
DATA STRUCTURES

A Data structure is a collection of data values, the relationships among them, and the functions
or operations that can be applied to the data.

Data structures can implement one or more particular abstract data types (ADT), which specify
the operations that can be performed on a data structure and the computational complexity of
those operations. In comparison, a data structure is a concrete implementation of the space
provided by an ADT.

 (or)

A data structure is a format of storing, organizing, transforming and retrieving data
in a computer so that it can be used efficiently.

Performance and Complexity Analysis:

Performance : The amount of computer memory and the time needed to run a program.

There are two approaches to determine the performance of a program.

a) Performance analysis - use analytical methods
b) Performance measurement – Conduct experiments.

Space complexity : Space complexity of the program is the amount of memory it needs to run
to completion. For following reasons the space complexity is needed.

1. If the Program is to be run on a multiuser computer system, then we may need to specify
the amount of memory to be allocated to the program.

2. It may be needed to know in advance whether or not sufficient memory is available to run
the program.

3. A problem might have several possible solutions with different space requirements.
Eg: c++ compiler with 1MB, c++ compiler with 4MB

4. Use the space complexity to estimate the size of the largest problem that a program can
solve.

Components of Space Complexity:

The space needed by a program has the following components.

1. Instruction space: Space needed to store the compiled version of the program instructions.
The amount of instruction space that is needed depends on factors such as

i. The compiler used to compile the program into machine code.
ii. The compiler options in effect at the time of compilation.
iii. The target computer.

The compiler is the important factor in determining how much space the resulting code
needs. Eg., Possible codes for the evaluation of a+b+b*c+(a+b-c)/(a+b)+4 are

(a) LOAD a b) LOAD A c) LOAD a
ADD b ADD b ADD b
STORE t1 STORE t1 STORE t1
LOAD b SUB c SUB c
MULT c DIV t1 DIV t1
STORE t2 STORE t2 STORE t2
LOAD t1 LOAD b LOAD B
ADD t2 MUL c MUL c
STORE t3 STORE t3 ADD t2
LOAD t1 LOAD b ADD t1
ADD t2 MUL C ADD 4
STORE t3 STORE t3
LOAD a LOAD t1
ADD b ADD t3
SUB c ADD t2
STORE t4 ADD 4
LOAD a
ADD b
STORE t5
LOAD t4
DIV t5
STORE t6
LOAD t3
ADD t6
ADD 4

These codes need different amount of space, and the compiler in use
determines exactly which code will be generated. Even with the same compiler
the size of the generated program code can vary. Space is required for the
temporary variables.
Another option that can have a significant effect on program space is the
overlay option in which space is assigned only to the program module that is
currently executing. When a new module is invoked , then the code of the new
module is read in from disk and it overwrites the old module. So the program
space corresponding to the size of the largest code module is needed.
The configuration of the target computer also can effect the size of the
compiled code.

2. Data space: Space needed to store all the constants and variable values. Data space has
two components:

a. Space needed by constants and simple variables.
b. Space needed by dynamically allocated objects such as arrays and class

instances.

Different data types have different space requirement. Eg., bool (1 byte) ,
char (1 byte) , int (4 bytes) etc.,
Space required for the structure variable is sum of the space of all its components.

Space required for array is multiplying array size and the space needs of a single
array element.
 Eg., double a[100]; space needed is 100* 8(double= 8 bytes)
 Int maze[rows][cols]; rows*cols*4(int = 4 bytes)

3. Environmental stack space: The environment stack space is needed to resume execution
of partially completed functions and methods. Each time a function is invoked the following
data are saved on the environment stack.

a. The return address
b. The values of all local variables and the formal parameters in the function being

invoked.

 The total space needed by a program is divided into two parts:

1) A fixed part that is independent of instance characteristics which include instruction space,
space for simple variables, and space for constants and so on.

2) A variable part that consists of the dynamically allocated space and the recursion space.

The space requirement of any program P may be written as
 c + S p(instance characteristics) where c is a constant that denotes the
fixed part and Sp denotes the variable part. Accurate analysis should also include the space
required for temporary variables generated during compilation.

Examples

1) Template<class T>
int seqsearch(T a[],int n,const T& x)
{
 int i;
 for(i=0;i<n && a[i]!=x;i++)
if (i==n) return -1;
else return i;
}

 The space complexity of this function in terms of instance characteristics ‘n’ is
Ssequentialsearch(n)=0, Although the space for the formal parameters a, x, n, the constants 0
and -1, and space for code is needed ,but this space is independent of n.

2) Template<class T>
T sum(T a[],int n)
{
 T theSum=0;
 for (int i=0;i<n;i++)
 theSum+=a[i];
 return theSum;
}

Here also Ssum (n)=0, with in the function space is needed for formal parameters , the
local variables i and theSum, the constant 0 , and the instructions. The amount of space
needed does not depend on value of n.

3) int factorial(int n)
{
 if (n<=1) return 1;
 else return n* factorial(n-1);
}

The recursion depth is max{n,1}. The recursion stack saves a return address (4 bytes)
and the value of n (4 bytes) each time the factorial is invoked. No additional space that
is dependent on n is used, so Sfactorial (n) = 8*max{n,1}.

Time complexity: Time complexity of the program is the amount of computer time needed to
run to completion. For following reasons the space complexity is needed.

1. Some Computer systems require the user to provide an upper limit on the amount of time
the program will run. Once the upper limit is reached , the program is aborted.

2. The program developed might need to provide a satisfactory real –time response .From the
time complexity of the program or program module , it is possible to decide whether or not
the response time will be acceptable. If not, not acceptable either redesign the algorithm or
give the user faster computer.

3. If we have alternative ways to solve a problem, then the decision on which to use will be
based on the expected performance difference among these solutions.

Components of Time Complexity: The time complexity of a program depends on all the
factors that the space complexity depends.

A program will run faster on a computer capable of executing 109 instructions/second than on
one that can execute only 107 instructions/second.

Some compilers will take less time than others to generate the corresponding code.

Smaller problem instances will generally take less time than larger instances. The time taken by
a program P is the sum of the compile time and run time. Compile time does not depend on
instance characteristics. Compiled code can be run several times without recompilation. ∴ ,
Consider only run time of a program. This run time is denoted by tP(instance characteristics).
Because many of the factors tP depends are not known when a program is created. Therefore
only possibility is to estimate tP.
If we knew the characteristics of the compiler used, then we could determine the number of
additions , subtractions ,multiplications ,divisions, compares, loads, stores, and so on that the
code for P would make. Then
 tP(n)= caADD(n)+csSUB(n)+cmMUL(n)+cdDIV(n)+……….. (a)
where ca ,cs ,cm,cd denote time taken for addition , subtraction, multiplication and division .

ADD,SUB,MUL,DIV are functions whose value is the number of additions, subtractions,
multiplications, divisions that will be performed when the code for P is used on an instance with
characteristic n.
The time needed for arithmetic operation depends on the type (int, float ,etc.,) of the numbers in
the operation, an exact formula for run time must separate the operation counts by data type.
Fine-tuning the equation (a) this way still does not give us an accurate formula to predict run
time because computers do not necessarily perform arithmetic operation in sequence.

Eg.,
 a) computers can perform an integer operation and float operation at the same time.

b) Computers can have capability to pipeline arithmetic operations and also computers have
memory hierarchy which means the time to perform m additions isn’t necessarily m times
the time to perform one.

Two more manageable approaches to estimating run time are
(1) Identify one or more key operations and determine the number of times these

operations are done.
(2) Determine the total number of steps executed by the program.

OPERATION COUNTS : One of the method is to estimate time complexity of the program or
method is to find the operations(add, sub, compare etc.,) and determine how many times each
is done. The success of this method depends on the ability to identify the operations that
contribute most to the time complexity.

Example 1 : To find the position of largest element in the given array.

Template<class T>
int indexOfMax(T a[], int a)
{
 if (n<=0)
 throw illegalParameterValue(“n must be greater than 0”);
 int indexOfMax = 0;
 for (int i=1; i<n;i++)
 if (a[indexOfMax] < a[i])
 indexOfMax = i;
return indexOfMax;
}

The time complexity of the program can be estimated by determining the number of
comparisons made between the elements of array a.

Case 1: when n<=0 , no. of comparisons is 0. Exception is thrown.
Case 2: when n=1, the for loop is not entered. So no comparisons between elements of the
array a are made.
Case 3: when n>1, the no. of comparison is n-1.

The number of element comparisons is max {n-1,0}.
Initializing of indexOfMax, for loop index, incrementing of for loop index, comparison of for loop
index not included in the estimate of time. If included the time will be increased by a constant
factor.

Example 2 : Polynomial evaluation

Consider the polynomial P(x)= ∑
i=0

n

c i x
n . if cn ≠ 0,P(x) is a polynomial of degree n.

template<class t>
t polynomial(t coeff[],int n,const t&x)
{
 t y = 1 , value = coeff[0];
 for (int i =1 ; i<=n; i++)
 {
 y = y *x;
 value += y* coeff[i];
}
return value;
}
It’s time complexity is estimated by determining the number of additions and multiplications
performed inside the for loop.
Degree n is used as instance characteristics.
The for loop is entered total n times. Each time the for loop is entered one addition and two
multiplications are done. The number of additions is n, and the no.of multiplications is 2n.

Evaluation of the Polynomial is done by using Horner’s rule as:
P(x) = (…(cn * x + cn-1)*x + cn-2)*x + cn-3)*x…)*x+c0

Then the polynomial evaluation function is :
template<class t>
t polynomial(t coeff[],int n,const t&x)
{
 t y = 1 , value = coeff[n];
 for (int i =1 ; i<=n; i++)

 value = value *x + coeff[n-1];
return value;
}

The time complexity of this modified function in terms of no.of additions and no.of multiplications
is : n additions and n multiplications.

