Stack and SP before operation Stack and SP after operation

Sp I 0011 oo SP 0010 0001
0010 0010 X2
0011 X1 001 Y|
0100 0100
0101 0101
0110 0110

Figure 4.13 Values of stack &SP before and after operation.



Memory Space of TMS320C54xx Processors
» A total of 128k words extendable up to 8192k words.
» Total memory includes RAM, ROM, EPROM, EEPROM or Memory mapped peripherals.
» [1Data memory: To store data required to run programs & for external memory mapped

registers.
Size 64k words
On chip On chip Memory mapped
DARAM RAM registers

Program memory: To store program instructions &tables used in the execution
of programs.

Organized into 128 pages, each of 64k word size

Page0: Page 1to 127:
# Paﬂ Of 128k Space extended pages
+ 4k words are on-chip ROM

+ Remaining space for
DARAM &SARAM




Table 4.4 Function of different pin PMST register

PMST bit Logic  On-chip memory configpuration
MP/MC (8] ROM enabled
| RONM not available
OVLY O RANM in data space
! RAM in progrioam space
DROM 0 ROM not in data space
1 ROM i data space
Hex 0 Program Hex _Page 0 Program Hex Data
0000 Reserved 0000 Reserved 0000
(OVLY = 1) (OVLY = 1) Memoary-Mapped
External External 005F Registers
007F | (OVLY = 0) 007F OVLY = 0) 0060 | Scratch-Pad
0080 0080 | On-Chip 007F RAM
DARAMO-3 DARAMO-3 0080
(OVLY = 1) (OVLY w 1) On
TFFF 1(?\7‘&“.'0 TFFF o K T
) 2000 (OVLY =0) IFFF (32K X 16-bit)
BFFr | External 8000
‘ External €000 On-Chip
FFIF On-Chip ROM DARAM4-7
FEFF | (16K X 16-bit) (DROM = 1)
FF80 FFOO eserved or
kv FFF | External
External) FF80 Interrupts (DROM = 0)
FFFF FEFF —LW“LO" ) | FFFF
- MPMCw=1 MP/MC =0
(Microprocessor Mode) (Microcomputer Mode)

Addross ranges for on-chip DARAM in data memory are:

DARAMO: 0080h-~1 FFFh;
DARAM2: 4000h-SFFFh,
DARAME4: 8000h-9FFFY;
DARAME6: CO00h-DFFFh;

Figure 3.14 Memory map for the TMS320C5416 Processor.

DARAMI: 2000h-3FFFh
DARAM3: 6000h-TFFFh
DARAMS: AOOOh-BFFFh
DARAM?7: EOOOh-FFFFh



Program Control

» It contains program counter (PC), the program counter related H/W, hard stack, repeat
counters &status registers.
» PC addresses memory in several ways namely:
» Branch: The PC is loaded with the immediate value following the branch instruction
» Subroutine call: The PC is loaded with the immediate value following the call instruction
» Interrupt: The PC is loaded with the address of the appropriate interrupt vector.
> Instructions such as BACC, CALA, etc ;The PC is loaded with the contents of the accumulator
low word
» End of a block repeat loop: The PC is loaded with the contents of the block repeat program
address start register.
» Return: The PC is loaded from the top of the stack.
Problems:
1. Assuming the current content of AR3 to be 200h, what will be its contents after
each of the following TMS320C54xx addressing modes is used? Assume that the
contents of ARO are 20h.
a. *AR3+0
b. *AR3-0
c. *AR3+
d. *AR3
e. *AR3

f. *+AR3 (40h)
g. *+AR3 (-40h)

Solution:

a. AR3 < AR3 + ARO;

AR3 =

200h + 20h = 220h

b. AR3— AR3 - ARQ;

AR3 =

200h - 20h = 1EOh

C. AR3 «— AR3 + 1;

AR3 =

200h + 1 = 201h

d. AR3 <« AR3 - 1;

AR3 =

200h - 1 =1FFh

e. AR3 is not modified.

AR3 =

200h

f. AR3 < AR3 +40h;

AR3 =

200 + 40h = 240h

g. AR3 «— AR3 - 40h;

AR3 =

200 - 40h = 1COh






