UNIT-V
INTRODUCTION TO DSP PROCESSORS
Common DSP Applications…
· Communications
· Audio, Video processing
· Graphics, 3-D rendering
· Navigation, radars, GPS
· Controls – Robotics, guidance, Machine Vision
· Filtering
· Frequency-Time transformations (FFT-IFFT)
Common DSP Tasks…
· Modulation-Demodulation, Error correction
· Noise reduction, equalization, echo cancellation
· Audio compression
· Vector and Matrix calculations
· Control algorithms
DSPs Need to Do…
· Efficient repetitive numerical calculations
· Maintain numeric fidelity
· Provide high memory bandwidth
· Streaming data
· Real Time processing
DSPs Need to Minimize…
· Real Time execution unpredictability
· Memory use
· Power consumption
· Cost
· Development time
What Do DSPs Have?
· Specialized memory architecture (Harvard)
· Specialized parallel execution units
· Specialized addressing modes
· Specialized instruction sets for parallelexecution
· Specialized peripherals

Von Neumann Architecture
[image:]
Harvard Architecture…
[image:]
Harvard Architecture with Dual Data Memory
[image:]

Summary:
· Von Neumann = Shares the same data bus and the same main memory for transfer storage of instructions and data of the programs.
· Von Neumann is better for desktop computers/high performance computers were cost to performance ratio is important.
· Harvard = Uses two separate buses for the transfer of data and instructions and two separate memories for storage of data and instructions.
· Harvard architecture is used primarily for small embedded computers and signal processing. Commonly used within CPUs to handle the cache.

[image:]
Main differences
· Cell sizes used within the main memory are same in Von Neumann. However, Harvard allows for different cell sizes for data/instructions making effective use of resources.
· The programs in Harvard tend to be large.
· Modern computers make use of both Harvard and Von Neumann architecture.
· The main memory is used to store both instructions and data and they are both transferred over the data bus. However, the CPU’s cache has Harvard architecture.
· There is a separate cache memory for instructions and data.
· There is also a separate data bus between these caches.
Von Neumann Architecture 	
 Advantages:	
· Not only data but also instructions of programs are stored within the same memory.
· This makes it easier to re-program the memory.
· Less physical space is required than Harvard
· Handling just one memory block is simpler and easier to achieve
· Cheaper to use than Harvard
 Disadvantages:
· Shared memory - a defective program can overwrite another in memory, causing it to crash
· Memory leaks - some defective programs fail to release memory when they are finished with it, which could cause the computer to crash due to insufficient memory
· Data bus speed - the CPU is much faster than the data bus, meaning it often sits idle (Von Neumann bottleneck)
· Fetch rate - data and instructions share the same data bus, even though the rate at which each needs to be fetched is often very different
· All memory cell sizes are the same and so can’t be different for instructions/data making it less efficient.
Harvard Architecture 	
 Advantages :
· There is less chance of corruption since data and instructions are transferred via different buses.
· Data and instructions are accessed in the same way.
· Offers higher performance since Harvard allows for simultaneous fetching of data and instructions - they are kept in separate memory and travel via separate buses
· Both memories can use different cell sizes making effective use of resources.
· Greater memory bandwidth that is more predictable (separate memory for instructions and data)
 Disadvantages:	
· When there is free data memory it cannot be used for instructions and vice versa. Memory dedicated to each must be carefully balanced in manufacture.
· Production of a computer with two buses is more expensive and takes more time to manufacture.
· Harvard architecture has more pins so more complex for main board manufactures to implement.
· Not widely used so more difficult to implement
· Harvard architecture requires a control unit for two buses that is more complicated and development of which is expensive and needs more time.

VLIW (Very long instruction word)
· Very long instruction word (VLIW) describes a computer processing architecture in which a language compiler or pre-processor breaks program instruction down into basic operations that can be performed by the processor in parallel (that is, at the same time).
· Multiple operations per instruction
· Compiler is in control
· Only RISC like operation support
· Short cycle times
· Easier to compile for
· Extensible / Scalable
· not binary compatible !!

What is RISC?
	A reduced instruction set computer is a computer that only uses simple commands that can be divided into several instructions that achieve low-level operation within a single CLK cycle, as its name proposes “Reduced Instruction Set”.
 RISC Architecture
	The term RISC stands for ‘’Reduced Instruction Set Computer’’. It is a CPU design plan based on simple orders and acts fast.
 [image: RISC Architecture]
· This is small or reduced set of instructions. Here, every instruction is expected to attain very small jobs.
· In this machine, the instruction sets are modest and simple, which help in comprising more complex commands.
· Each instruction is of a similar length; these are wound together to get compound tasks done in a single operation.
· Most commands are completed in one machine cycle.
· This pipelining is a crucial technique used to speed up RISC machines.

What is CISC?
	A complex instruction set computer is a computer where single instructions can perform numerous low-level operations like a load from memory, an arithmetic operation, and a memory store or are accomplished by multi-step processes or addressing modes in single instructions, as its name proposes “Complex Instruction Set ”.
CISC Architecture
· The term CISC stands for ‘’Complex Instruction Set Computer’’.
· It is a CPU design plan based on single commands, which are skilled in executing multi-step operations.
 [image: CISC Architecture]
· CISC computers have small programs.
· It has a huge number of compound instructions, which takes a long time to perform.
· Here, a single set of instruction is protected in several steps; each instruction set has additional than 300 separate instructions. Maximum instructions are finished in two to ten machine cycles.
· In CISC, instruction pipelining is not easily implemented.

Difference between RISC and CISC Architecture
 [image: C:\Users\Srikanth\Downloads\Difference-between-RISC-and-CISC.jpg]
	RISC
	CISC

	1. RISC stands for Reduced Instruction Set Computer.
	1. CISC stands for Complex Instruction Set Computer.

	2. RISC processors have simple instructions taking about one clock cycle. The average clock cycle per instruction (CPI) is 1.5
	2. CSIC processor has complex instructions that take up multiple clocks for execution. The average clock cycle per instruction (CPI) is in the range of 2 and 15.

	3. Performance is optimized with more focus on software
	
3. Performance is optimized with more focus on hardware.

	4. It has no memory unit and uses separate hardware to implement instructions..
	4. It has a memory unit to implement complex instructions.

	5. It has a hard-wired unit of programming.
	
5. It has a microprogramming unit

	6. The instruction set is reduced i.e. it has only a few instructions in the instruction set. Many of these instructions are very primitive.
	6. The instruction set has a variety of different instructions that can be used for complex operations.

	7. The instruction set has a variety of different instructions that can be used for complex operations.
	7. CISC has many different addressing modes and can thus be used to represent higher-level programming language statements more efficiently.

	8. Complex addressing modes are synthesized using the software.
	8. CISC already supports complex addressing modes

	9. Multiple register sets are present
	9. Only has a single register set

	10. RISC processors are highly pipelined
	10. They are normally not pipelined or less pipelined

	11. The complexity of RISC lies with the compiler that executes the program
	11. The complexity lies in the microprogram

	12. Execution time is very less
	12. Execution time is very high

	13. Code expansion can be a problem
	13. Code expansion is not a problem

	14. The decoding of instructions is simple.
	
14. Decoding of instructions is complex

	15. It does not require external memory for calculations
	
15. It requires external memory for calculations

	16. The most common RISC microprocessors are Alpha, ARC, ARM, AVR, MIPS, PA-RISC, PIC, Power Architecture, and SPARC.
	16. Examples of CISC processors are the System/360, VAX, PDP-11, Motorola 68000 family, AMD, and Intel x86 CPUs.

	17. RISC architecture is used in high-end applications such as video processing, telecommunications and image processing.
	17. CISC architecture is used in low-end applications such as security systems, home automation, etc.

TMS320C54x Internal Block Diagram[image:]
Architecture of C54x
· Fixed Point processor
· Advanced Harvard Architecture, CISC Processor – Separate memory bus structures for program & data.
· High degree of parallelism – Multiply, load/store, add/sub to/from ACC and new address generation can be done simultaneously.
· Powerful Instruction set & most of the operations are of single cycle
· Targeted for portable devices (cellular phones, MP3 players, digital cameras …)
Bus structure
Has several address/data buses:
1. Program Bus (PB): carries instruction codes & immediate operands from program memory to CPU.
2. Program Address Bus (PAB): provides addresses to program memory for both read/write operations.
3. Data Bus (DB): carries data between data memory space and CPU.
4. Data Address Bus (DAB): provides addresses to access data memory.
Buses in C54x
· 8 major 16-bit buses
· 4 program / data buses
	 1. Program bus, PB
 	 2. Data buses
		 CB & DB for READ
		 EB for Write
· 4 address buses • PAB, CAB, DAB & EAB
· All CPU registers, peripheral registers and I/O ports occupy data memory space
Memory organization
· Minimum address range of 192K words
	– 64K words for program space
	– 64K words for data space
	– 64K words for I/O space
· ROM, DARAM, SARAM, two way shared RAM
· On-chip Memory Security option
· MMR: 26 CPU regs, peripheral regs and scratch pad RAM block located on data page 0(DP0)
Central Processing Unit
· CPU Registers
· 40-bit ALU
· Two 40-bit Acc Regs (AccA & AccB)
· Barrel Shifter Supporting 0-31 bit left shift & 0-16 bit right shift range
· MAC Block
· 16-bit Temp Reg (T)
· 16-bit Transition Reg (TRN)
· Compare, Select and Store Unit (CSSU)
· Exponent Encoder
Accumulators A & B
 [image:]

CPU registers
· IMR, IFR
· ST0 & ST1
· PMST
· AR0 – AR7(GPRs)
· SP reg
· Circular-Buffer size Register (BK)
· Block-Rep Regs (BRC, RSA and REA)
· PC Extension Reg (XPC)
· ST0,ST1,PMST registers
Addressing Modes in TMS320C54X Processor
The method of specifying the operand or the data to be operated by the instruction.
1) Immediate addressing
2) Absolute addressing
3) Accumulator addressing
4) Direct addressing
5) Indirect addressing
6) Memory mapped register addressing
7) Stack addressing
1) Immediate addressing mode:
· The data is specified as a part of the instruction.
· Value encoded in the instruction.
· Two types of values:
	– Short immediate (3/5/8/9- bit constant)
	–Long immediate (16 bits)
· # indicates immediate.
Example:	• LD #5, ARP; load the immediate 3-bit constant (5h)
		• LD #143h, DP; load the immediate 9-bit constant (143h) in DP
		• LD #80h, A; 8-bit constant
		• LD #1000h, A; 16-bit constant
2) Absolute Addressing Mode:
· In this the 16-bit address of the operand is directly
· This addressing can be used to address an operand in all the three address spaces of the processor(i.e. address an operand in program memory, data memory and I/O ports)
· Complete address is specified
· Address is always of 16-bits
· 4 types:
	 	– dmad addressing
		– pmad addressing
		– PA addressing
		– *(lk) addressing
Example:
 		• MVKD SAMPLE,*AR5;	dmad addr
	 	• MVDK *AR3, DATA1; 	dmad addr
		• MVPD COEFF, *AR7; 	pmad addr
 		• MVPD COEFF, *AR7; 	pmad addr
 		• PORTR FIFO, *AR5; 		PA addr
		 • LD *(BUFFER), A; 		*(lk) addr

3) Accumulator Addressing Mode:
· In this the contents of accumulator is the address of the operand/data in program memory.
· Use Acc (A/B) contents as address.
· Used to address program memory as data.
· Two instructions:
 	– READA Smem
	 – WRITA Smem
4) Direct Addressing Mode:
· In this the lower 7 bits of data memory address are specified in the instruction itself.
· The 16-bit data memory address is formed by using either the 9 bits of DP(Data Pointer) in status register-0 or the 16-bit of SP(Stack Pointer)
· When DP is used, the 9 bits of DP is the upper 9 bits of the 16-bit address and the lower 7 bits are the address directly specified by the instruction.
· When SP is used, the 16-bit content of SP is added to 7 bits specified in the instruction to form 16-bit address.
Example: 	ADD 6ch, A; Add the content of memory directly addressed by the
 instruction to Accumulator
	 SUB 57h, B; Subtract the content of memory directly addressed by the
 instruction to Accumulator B
5) Indirect addressing
· In this the data memory address is specified by the content of one of the eight auxiliary registers, i.e. AR0-AR7
· The AR(Auxiliary Register) currently used for accessing the data is denoted by 3-bit ARP(Auxiliary Register Pointer)
· In this addressing mode, the content of AR can be updated automatically either after or before the operand is fetched.
Example: LD *AR3, A ; load the content of memory addressed by AR3 in accumulator A
 LD *AR3-, A ; same as above, but after loading decrement AR3
 LD *AR3+, A ; same as above, but after loading increment AR3
	 LD *AR3-0, A ; same as above, but after loading decrement AR3 using AR0
	 LD *AR3+0, A ; same as above, but after loading increment AR3 using AR0
 6) Memory mapped register addressing
· In this the address of the memory-mapped register is specified as direct or indirect address in the instruction.
Example: LDM 06h, A ; Load the content of MMR directly addressed by the instruction
 in accumulator A
 STLM A, 1Eh; Store the content of accumulator A in MMR directly addressed
 by the instruction
7) Stack addressing
· In this the data memory address is the content of Stack Pointer(SP)
· The PUSH and POP instruction access the stack memory using the stack addressing mode.
· The CALL interrupt and RETURN instructions also use stack pointer address for automatic storage/retrieval of information to/from stack.
Example: PSHM 1ch; Decrement SP by 2 and push the content of MMR addressed by
 the instruction(address=1Ch) to stack memory addressed by SP
	 POPM 1Ch; POP the top of stack pointed by SP to MMR addressed by the
 instruction (address=1Ch), then SP in incremented by 2

INSTRUCTION SET OF TM320C54X PROCESSORS
1) Arithmetic instructions
2) Logical instructions
3) Branch/control instructions
4) Load/store instructions
5) Move instructions
1) Arithmetic instructions
[image:]
[image:]
[image:]
2) Logical instructions
[image:]
[image:]
[image:]
[image:]
3) Branch/control instructions
[image:]
[image:]
4) Load/store instructions
[image:]
[image:]
5) Move instructions
[image:][image:]
image5.emf
Von Neumann Architecture…

Processor Core

Memory

(Code+Data)

Address bus

Data bus

1. Fetch MAC instruction

2. Read value of ‘x’

3. Read value of ‘h’

4. Multiply x, h and accumulate

5. Write result to memory

• 4 memory access

operations

• One multiplication

Microsoft_Office_PowerPoint_Slide2.sldx

Von Neumann Architecture…

Processor Core

 Memory

 (Code+Data)

Address bus

Data bus

Fetch MAC instruction

Read value of ‘x’

Read value of ‘h’

Multiply x, h and accumulate

Write result to memory

4 memory access operations

One multiplication

Von Neumann Architecture...

===

image6.emf
Harvard Architecture…

Processor Core

Memory B

1. Data and Code in

separate memory

segments

2. Multiple address and

data buses

3. Double memory

bandwidth

4. Simultaneous code and

data fetch

Memory A

AB1

AB2

DB1

DB2

Microsoft_Office_PowerPoint_Slide3.sldx

Harvard Architecture…

Processor Core

Memory B

Data and Code in separate memory segments

Multiple address and data buses

Double memory bandwidth

Simultaneous code and data fetch

Memory A

AB1

AB2

DB1

DB2

Harvard Architecture...

image7.png
* von Neumenn

" Same marmry s datainstrctons.
A gl se f adrssicata b Sevesn
P andmamary

* Soparate memores fordotaand rsrucors.

T st of st uses between
P snamamary

image8.jpeg
RISC

Data
Memory

Program
Memory

Simple imstructiors
Ome netruction = One CVF

P lorger

image9.jpeg
CIsC

Data
Memory

Comples instractiors
O Matraction = several CVF
P standamd

image10.jpeg
RISC Cisc

image11.emf

image12.png
15-0

39-32 31-16
AG AH AL
Guard bits High-Order Bits Low-Order Bits
39-32 31-16 15-0
BG6 BH BL
Guard bits High-Order Bits Low-Order Bits

image13.png
Table 2-1. Add Instructions

Syntax Expression
ADD Smem, src sc = src + Smem
ADD Smem, TS, src stc = src + Smem << TS

ADD Smem, 16, src| , dst]

ADD Smem|[, SHIFT}, src[, dst]
ADD Xmem, SHFT, src
ADD Xmem, Ymem, dst
ADD #k[, SHFT], src[, dst]
ADD #Ik, 16, src [, dst]
ADD src[, SHIFT][, dst]
ADD src, ASM [, dst]
ADDC Smem, src

ADDM #lk, Smem

ADDS Smem, src

dst=src + Smem << 16
dst = src + Smem << SHIFT

src = src + Xmem << SHFT
dst=Xmem << 16 + Ymem << 16
dst= src + #lk << SHFT

dst=src + #lk << 16

dst= dst + src << SHIFT

dst= dst + src << ASM
src=src + Smem + C

Smem = Smem + #lk

src = src + uns(Smem)

image14.png
Table 2-2. Subtract Instructions

Syntax Expression

SUB Smem, src sc = sc — Smem

SUB Smem, TS, src src = src — Smem << TS,
SUB Smem, 16, src. dst] dst=src — Smem << 16

SUB Smem[, SHIFT], src[, dst] ~dst=src~Smem << SHIFT

SUB Xmem, SHFT, src st = src - Xmem << SHFT

SUB Xmem, Ymem, dst dst = Xmem << 16 - Ymem << 16
SUB #Ik[, SHFT]src[, dst] dst = src - #lk << SHFT

SUB #Ik. 16, src[, dst] dst=src - #k <<16

SUB srdl, SHIFT][, dst] dst = dst - src << SHIFT

SUB src, ASM I, dst] dst = dst - src << ASM

SUBB Smem, src src=src— Smem -C

image15.png
Table 2-3. Multiply Instructions

Syntax

Expression

MPY Smem, dst
MPYR Smem, dst
MPY Xmem, Ymem, dst
MPY Smem, #lk, dst
MPY #, dst

MPYA dst

MPYA Smem

MPYU Smem, dst
SQUR Smem, dst
SQUR A, dst

dst=T* Smem
dst=md(T * Smem)

dst=Xmem * Ymem, T = Xmem
dst=Smem * #k, T=Smem
dst=T"#k

dst=T* A(32-16)

B=Smem * A(32-16), T = Smem
dst=uns(T) * uns(Smem)
dst=Smem * Smem, T = Smem

dst= A(32-16) * A(32-16)

image16.png
Table 2-7. AND Instructions

Syntax Expression

AND Smem, src sc = src & Smem
AND #K[, SHFT], src[, dst] dst = src & #lk << SHFT
AND #kk, 16, src[, dst] dst=src & #k << 16

AND src[, SHIFT][. dst] dst = dst & src << SHIFT

'ANDM #lk, Smem Smem = Smem & #lk

image17.png
Table 2-8. OR Instructions

Syntax Expression

OR Smem, src src = src| Smem
OR #k[, SHFT], src[, dst] dst=src| #k << SHFT
OR #Ik 16, src dst] dst =src | #lk << 16
OR src[, SHIFT][, dst] dst = dst | src << SHIFT
ORM #Ik Smem Smem = Smem | #k

image18.png
Table 2-9. XOR Instructions

Syntax Expression

XOR Smem, src src = src A Smem
XOR #K[, SHFT] src[, dst] dst=src #k << SHFT
XOR #kk, 16, src[, dst] dst= src #k << 16

XOR src[, SHIFTI[, dst] dst = dst ~ src << SHIFT

XORM #lk, Smem Smem = Smem A #lk

image19.png
Table 2-10. Shift Instructions

Syntax Expression
ROL src Rotate left with carry in
ROLTC src Rotate left with TC in
ROR src Rotate right with carry in

SFTA src, SHIFT[., dst]
SFTC src
SFTL src, SHIFT[, dst]

dst= src << SHIFT {arithmetic shift)
i sre(31) = src(30) then src = src << 1
dst = src << SHIFT {logical shift}

image20.png
Table 2-12. Branch Instructions

Syntax Expression
BID] pmad PC = pmad(15-0)
BACCID] src PC = src(15-0)

BANZID] pmad, Sind

BCID] pmad, cond [, cond] , cond]]

FBID] extpmad

FBACCID] src

f (Sind # 0) then PC = pmad(15-0)

if (cond(s)) then PC = pmad(15-0)

PC = pmad(15-0),
XPC = pmad(22-16)

PC = src(15-0), XPC = src(22-16)

image21.png
Table 2-13. Call Instructions

Syntax Expression

CALAD] src __SP.PC + 131 = TOS,
PC = src(15-0)

CALL[D] pmad —_SP,PC + 2141 = TOS,

CCID] pmad, cond [, cond [, cond]]

FCALAID] src

FCALLID] extomad

PC = pmad(15-0)

if (cond(s)) then —~SP,
PC +2[4f] = TOS,
PC = pmad(15-0)

__SP,PC+1[31|=TOS,
PC = src(15-0), XPC = src(22-16)
—-SP.PC+214%] =TOS,

PC = pmad(15-0),
XPC = pmad(22-16)

image22.png
Table 2-19. Load Instructions

Syntax Expression
DLD Lmem, dst dst=Lmem

LD Smem, dst dst=Smem

LD Smem,TS, dst dst=Smem << TS

LD Smem, 16, dst dst=Smem << 16

LD Smem[, SHIFT], dst dst=Smem << SHIFT
LD Xmem, SHFT, dst dst= Xmem << SHFT
LD #K dst dst=#K

LD #Ik[, SHFT], dst dst = #lk << SHFT

LD #Ik, 16, dst dst = #k << 16

LD src, ASM[, dst] dst = src << ASM

LD src[, SHIFT], dst dst = src << SHIFT
LD Smem, T T=Smem

LD Smem, DP DP = Smem(8-0)

LD #k9,DP DP = #9

LD #k5, ASM ASM = #k5

image23.png
Table 2-20. Store Instructions

Syntax

DST src, Lmem
ST T, Smem

ST TRN, Smem

ST #lk, Smem

STH src, Smem

STH src, ASM, Smem
STH src, SHFT, Xmem
STH src[, SHIFT], Smem
STL src, Smem

STL src, ASM, Smem
STL src, SHFT, Xmem
STL src[, SHIFT], Smem
STLM src, MMR

Smem = src << 16
Smem = src << (ASM - 16)

Xmem = src << (SHFT - 16)
Smem = src << (SHIFT - 16)

Smem = src

Smem = src << ASM
Xmem = src << SHFT
Smem = src << SHIFT

MMR = src

image24.png
VDD Xmem, Ymem
MVDK Smem, dmad
VDM amad, MR

MVDP Smem. pmad

Move Instructions.
Move within data memory, XY addressing
Move daa, destinaton addressing

Move data o memory-mapped register

Move dats to program memory.

image25.png
MVKD dmad. Smem
MVMD MU dmad
MM MR MRy
MVPD pmad, Smem
READA Smem

WRITA Smem

Move dats with source addressing
Move memory-mspped register o dits
Move between memory-mapped registers
Move program memory to data memory
Read data memory addressed by ACCA

Wirte data memory sddressed by ACCA

image1.emf
Multiply-Accumulate (MAC)

•

Multiplication in single cycle

•

Execution time ~ 200 ns

Register

Multiplier

ALU

Accumulator

Microsoft_Office_PowerPoint_Slide1.sldx
Multiply-Accumulate (MAC)

Multiplication in single cycle

Execution time ~ 200 ns

Register

Multiplier

ALU

Accumulator

Multiply-Accumulate (MAC)

* Multplcation n single cyele
+ Bxecutiontime ~200n

image2.png

image3.png

image4.png

