Scheme of Instruction & Examination B.E. FIRST YEAR ELECTRONICS AND COMMUNICATION ENGINEERING

	Semester - I											
			Scheme of Examinatio									
s			S	chei	ne of Ir	Exami						
N.	Course		Ho	ours	Per	isti uction	Maximum					
0	Code	week					Mai	rks				
		Course Title	L	т	P/D	Duration in Hrs	CIF	SE F	Cre dits			
	L 1 P/D III HITS CIE E Theory Courses											
	5BS10	Engineering										
1	1HS	Mathematics - I	3	1	0	4	40	60	4			
2	5BS10											
2	6HS	Chemistry	3	1	0	4	40	60	4			
3	5HS10											
5	1HS	English	2	0	0	2	40	60	2			
	5ES103	Elements of										
4	MF	Mechanical										
	IVIL	Engineering	3	0	0	3	40	60	3			
			Labo	rato	ries							
5	5BS15											
5	3HS	Chemistry Lab	0	0	3	3	40	60	1.5			
6	5HS15											
0	1HS	English Lab	0	0	2	2	40	60	1			
	5ES152	Engineering										
7	ME	Workshop										
		Practice	0	0	4	4	40	60	2			
8	5MC15	Yoga/NSS/Sport					-0		<u>_</u>			
	1SP	S	0	0	2	2	50	-	0			
		Total	11	2	11	24	330	420	17.5			

		Semeste	er - II						
				Sche	eme of		Schem	e of	
				Inst	ruction		Examinatio		
S							n		
			ŀ	Iours	Per	D	Maxim	um	Credit
	Course			wee	k	ur	Mark	KS .	s
Ν	Code					ati			3
0						on			
						in			
		Course Title				Н		SE	
			L	Т	P/D	rs	CIE	E	
		Theor	y Cou	rses	1		-	1	r
1	5BS203HS	Engineering			_				
-	020200115	Mathematics - II	3	1	0	4	40	60	4
2	5BS204HS	Applied Physics	3	1	0	4	40	60	4
3	5ES201CS	Programming for			0		10		
-		Problem Solving	3	0	0	3	40	60	3
4	5ES202EE	Elements of Electrical			0		10		
	5-2-0	Engineering	3	0	0	3	40	60	3
5	5MC201C				0		10		0
	E	Environmental Science	2	0	0	2	40	60	0
_		Labo	orator	les	-	-			
6	5BS252HS	Applied Physics Lab	0	0	3	3	40	60	1.5
7	5ES251CS	Programming for			_		10	- 0	
		Problem Solving Lab	0	0	2	2	40	60	1
8	5ES252EE	Elements of Electrical			_		10	- 0	
0	02020222	Engineering Lab	0	0	2	2	40	60	1
9	5ES252CE	Engineering Graphics				_	10		
_		Lab	1	0	4	5	40	60	3
		Total	15	2	9	26	320	480	20.5
В	S: Basic Scien	ces ES: Eng	gineer	ing S	ciences		HS:		

BS: Basic Sciences Humanities and Sciences

MC: Mandatory Courses

CIE: Continuous Internal Evaluation SEE: Semester End Examination

L: Lectures T : Tutorials P: Practicals D : Drawing

1). Each Contact Hour is a Clock hour Note:

Course code	Course Title	Core/ Elective							
5BS101HS		Core							
	Engineering Mathematics – 1	L	Т	P/D	Credits	CIE	SEE		
		3	1	0	4	40	60		

Prerequisite: Basics of Matrices, Differentiation, Integration and Trigonometric results

Course Objectives: The objective of this course is to make the student

- Study matrix algebra and its use in solving system of linear equations and solving eigen value problems.
- ▶ study mean value theorems and their application to mathematical problems.
- introduce the concepts of functions of several variables and multiple integrals
- introduce the concepts of Multiple Integrals
- study vector differential and integral calculus.

Course Objectives: After completion of the course, the student will be able to

- Find the rank of matrix and its use to find solution of linear equations, eigen value problem, Quadratic forms..
- Explain the concepts of derivatives using mean value theorems and their generalization. Concepts of curvature, evolutes, involutes, envelopes of family cf curves
- Find Partial derivatives of functions of two variables using concept of limits and continuity and study the concepts of maximum and minimum of functions of two variables.
- Identify the key concepts, theories and mathematical fundamentals to derive mathematical relations involved in evaluation of double integrals and triple integrals and solving Engineering problems.
- Evaluate gradient of a scalar field, divergence, curl of a vector field to find the values of line, surface and volume integrals and establish their relation using Green, Gauss and Stokes theorems.

Unit-I (10Hrs)

Matrices: Rank of a matrix, Echelon form, System of linear equations, Linear dependence, independence of vectors, Linear transformation, Orthogonal transformation, Eigen values, Eigen vectors, Properties of eigen values, Cayley-Hamilton theorem, Quadratic forms, Reduction of quadratic form to canonical form by orthogonal transformation, Nature of quadratic form.

Unit-II (10Hrs)

Calculus of one variable: Rolle's theorem, Lagrange's, Cauchy's Mean value theorems, Taylor's series, Curvature, Radius of curvature, Circle of Curvature, Envelope of family of curves, Evolutes and Involutes.

Unit-III (10Hrs)

Multivariable Calculus (Differentiation): Functions of two variables, Limits and continuity, Partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions (Chain rule), Change of variables, Jacobian, Higher order partial derivatives, Taylor's series of functions of two variables, Maximum and minimum of values of functions of two variables, Lagrange's method of undetermined multipliers.

Unit-IV (8Hrs)

Multivariable Calculus (Integration): Double Integrals, Change of order of integration, change of variables from cartesian to plane polar coordinates, Triple Integrals.

Unit-V (12Hrs)

Vector Calculus: Scalar and vector fields, Gradient of a scalar field, Directional derivative, Divergence and Curl of a vector field, Line, Surface and Volume integrals, green's theorem in a plane, Gauss's divergence theorem, Stoke's theorem (without proofs) and their verification.

TEXT BOOKS :

- T1. Dr.B.S. Grewal, Higher. Engineering Mathematics, Khanna Publications, 43rd Edition,2014. (Unit 1-5)
- T2. Advance Engineering Mathematics by Jain and Iyengar,5th Edition, Narosa Publications (Unit 1-5)

T3.B. V. Ramana, Higher Engineering Mathematics,3rd Edition 2015. (Unit 1-5)

REFERENCES/ SUGGESTED READING:

- R1. M.D Raisinghania, Ordinary Differential Equations, 11th Revised Edition
- R2. S.S. Sastry, Engineering mathematics, 3rd Edition, Paperback
- R3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley, 9th Edition, 2012.
- R4. Peter. V. O' Neil, Advance Engineering Mathematics,' Publisher, Global Engineering 7th Edition, 2012

- , , , , , , , , , , , , , , , , , , ,			J						
Course code	Course Title	Core/ Elective							
					Core				
5BS106HS	Chemistry	L	Т	P/D	Credits	CIE	SEE		
		3	1	0	4	40	60		

Prerequisite: Electrochemistry &Batteries, Water & Corrosion, Polymers, Energy Sources, Inorganic Engineering Materials

Course Objectives: The objective of this course is to make the student

- Apply the principals of electrochemistry in storage of electrical energy in batteries.
- Rationalize bulk properties and processes using thermodynamic considerations.
- Gains knowledge in causes of corrosion and its prevention. Attains knowledge about the disadvantages of hard water and treatment of water for drinking purpose.
- Explain the influence of chemical structure on properties of materials and their choice in engineering applications.
- > Exposed to qualitative and quantitative parameters of chemical fuels.

Course Outcomes: After completion of the course, the student will be able to

- CO.1. Apply concept of electrode potential in identifying feasibility of electrochemical reaction; illustrate electro analytical techniques and working of batteries
- CO.2. Identify the mechanism of corrosion of materials on basis of electrochemical approach and devise corrosion control methods. Estimate the physical & chemical parameters of quality of water and explain the process of water treatment.
- CO.3 Explain the influence of chemical structure on properties of materials and their choice in engineering applications.
- CO.4 Classify chemical fuels and grade them through qualitative analysis.
- CO.5 Relate the concept of green chemistry to modify engineering processes and materials. Understand the function of drugs.

Unit-I: (10 Hrs)

Electrochemistry and Batteries:

Electrochemistry: Electrochemical cells, Electrolytic and Galvanic cellsnotation, cell notation, cell reaction and cell potentials. Electrodes:

Electrode potential and Standard Electrode Potential (SEP). Construction and function of Calomel Quinhydrone and Glass electrodes.

Determination of pH of a solution by using Quinhydrone electrode.

Thermodynamics of emf, Nernst equation and its derivation. Applications

of Nernst equation to electrode potential and emf of cells. Numerical problems.

Batteries: Primary batteries: Zn - Carbon battery. Secondary batteries: Pb-Acid cell & battery and Li-Ion cell battery, Applications. Flow batteries (Fuel cells): Hydrogen-Oxygen fuel cells& functioning. Applications of batteries.

Unit-II: (10 Hrs)

Water Chemistry--its treatment and corrosion:

Water Chemistry: Hardness of Water-Types and units of hardness, estimation of temporary and permanent hardness of water by EDTA method. Alkalinity of water and its determination. Water softening by Ion exchange process and desalination of water by reverse osmosis method. Numerical problems. Specifications of potable water--Steps involved in treatment of water – Sterilization by Chlorination -Disinfection of water by chlorination and ozonization. Break Point Chlorination – advantages.

Corrosion: Causes and effects of corrosion. Types of Corrosion-Dry corrosion – its types or Chemical corrosion and Wet or Electrochemical corrosion and their mechanism.

Concentration cell corrosion. Waterline, Pitting and galvanic corrosion. Factors effecting rate of corrosion.

Unit-III: (10 Hrs)

Polymers: Basics of terms polymers: Monomer functionality, degree of polymerization. Types of Polymerization (i) Addition--Mechanism of free radical polymerization (ii) Condensation (iii) Co-Polymerization with examples.

Classification of polymers - Thermoplastics & Thermosetting resins. Plastics, Fibres and Elastomers and their characteristics. Preparation, Properties & Uses of the following polymers: Plastics - PVC and Bakelite, Fibres - Nylon 6:6, and Dacron. Elastomers - Buna-S, Butyl Rubbers.

Conducting polymers : Concept, Classification and Mechanism of conduction in Trans Poly-acetylene, Doped Conducting Polymers. Applications of conducting polymers.

Biodegradable polymers: Concept. preparation, properties and applications of polylactic acid

Unit-IV: (10 Hrs)

Chemical Fuels: Concept, definition and classification of fuels- Primary and secondary fuels. Solid, liquid and gaseous fuels. Characteristics of a good fuel. Calorific Value – High Calorific Value(HCV) and Low Calorific Value (LCV). Numerical problems.

Solid Fuels: Coal and its types. Analysis of coal - Proximate and Ultimate

analysis. Numerical Problems.

Liquid Fuels: Petroleum. Composition of Gasoline, Diesel and Kerosene. Cracking & its Significance- Catalytic cracking by moving bed method, Knocking. Fuel rating – Octane and Cetane numbers.

Gaseous Fuels: LPG, CNG –Composition, characteristics and applications. Unit-V: (10 Hrs)

Green Chemistry, Green Engineering Principles: Concept, Principles of green chemistry –.

Principles of Green Engineering.

Biodiesel: Sources, Concept of Trans esterification. Properties and significance

Text Books:

- T1. PC Jain, M Jain Engineering Chemistry, Dhanapathi Rai &sons, 16th edition, 2015, New Delhi. (Unit: 1,4,5)
- T2. B.R. Puri, L.R. Sharma and M.S. Pathania, "Principles of Physical Chemistry", S. S. Chand & Company Ltd., Revised edition (2013). (Unit 2)
- T3. Sashi Chawla,—Engineering Chemistry, Dhanpat Rai & Sons, New Delhi, 2017 (1St January 2017) (Unit 3)
- T4. O G Palanna, —Engineering Chemistryl, Tata Mc Graw Hill, New Delhi, First Edition 2009.(Unit 2&4)

Reference Books :

- R1. J D Lee, Concise inorganic chemistry, Blackwell science ltd, USA, Fifth edition
- R2. P.W. Atkins, Physical Chemistry .
- R3. T.W. Graham Solomons, C.B. Fryhle and S.A. Snyder, "Organic Chemistry", Wiley, 12th edition (2017).

Course code	Course Title	Core/ Elective

					Core		
5HS101HS	English	L	Т	P/D	Credits	CIE	SEE
		2	0	0	1	40	60

Prerequisite: Know the basic functions of the Language

Course Objectives: The following are the Objectives of the Course:

To enable and enhance the English language abilities of engineering students, especially in reading and writing, by -

- Using authentic material for language learning and gaining proficiency in it (Knowledge) (Comprehension)
- Exposing them to a variety of content-rich text.
- Strengthening their grammar and vocabulary.
- Improving their reading and comprehension skill.
- Honing their writing skills.
- Encouraging them to think creatively and critically.

Course Outcomes:

After completion of the course, the student will be able to

- CO.1. Read, understand, interpret and comprehend a variety of written texts and develop positive attitude and commitment towards their (students') goal and society.
- CO.2 Remember and recognize the significance of vocabulary (roots and affixes, homonyms, one- word substitutes, etc.) and use language accurately for effective communication.
- CO.3 Apply appropriate grammatical concepts (tenses, articles, prepositions, etc.) to spoken and written English in informal and formal ambience.
- CO.4 Compile information of various aspects of English diction Develop creativity in writing skills by framing Paragraphs, Essays, Letters, Emails and SOPs.
- CO.5 Analyze different ways of life through reading prose and poetry, each symbolizing a particular virtue and the learners develop the ability to be creative.

Unit – I : (6 Hrs)

Reading : Amitav Ghosh "Coming Home"

Vocabulary : Word Formation – Prefixes, Suffixes, Root words

Grammar : Articles, Prepositions, Determiners

Writing : Types of Sentences; Guided Writing (Expanding the Outline / Writing from verbal cues)

Unit – II : (6 Hrs)

Reading : Rudyard Kipling, "If" Vocabulary : Word Formation – Compounding and Blending, Contractions Grammar : Transitions, Connectives, Question Tags Writing : Précis & Paragraph Writing

Unit – III : (6 Hrs)

Reading : Martin Luther King Jr. "I have a Dream" Vocabulary : Synonyms, Antonyms, One-Word Substitutes Grammar : Voice Writing : Letter Writing

Unit – IV : (6 Hrs)

Reading : Robert Frost, "Road Not Taken"

Vocabulary : Homophones, Homonyms, Homographs

Grammar : Narration (Direct – Indirect Speech)

Writing : Reporting Events (Swearing in, Poll-Address, News Events, Visit to Book Exhibition, Annual /Farewell Day)

Unit – V : (6 Hrs)

Reading : George Orwell' " The Sporting Spirit" (Excerpt) Vocabulary : Inclusive Language, Euphemism Grammar : Tense Writing : SOP

Text Books :

T1. E. Suresh Kumar, Engineering English, Orient Black Swan, 2014.

References / Suggested Reading:

- **R1.** Modern English Grammar
- R2. "Grammar in Use" Raymond Murpphy
- **R2.** Sudharshana, NP and C Savitha, English for Engineers. Cambridge University Press 2018.

Course code	Course Title	Core/ Elective						
	ELEMENTS OF	Co	re					
5ES103ME	MECHANICAL	L	Т	P/D	Credits	SEE	CIE	
	ENGINEERING	3	0	0	3	40	60	

Prerequisite: --

Course Objectives: The objective of this course is to make the student

- To understand the basic concepts and applications of Thermodynamics
- To understand the basic concepts of Heat Transfer
- To understand the concept of Basic Machine Design
- To estimate the transmission of power by belts and application of various gear and gear trains.
- To understand the basic principles of major manufacturing Processes such as casting, welding, forming and machining of engineering materials

Course Outcomes

After completion of the course, the student will be able to

- > CO.1. Define the fundamental concepts of thermodynamics.
- > CO.2 Classify the modes of heat transfer and heat exchangers.
- > CO.3. Distinguish various types of Power transmission elements
- CO.4. Differentiate the welding, brazing and soldering
- CO.5. Explain the different manufacturing techniques such casting, forming and machining.

UNIT-I

Sources of Energy : Introduction and application of energy sources like fossil fuels, hydal, solar, wind, nuclear fuels and bio-fuels; environmental issues like global warming and ozone depletion.

Basic concepts of Thermodynamics: Concept of system, Process & Properties, Laws of thermodynamics, Steady flow energy equation for an open system, Second law statements, concept of Heat Engine, Heat Pump & Refrigerator, Concept of entropy.

UNIT-II

Heat Transfer: Basic modes of heat transfer, Fourier's law of conduction, Newton's law of cooling, and Stefan Boltzmann law of radiation. Mechanism of heat transfer and governing equations.

Heat exchangers, Applications of heat exchangers in industry .Analysis of parallel flow and counter flow heat exchangers.

UNIT-III

Introduction to Design of machine elements: Definition, Classifications of Machine Design, General Considerations in Machine Design, simple stresses in machine parts, manufacturing considerations in Machine design, Design of Shafts & keys

Belt drives: Open & crossed belt drives, Definitions -slip, creep, velocity ratio, derivations for length of belt in open and crossed belt drive, ratio of tension in flat belt drives, advantages and disadvantages of V belts and timing belts, simple

numerical problems.

Gear drives Types–spur, helical, bevel, worm and rack & pinion, velocity ratio, advantages and disadvantages over belt drives, simple numerical problems on velocity ratio.

UNIT-IV

Basic Manufacturing Processes

Welding: Definition of Welding, Types of welding processes. Brief description of important welding processes like: Arc welding, GMAW, GTAW, Gas welding & Resistance welding.

Brazing: Definition, principle of operation, Advantages and Disadvantages and Applications

Soldering: Definition, principle of operation, Advantages and Disadvantages and Applications

UNIT-V

Casting: Basic concepts of casting process. Principle, process and applications of sand and die casting processes.

Forming: Basic concepts of metal forming processes: Extrusion, rod/wire drawing and rolling.

Machining: Working mechanism of Lathe, Milling and Grinding machines.

Text Books:

- Thermal Engineering, RK. Rajput, Laxmi Publications Tenth Edition (2018)
- 2. Design of Machine Elements, V B Bandari, McGraw Hill Publications, Fourth Edition (2017)
- 3. Manufacturing Technology, Vol-1 by P. N. Rao, McGraw Hill Publications, Fifth Edition (2018)

References:

- Thermal Engineering, Dr.Sadhu Singh & Sukumar Pati, Pearson Publication First Edition (2018)
- 2. Heat & Mass transfer by D.S.Kumar, SK Kataria & Sons, First Edition (2020)
- 3. Design of Machine Elements, Dr.Sadhu Singh, Khanna Publishers, Fifth Edition (2017)
- 4. Production Technology 4ED by Pakirappa First Edition (2015)

Course code	Course Title			Co	re/ Electiv	ve			
Course coue				00	Core	· c			
5BS153HS	Chemistry Lab	T	т	P/D	Credits	CIF	SEE		
505155115		0	0	3	1.5	40	60		
Prerequisite	Higher secondary level Chemi	stry	0	5	1.5	40	00		
Course Objec	tives: The objective of this cou	rse i	s to r	nake th	ne student				
➤ Cone	duct experiments, take measure	surei	ment	s and	analyze	the d	lata		
thou	gh hands-on experience in or	der	to de	emonst	trate unde	erstand	ing		
of th	e theoretical concepts of quan	titati	ve A	nalvsi	s while w	vorking	z in		
small group.									
> Inter	pret the electro analytical p	rinci	iples	with	experime	ental r	esults		
grap	hically		I						
> Dem	onstrate writing skills through	clea	r lab	orator	y reports				
Course Objec	tives: After completion of the c	cours	e, th	e stude	ent will be	able to)		
➤ CO15	51.1. Apply the principles of	vo	lume	tric ar	nalysis in	quanti	itative		
estim	ations.								
➤ CO15	51.2. Analyse the parameters of	wate	er by	titratio	on method	l.			
➤ CO15	51.3. Understand the principle,	cond	cept,	worki	ng and ap	plicatio	ons of		
Cond	uctivity Meter to determine the	cond	centr	ation o	f chemica	ls.			
➤ CO15	51.4. Understand the principle,	cond	cept,	worki	ng and ap	plicatio	ons of		
Poten	tiometer to determine the conce	entra	tion	of cher	nicals.				
➤ CO15	51.5. To apply the law for dete	ermir	ning	the co	ncentratio	n of a	given		
chem	ical.								
List of Experi	iments					_			
1.	Introduction to Chemical A	Anal	ysis	and Te	echniques	of			
	Weighing.								
	VolumetricAnalysis:				a 1				
2.	Preparation of Standard Me	ohr's	s salt	solutio	on, Standa	ardızat	10 n		
	or KMnO ₄ and estimation $f_{\rm e}$	errou	15 10	n.	G (1		. (
3.	Preparation of Standard K ₂	Cr_2O	7 SOI	ution,	Standardi	zation	0f 2>		
	Nonr's Sait Solution and es	uma	uion	of dicr	iromate ion	CCr_2O	7-)		
	<u>Complexometry</u>				1				
-	•. Preparation of Standard Ma	agne	siun	i suipn	ate solution	on, Iordno	aa of		
	standardization of EDIA	ina (lord	Sodi	ation (of Total F	alution	55 01		
	Standardization of UCL or	aru a Es	soul	uiii Ca	f Corbora	to and	1,		
	Bicarbonate Alkalinity of	u ES vata	r cor	11011 01 0010		ue and			
	Conductometry.	wate	i sal	npie.					
5	Estimation of HCl by cond	lucto	met	rv					
	Potentiometry			- j •					
6.	Estimation of HCl by pote	ntio	netr	v (acid	base titra	ation)			
7.	Estimation of Fe^{2+} by potential	ntior	netr	y(redo	x titratio	n)			
	P ^H metry								

- Estimation of HCl by P^HMetry. 8.
- 9. Colorimetry
- 10. Verification of Beers Law using potassium permanganate and estimation of amount KMnO₄ in the given sample solution.

List of Additional Experiments

1.

Estimation of CH₃COOH by conductometry

References :

1. B.D. Khosla, A. Gulati and V. Garg, -Senior Practical Physical Chemistry, R. Chand & Co., Delhi, 2011.

2. K. K. Sharma and D.S. Sharma, -An Introduction to Practical Chemistryl, Vikas

publishers, New Delhi, 1982.

w. e. f Academic Year 2021-22

Course c	ode	Course Title	Core/ Elective							
				-		Core		-		
5HS1511	HS	English Lab	L	Т	P/D	Credits	CIE	SEE		
-				0	2	1	40	60		
Prerequi	site:	Understanding of the English Al	phat	bet ar	nd the (Correspon	ding So	ounds		
Course C)bjec	tives: The objective of this cours	se is	to er	able th	ne student	to :			
	Lear	n the Sound Systems, Word Stre	ss, I	nton	ation o	f English				
	Gain	the knowledge of the appropriat	te us	e of	Langua	age and Bo	ody			
	Lang	guage	. :	C	n Diaa	wasiona				
	 Acquire the recentiques to rancepate in Group Discussions Hone their Participation and Presentation Skills 									
	Com	e then raticipation and riesentation	duct	od or) nd faca	d				
Course C)utco	mes: After completion of the co	ourse	et al	studer	u 11 will be a	ble to			
\rightarrow	Enha	ance Pronunciation. Stress. Inton	atio	n and	Articu	lation Ski	ills			
\succ	Spea	k the Language coherently, with	a le	esser	MTI					
\succ	Emp	loy Language and Body Languag	ge ir	ntelli	gibly					
\succ	Enga	age in Group Discussions efficier	ntly		•					
\succ	Prep	are and Produce Decent Presenta	tion	is to l	Fare, V	Vell in Int	terview	/S		
		LIST OF EXPER	IMI	ENTS	5					
1.	Ice-l	Breaking Session								
2.	Intro	oduction to English Phonetics :	Org	gans	of Spe	ech : Spee	ech			
	Mec	hanism								
3.	Sour	nds of English : Introduction to I	Inte	rnatio	onal Ph	onetic Alj	phabet,			
	Clas	sification and Description of Eng	glish	Pho	netic S	ounds – V	'owel			
	Sour	nds & Consonant Sounds; Minim	al P	airs;	The Sy	yllable				
4.	Wor	d Stress : Primary Stress, Secon	dar	y Stre	ess, Fu	nctional S	tress, F	lules		
	of W	Vord Stress								
5.	Into	nation : Major Patterns of Intona	atio	n in E	English					
6.	Spea	aking Activity: JAM : an improv	mpti	u spe	ech wł	here the sp	eaker i	s		
	supp	osed to express the idea (s) on th	ie gi	ven t	opic, v	vithin the	duratio	n of		
_	a mi	nute.								
7.	Role	Play: Use of dialogues in a vari	ety	of sit	uation	s and setting	ngs			
8.	Gro	up Discussion: Initiating, contin	tinuing and concluding a GD,							
0	Com	ponents and Types of GDs,								
9.	Pow	er-Point Presentation: (Ger	eneral Topics) Making effective							
	press	verbal communication Conir	ur U	e use	staa	o fright	Us, Us Lond	t OI		
		tions and answer session	ıg	w iui	stag	e mgiit,	Tanc	ung		
	ques									

10. **Interview Skills:** Facing interviews confidently, Use of suitable expressions during interviews; Mock interviews

Text Books :

T1. E. Suresh Kumar. *A Handbook for English Language Laboratories (with CD)*. Revised edition, Cambridge University Press India Pvt. Ltd. 2014

Reference / Suggested Reading :

R1. T. Balasubramanian. A Text book of English Phonetics for Indian Students. Macmillan, 2008.

R2. Edgar Thorpe. Winning at Interviews. Pearson Education, 2006.

R3. J. Sethi et al., A Practical Course in English

R4. Pronunciation (with CD). PrenticeHall of India,2005.

R5.Hari Mohan Prasad. *How to Prepare for Group Discussions and Interviews*. TataMcGraw Hill,2006.

w. e. f Academic Year 2021-22

MCET, Hyderabad

Course code	Course Title	Core/ Elective					
	En sin serin s Weslash an				Core		
5ES152ME	Engineering workshop	L	Т	P/D	Credits	CIE	SEE
	Practice		0	4	2	40	60

Prerequisite: Practical skill

Course Objectives: The objective of this course is to make the student

- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To gain basic knowledge on various manufacturing processes used for the production of various engineering products.
- To gain hands on exposure on computer hardware and working knowledge on computers and software.

Adopt safety practices while working with various tools. **Course Outcomes**: After completion of the course, the student will be able to

- CO.1. Identify and demonstrate the usage of different tools to be used in various manufacturing trades with safety measures.
- CO.2. Apply the skills developed to undertake the jobs connected to various engineering workshop trades including fitting, carpentry, sheet metal, house wiring, welding, and foundry.
- CO.3. Demonstrate the knowledge of various machine tools and their operations such as machining, injection moulding, casting and 3D printing and basic electronics lab instruments.
- CO.4. Illustrate the advanced machining processes like CNC, rapid prototyping.
- CO.5 Apply the basic knowledge of computers to assemble and disassemble various components of computer and able to install various operating systems such as windows or Linux.

LIST OF EXPERIMENTS

A. TRADES FOR EXERCISES:

At least two exercises to be done from each trade.

- 1. CARPENTRY: Sawing and Grooving, T-lap joint, Dove-tail Joint.
- 2. **FITTING:** Step Cutting & Filing, Drilling & Tapping, V-Fitting
- 3. HOUSE WIRING: Parallel & Series, Two-Way Switch, Tube light

Connections.

- 4. SHEET METAL WORKING: Open Scoop, Funnel, Rectangle Tray.
- 5. BLACK SMITHY: Upsetting, Fullering, S-Hook
- 6. WELDING: Lap joint, Single V-butt joint, Corner joint
- 7. **PLUMBING:** Practice of Internal & External Pipe Threading, Pipe Fitting, Tap and Shower connections.

B. TRADES FOR DEMONSTRATION AND EXPOSURE:

- 1. Machines (lathe and drilling)
- 2. Injection Molding
- 3. Mould making and Casting
- 4. Basic Electronics Lab Instruments
- 5. 3D Printing

C. PRESENTATIONS AND VIDEOS LECTURES:

- 1. Manufacturing Methods
- 2. Glass Cutting
- 3. 3D Printing
- 4. CNC Lathe
- **D. IT-WORKSHOP:** Computer hardware, Identification of parts, disassembling and assembling of computer to working condition. Operating System Installation

Text Book:

 P. Kannaiah, K.L.Narayana "Workshop Manual" Scitech Publications; 2nd Edition.

References:

- 1. Venugopal,K, "Workshop Manual", Anuradha Publications; 2012th edition.
- 2. K.C.John, "Mechanical Workshop" 2nd Edition, PHI, 2010.
- 3. Hajra Choudhury, "Elements of Workshop Technology" Vol.1, Asian Publishers, Edu., 2010.

Course code	Course Title	Core/ Elective						
	En sin serie a Mathematica	Core						
5BS202HS		L	Т	P/D	Credits	CIE	SEE	
	11	3	1	0	4	40	60	

Prerequisite: Basics of Differentiation, Integration and Trigonometric results. **Course Objectives:** The objective of this course is to make the student

- > Study the concepts of sequences, series, and their properties.
- Provide the over view of ordinary differential equations of first order and their application to mathematical problems.
- Solving higher order ordinary differentiation by various mathematical methods.
- > Evaluate improper integrals using Beta and Gamma functions
- > Study Laplace transforms and its applications to differential equations.

Course Outcomes:

After completion of the course, the student will be able to

- CO1. To Test for the convergence and divergence of infinite series using the comparison test, Ratio test, Cauchy's n'th root test, Leibnitz's test, and also analyzing the nature of series.(PO1, PO2).
- CO2. Solve the ordinary differential equations of first order and their physical and geometrical applications. (PO1, PO2, PO3)
- CO3 Solve the ordinary differential equations of second and higher with constant and variable coefficient by different methods. Solution of nonhomogeneous equations, Euler-Cauchy equation. Method of variation of parameters.(PO1, PO2,PO3)
- CO4 Evaluate the improper integrals using beta and gamma functions. Solution of Legendre polynomials.(PO1, PO2,PO3)
- CO5 Evaluate Laplace Transforms, Inverse Laplace Transforms of functions and their applications to ordinary differential equations. (PO1, PO2,PO3)

Unit-I (10Hrs)

Sequence and series: Sequences—General properties of series, Series of positive terms, Comparison test, tests of convergence-D'Alembert's Ratio test, Cauchy's nth root test, Raabe's test, Logarithmic test, Alternating series, Series of positive and negative terms, Absolute convergence, and Conditional convergence.

Unit-II (10Hrs)

Differential Equations of First Order: Exact Differential Equations, Integrating Factors, Linear differential Equations,

Bernoulli's Equation, Riccati's and Clairaut's differential equations, Orthogonal Trajectories of a Given Family of Curves, Applications of differential equations-L-C,L-R circuit.

Unit-III (12Hrs)

Differential Equations of Higher Order: Solutions of second and higher order linear Homogenous Equations with Constant Coefficients, Solutions of non-homogeneous linear differential equations, Method of Variation of Parameters, solution of Euler-Cauchy Equation, Applications of differential equations-L-CR circuit.

Unit-IV (8Hrs)

Special functions: Gamma Function, Beta Function, Relation between Gamma and Beta Functions, Error Function, Power Series Method, Legendre's Differential Equations and Legendre's Polynomial Pn(x), Orthogonal property of Legendre's Polynomial Rodrigue's Formula (with proof).

Unit-V (10Hrs)

Laplace Transforms: Laplace Transforms, Inverse Laplace Transforms, Properties of Laplace Transforms and inverse Laplace Transforms, Convolution Theorem (without proof). Solution of ordinary differential Equations using Laplace Transforms.

TEXT BOOKS:

- T1. Dr.B.S. Grewal, Higher. Engineering Mathematics, Khanna Publications, 43rd Edition,2014. (Unit 1-5)
- T2. Advance Engineering Mathematics by Jain and Iyengar,5th Edition, Narosa Publications (Unit 1-5)
- T3.B. V. Ramana, Higher Engineering Mathematics,3rd Edition 2015. (Unit 1-5)

REFERENCES/ SUGGESTED READING:

- R1. M.D Raisinghania, Ordinary Differential Equations, 11th Revised Edition
- R2. S.S. Sastry, Engineering Mathematics, 3rd Edition, Paperback
- R3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley, 9th Edition, 2012.
- R4. Peter. V. O' Neil, Advance Engineering Mathematics,' Publisher, Global Engineering 7th Edition, 2012

Course	code	Course Title			Col	re/ Electiv	ve 🖉		
		APPLIED PHYSICS				Core			
5BS204	4HS		L	Т	P/D	Credits	CIE	SEE	
			3	1	0	4	40	60	
Prerequ	isite:	Basics of electron theory, Semic	ond	uctor	s, mag	netic mate	erials, I	basics	
of black	body i	adiation.							
Course	Objec	tives: The objective of this course	e is t	to ma	ke the	student			
\succ	Famil	iarize with classical and quantum	eleo	ctron	theorie	es and use	band		
	theory	to classify solids.							
	To ex	plain various types of semicondu	ctors	s and	their a	pplication	ıs.		
\succ	Under	stand the properties of dielectric	and	Mag	netic n	naterials.			
\succ	Under	stand the Superconductivity pher	nom	ena a	nd exp	lain the d	ual nati	ure of	
	the pa	rticles.							
	Know	the construction of lasers and op	otical	l fibe	rs and	apply thei	r basic		
	princi	ples to various laser systems and	opti	cal fi	ibers				
	Acqui	re knowledge of preparation of the	hin f	ilms	and ba	sic concep	ots of N	lano	
	mater	ials							
Course	Outco	mes: After completion of the cou	irse,	the s	tudent	will be ab	ole to		
	Classi	fy solids based on their energy based	and	struc	tures. I	dentify			
	semic	onductors for engineering applica	ation	IS.					
\succ	Classi	fy magnetic and dielectric materi	ials						
\succ	Expla	in the fundamental concepts on s	uper	cond	uctivit	y and Qua	ntum		
	behav	ior of matter waves.							
\succ	Expla	in the lasing action in lasers, prop	paga	tion (of light	in optical	fibers	and	
	comp	ile their applications different field	lds.						
\triangleright	Know	ledge about preparation of thin fi	ilm a	nd N	lano m	aterial, thi	s helps	s the	
	stude	nts to prepare new materials.							
Unit-I:	(11 Hr	's)							
Band th	eory o	of solids: Classical free electron t	heor	y an	d its lir	nitations,	Band t	heory	
– Kronig	g penn	y model (qualitative treatment),	Ener	gy b	ands ir	n solids, C	Classifi	cation	
of mater	of materials as conductors, semiconductors and insulators.								
Semicor	nducto	rs: Introduction, Intrinsic and	ext	rinsi	c semi	iconductor	rs, car	rier	

concentration and conductivity in intrinsic semiconductors, formation of P-N junction diode and its I-V characteristics, Thermistor, Hall effect and its applications.

Unit-II: (11 Hrs)

Dielectric materials: Introduction, Types of dielectric polarizations – Expression for electronic polarizability, Frequency and temperature dependence of dielectric polarizations, Determination of dielectric constant by Capacitance bridge method, Ferro electricity – Structure of Barium Titanate – Applications of ferroelectrics.

Magnetic materials: Introduction, Magnetization, Magnetic Flux, Magnetic Susceptibility, Classification of magnetic materials – Dia, para, ferro, antiferro and ferri magnetic materials. Ferrites - properties and its applications, Domain theory of

Ferromagnetism, Hysteresis curve, Soft and hard magnetic materials and their applications.

Unit-III: (10 Hrs)

Superconductivity: Introduction, General properties of superconductors- persistent current, critical current, critical magnetic field, critical temperature, Meissner effect, Type I and Type II superconductors, Applications of superconductor, BCS theory (qualitative), High Temperature superconductors and its applications.

Quantum Mechanics: Introduction to Planck's Theory, de-Broglie's concept – wave nature of particles (Debroglie wavelength), properties of wave function and its physical significance, Schrodinger's Time independent and Time dependent wave equations, Application of Schrodinger's Time independent - Particle in a 1D box. **Unit-IV: (9 Hrs)**

Lasers: Characteristics of Lasers – monochromatic, directionality, coherence, divergence, Basic concepts of transitions - absorption, spontaneous and stimulated emissions, Einstein's theory of matter and radiation interaction (A & B coefficients), Concepts of meta stable states, population inversion and pumping, Components of lasers, Types of lasers- Ruby laser, He-Ne laser, Semiconductor laser and Applications of laser.

Fiber optics: Introduction to Optical fiber, structure of an optical fiber, Basic principle – total internal reflection, Concept of Numerical Aperture (NA) and acceptance angle, Derivation of Numerical Aperture, Types of optical fibers – Step Index and Graded Index fibers (w.r.t to refractive index and mode of propagation), Fiber drawing process (Double crucible method), Applications of optical fibers.

Unit-V: (9 Hrs)

Thin Films: Distinction between bulk and thin films – Thin films preparation Techniques- Thermal evaporation method, Electron beam evaporation method, Pulsed laser deposition, Solar cell- Construction, working – and its applications.

Nano materials: Introduction, Properties of materials at reduced size, Surface to volume ratio at Nano scale, Classification of Nano materials, Preparation of Nano materials – Bottom-up methods (sol-gel & CVD) and Top-down method (ball milling), Basic ideas of carbon nanotubes, Applications of Nano materials and their health hazards

Text Books:

- T1. S.L.Gupta and Sanjeev Gupta, Modern Engineering Physics, Dhanpat Rai publications, 2011Edition, Reprint 2012.(Unit 1-4)
- T2. B.K.Pandey and S.Chaturvedi, Engineering physics, Cengage Publications, 2012, 1st Edition. (Unit 1-5)
- T3. M.N.Avadhanulu, P.G. Kshirsagar and TVS Arun Murthy, A Text Book Engineering Physics, 11th Edition, S.Chand, 2018.(Unit 1-4).

References/ Suggested Reading

- R1. Charles Kittel, Introduction to Solid State Physics, Wiley India Edition Paperback 1 January 2019
- R2. V. Raghavan, Materials Science and Engineering, Prentice Hall India Learning Private Limited; 6th Revised Edition, 2015.
- R3. K.L. Chopra, Thin film Phenomena, New York, McGraw Hill, 1969.

Course code	Course Title	Core/ Elective					
5ES203CS	Programming for Problem	Core					
	Solving	L	Т	P/D	Credits	SEE	CIE
		3	0	0	3	40	60

Prerequisite: Mathematical Knowledge, Logical and Analytical Thinking **Course Objectives:** The objective of this course is to make the student

- To introduce the basic concepts of Computing environment, algorithms and flowcharts
- > To acquire knowledge about the basic concept of writing a program
- > To understand modular and structured programming constructs in C
- ➢ To learn the usage of structured data types, data handling and memory management using pointers

Course Outcomes:

After completion of the course, the student will be able to

- **1.** Formulate algorithms and learn fundamental program methodologies of C programming.
- **2.** Understand control statements and interpret derived data types with mathematical and engineering problems.
- **3.** Develop modular programming techniques to solve searching, sorting and file system problems
- 4. Recognize pre-processor directives and user defined usage..

Unit I (11) Introduction to Computers: Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.). Algorithm, Flowchart / Pseudo code with examples Introduction to C Language: History of C, Features, Structure of C program, Character set, Tokens, Variables, Data types, I/O statements, Type conversion Syntax and Logical Errors in compilation, object and executable code.

Unit – II (11)

Operators and Control Structures: Operators, Operator precedence, Arithmetic expressions, Conditional Branching and Loops, Writing and valuation of conditionals and consequent branching

Arrays: Arrays (1-D, 2-D), Strings and its library functions.

Unit – III (10)

Basic Algorithms: Searching, Basic Sorting Algorithms (Bubble and Selection). Functions: Functions, storage classes, Parameter passing techniques Passing arrays to functions, Recursion Concept, Command line arguments.

Unit - IV (10)

Pointers: Idea of pointers, Defining pointers, array of pointers, pointer arithmetic, dynamic memory allocation,

Structure: Structures, Defining structures and Array of Structures, self – referential structures, Unions concept, Functions and structures, Enum, Bitfields.

Unit – V (8)

Pre-processor Directives: File Inclusion, Macros Substitutions, Conditional Compilation.

File Handling: Introduction to File Handling, Types of files, File operations, File input/output statements.

Text Books:

- T1. Computer Science A structured programming approach using C, Behrouz A. Forouzan and Richard F. Gilberg , Cengage Learning , 2007 , Third Edition (Unit 1-5)
- T2. Schaum's Outline of Programming with C, Byron Gottfried, McGraw-Hill 2019, Fourth Edition (Unit 1-5)
- T3. Data Structures and Program Design in C, Robert Kruse, Bruce Leung, Tondo, Pearson, II Edition

References/ Suggested Reading

R1. C Programming Language, Brian W Kenningham, Dennis M Ritchie, Pearson, II Edition

R2. How to solve it by Computer, R G Dromey, Pearson Edition

Course code	Course Title	Core/ Elective							
	ELEMENTS OF	Co	re						
5ES203EE	ELECTRICAL	L	Т	P/D	Credits	SEE	CIE		
	ENGINEERING	3	0	0	3	40	60		

Prerequisite: Basic elements of networks and Physics.

Course Objectives: The objective of this course is to make the student

- Familiarize with electrical networks, circuits and different Laws used to solve electrical circuits.
- Understand various network reduction techniques to analyze electrical circuits.
- > To explain the working principles of Electrical Machines and transformers.

Course Outcomes After completion of the course, the student will be able to

- > CO.1Analyze AC & DC electrical circuits to compute
- Various parameters of electrical energy.
- CO.2 Analyze complex electrical circuits with the help of different network theorems.
- CO.3 Analyze DC & AC Transients with the help of various networks and to understand the resonance concepts.
- > CO.4 Understand the working principles of Electrical DC Machines.
- > CO.5 Understand the working principles of electrical AC machines.

Unit-I: (07 Hrs.)

Introduction to Electrical Circuits: Circuit Concept, Electrical circuit elements (R, L and C), Voltage and Current Sources, Independent and Dependent Sources, Time, frequency domain and Phasor domain Representation, Power fundamentals (real power, reactive power, apparent power, power factor), Ohm's Law, Kirchhoff's Laws, Source Transformation, Nodal & Mesh Analysis, Duality, dot Convention, Magnetic Coupling, Numerical Problems.

Unit-II: (07 Hrs.)

Network Theorems: Superposition, Thevenin's, Norton's, Maximum Power Transfer, Milliman's, Tellegen's theorems, Numerical Problems on ac and dc circuits.

Unit-III: (08 Hrs.)

AC & DC Transients and Resonance: AC & DC Transients for R-L, R-C,

R-L-C Circuits, Series Resonance, Parallel Resonance, Numerical Problems.

Unit-IV: (8 Hrs)

DC Machines: DC Generators - Dynamically induced e.m.f, Fleming's Right hand and Left-hand rules, Construction, and principle of operation of DC generator, EMF equation, Types of DC Generators, OCC characteristics, applications.

DC Motors: Principle of operation of DC Motor, Types of DC motors, applications.

Unit-V: (09 Hrs)

AC Machines: Transformers-Electromagnetic induction, Faradays laws, statically induced e.m.f, Lenz law, B-H characteristics, ideal and practical transformer, losses and efficiency, Auto-transformer, and three-phase transformer connections.

Three Phase Induction motor: Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, squirrel cage IM, slip-ring IM, Applications.

Text Books:

T1. Fundamentals of Electric Circuits, Charles k. Alexander and Matthew N. O. Sadiku, Tata McGraw Hills Education, Edition 3, 2013 .(Unit 1-3)

T2. J.B. Gupta, Fundamentals of Electrical Engineering and Electronics S.K. Kataria& Sons Publications, 2002.Unit (1-5)

References/ Suggested Reading:

- R1. "Electrical Technology", B.L. Theraja, A.K. Theraja, Volume-II,S. Chand & Co. Ltd.
- R2. "Fundamentals of Electrical Engineering and Electronics", J.B. Gupta, S. K. Kataria. & Sons Publications, 2002.
- R3. Electrical Circuit Analysis, William H Hayt and Jack Kemmerly , 8th Edition, 2014 (Unit 1-3)
- R4. Circuit Theory Analysis and Synthesis by Abhijit Chakrabarti,Dhanpat Raj & Co., 2018.(Unit 1-3)
- R5. N.K. De, Basic Electrical Engineering|, Universities Press, 2015. (Unit 1-5)
- R6. Abhijit Chakrabarti, Sudipta Nath, Chandan Kumar Chanda, Basic Electrical Engineering, Tata McGraw Hill, Publications, 2009. (1-5)

w. e. f Academic Year 2021-22

Course code	Course Title	Core/ Elective						
5MC201CE	Environmental Science	Core						
		L	Т	P/D	Credits	SEE	CIE	
		2	0	0	0	40	60	

Prerequisite:

Course Objectives: The objective of this course is to make the student

- > Describe various types of natural resources available on the earth surface.
- Explain the concepts of an ecosystem and the biotic and abiotic components of various aquatic ecosystems.
- Identify the values, threats of biodiversity, endangered and endemic species of India along with the conservation of biodiversity.
- Explain the causes, effects and control measures of various types of environmental pollutions.
- Describe the methods for water conservation, the causes, effects of global warming, climate change, acid rain, ozone layer depletion, population explosion.

Course Outcomes After completion of the course, the student will be able to

- > **CO.1**.Describe the various types of natural resources.
- CO.2 Differentiate between various biotic and abiotic components of ecosystem.
- CO.3 Examine the values, threats of biodiversity, the methods of conservation, endangered and endemic species of India.
- CO.4 Illustrate causes, effects, control measures of various types of environmental pollutions.
- CO.5 Explain the methods of water conservation, causes, effects of climate change, global warming, acid rain and ozone layer depletion, population explosion.

Unit-I: (08 Hrs)

The Multidisciplinary Nature of Environmental Studies: Definition, scope and importance, need for public awareness.

Natural Resources: Water Resources – Use and over utilization of surface and ground water, flood, drought, conflicts over water, Dams: Benefits and Problems. Food Resources –World Food Problems, effects of modern agriculture, fertilizer-pesticides problems, water logging, salinity, Forest Resources –Use and over exploitation, deforestation & its effect on tribal people. Land Resources –Land Degradation, environmental effect of mining, man induced landslides, soil erosion and desertification. Energy Resources –Growing energy needs, Renewable and Non-renewable energy resources.

Unit-II: (06 Hrs)

Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in ecosystem, food chains,

ecological pyramids, ecological succession, types of ecosystems (marine, pond, river, forest, grassland, desert)

Unit-III: (06 Hrs)

Biodiversity: Levels of Biodiversity, Bio-geographical classification of India, Value of biodiversity, Threats to biodiversity, endangered and endemic species of India, Conservation of biodiversity, global and national efforts.

Unit-IV: (07 Hrs)

Environmental Pollution: Definition, Causes, effects and control measures of air pollution, water pollution, soil pollution, noise pollution, thermal pollution, solid waste management.

Environment Protection Act: Air, water, forest and wildlife Acts, issues in the enforcement of environmental legislation

Unit-V: (06 Hrs)

Social Issues and the Environment: Watershed management and environmental ethics. Climate change, global warming, acid rain, ozone layer depletion.

Environmental Disaster Management: Types of disasters, impact of disasters on environment, infrastructure, and development. Basic principles of disaster mitigation, disaster management, and methodology. Disaster management cycle and disaster management in India.

Field Work:

- Visit to local area to document environmental issues
- Visit to a local polluted area- market/slum area/Industrial area/traffic area

Text Books:

- T1. Deswal S. and Deswal A., A Basic Course on Environmental studies, Dhanpat Rai & Co Pvt. Ltd. 2018. (Unit 1-5)
- T2. Perspectives In Environmental Studies, Anubha Kaushik & C.P Kaushik, New Age International Publishers, 6th Edition 2018). (Unit 1–5).

References/ Suggested Reading

R1. Benny Joseph, —Environmental Studies", Tata McGraw Hill (3rd Edition, 2017).

R2. Suresh K. Dhameja, Environmental Studies, S.K. Kataria & Sons, 2010.R3. Rajagopalan R., Environmental Studies, Second Edition, Oxford University Press, 2013.

R4. V.K. Sharma, Disaster Management, National Centre for Disaster Management, IIPE, 1999.

R5. Environmental studies by Erach Bharucha 2005, University Grants Commission, University Press.

Course	code	Course Title	Core/ Elective						
			Co	re					
5BS25	1HS	Applied Physics Lab	L	Т	P/D	Credits	CIE	SEE	
			0	0	3	1.5	40	60	
Prerequisite: Higher secondary level Physics									
Course	Objec	tives: The objective of this cou	rse i	s to r	nake tł	ne student			
> Apply the theoretical knowledge in doing practical experiments.									
\succ	Acquire skills to handle instruments.								
\succ	Under	rstand the behavior of semicond	lucto	ors ar	nd opto	-electroni	c devic	ces.	
\succ	Analy	ze errors in experimental data.			_				
\succ	Plot g	raphs between different physics	al pa	rame	eters.				
Course	Objec	tives: After completion of the c	ours	e, th	e stude	ent will be	able to)	
≻	CŎ.1.	Develop analytical/experimental	l skil	ls an	d impa	rt prerequi	site har	nds-on	
	experi	ence for engineering laboratories	i.		-				
\succ	CO.2.	Understand the need for precise	mea	surer	nent pr	actices for	data		
	record	ling.							
\succ	CO.3.	Understand the principle, conce	pt, w	orkiı	ng and	application	s of rel	levant	
	techno	ologies and comparison of results	with	theo	oretical	calculatio	ns.		
\triangleright	CO.4	Analyze the techniques and skill	ls ass	socia	ted wit	h modern s	scientifi	ic	
	tools s	such as lasers and fiber optics							
>	CO.5	Acquire knowledge in communic	catio	n ski	lls thro	ugh worki	ng in gi	roups	
	in per	forming the laboratory experiment	its ai	nd by	interp	reting the r	results		
1	Dotor	LIST OF EAFERIN		13 na di	ffractiv	on grating			
1.	Deter	mination of Numerical Apertur	$\sim (N)$	A) ai	ad Acc	ontanco ai	ngla of	an	
2.	ontica	l fiber		<i>п)</i> а		eptanee ai	igic of	an	
3.	To fir	d the dielectric constant of a gi	ven	mate	rial				
4.	To dr	aw the I-V characteristics of sol	lar c	ell ar	nd to ca	alculate fil	1 factor	r.	
5.	To dr	aw the I-V characteristics of P-	N ju	nctio	n diod	e and to e	valuate		
	series	resistance in forward and rever	se b	ias c	onditio	ons.			
6.	To de	termine the rigidity modulus of	the	mate	rial of	the given	wire u	sing	
	Torsi	onal Pendulum.				U		U	
7.	To stu	dy the Thermistor characteristi	cs, d	leteri	nine th	ne constan	ts A an	d B.	
8.	To fir	id the value of energy gap of a g	give	n sen	nicond	uctor.			
9.	To dr	aw the curve between the magn	etic	field	and In	tensity of			
	magn	etization for a given specimen a	and t	o fin	d out C	Coercivity	and		
	Retentivity of the specimen.								
10.	Deter	mination of carrier concentration	n, m	nobil	ity and	Hall co-e	fficien	t in a	
	semic	onductor using Hall Effect expe	erim	ent.					
Note: A minimum of eight experiments to be done.									
Reference	ces:								
R1. S.L.(Jupta a	nd Dr.V.Kumar, "Practical physics	with	i viva	voice"	, Pragati P	rakasha	n	
Publ R2 M N	Publishers, Revised Edition, 2009 P2 M N Avadhanulus A A Dani and Dakalu D M "Everymentatic Engineering								
Phys	sics" S	Chand &Co 2008	ълр	CIIIIC		Ingineering	,		

w. e. f Academic Year 2021-22

Course code	Course Title	Core/ Elective						
5ES251CS	Programming for Problem Solving Lab	Со	re					
		L	Т	P/D	Credits	CIE	SEE	
		0	0	2	1	40	60	

Prerequisite: Mathematical Knowledge, Logical and Analytical Thinking **Course Objectives:** The objective of this course is to make the student

- > Understand the fundamentals of programming in C Language.
- Write, compile and debug programs in C.
- Formulate solution to problems and implement in C.
- > Effectively choose programming components to solve computing problems

Course Outcomes: After completion of the course, the student will be able to

- > Choose appropriate data type for implementing programs in C language
- Design and implement modular programs involving input output operations, decision making and looping constructs
- Apply derived data types and implement programs to store data in structures and files
- Develop confidence for self-education and ability towards lifelong learning need of computer languages

LIST OF EXPERIMENTS

1. Finding maximum and minimum of given set of numbers, finding roots of

quadratic equation.

- 2. Sin x and Cos x values using series expansion.
- 3. Generating Pascal triangle, pyramid of numbers.
- 4. Factorial, Fibonacci, GCD recursive and non-recursive procedures
- 5. Linear search and binary search using recursive and non-recursive procedures.
- 6. Bubble sort and selection sort.
- 7. Matrix addition and multiplication using arrays,
- 8. Programs on pointers: pointer to arrays, pointer to functions.
- 9. Programs on structures, union, enum and string manipulations.
- 10. File handling programs (Reading, Writing, Copying files)
- 11.Program illustrating using Command Line Arguments

Course code	Course Title	Core/ Elective						
5ES252EE	Elements of Electrical and Electronics Engineering Lab	Core						
		L	Т	P/D	Credits	CIE	SEE	
		0	0	2	1	40	60	

Prerequisite: Basics of networks, circuits, and Semiconductors devices. **Course Objectives:** The objective of this course is to make the student

- Impart the practical knowledge and analysis of on electrical circuits, theorems and transformers.
- Impart the practical knowledge on testing of DC and AC Machines and the usage of common electrical measuring instruments.

Course Outcomes:

After completion of the course, the student will be able to

- > CO.1. Justify the statements of basic electrical circuits.
- > CO.2. Examine the performance of different electrical machines.
- CO.3. Identify the electrical machines requirements.
- > CO.4. Find the response of different electrical circuits.
- CO.5. Determine parameters and testing of electrical machines and equipment
- 1. Verification of KVL and KCL.
- 2. Verification of Thevinen's and Norton's theorems.
- 3. Verification of superposition and Maximum Power transfer theorems.
- 4. Verification of Milliman's and Tellegen's theorems.
- 5. Series and Parallel Resonance- calculation of Bandwidth and Q-factor.
- 6. Sinusoidal steady state response of R-L, and R-C circuits impedance calculation and verification of phase differences between current and voltage and Power factor calculation.
- 7. OCC characteristics of DC Generator.
- 8. Load Test of DC Motor.
- 9. Loading of a transformer: measurement of primary and secondary voltages and currents, and power.
- 10. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line- line voltage, phase-to-neutral voltage, line and phase currents).
- 11. Measurement of phase voltage/current, line voltage/current and power in a balanced three-phase circuit connected in star and delta.

- 11. Polarity test on transformer.
- 12. Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal

By change of phase-sequence of connections.

12. Transformers: Observation of the no-load current waveform on an oscilloscope (non- Sinusoidal wave-shape due to B-H curve nonlinearity should be shown along with a discussion about harmonics).

Note: A minimum of ten experiments to be done.

References:

- R1. J.B.Gupta, Fundamentals of Electrical Engineering and Electronics, S.K. Kataria & Sons. Publications, 2002.
- R2. J.B. Gupta, Utilization of Electric Power and Electric Traction, S.K. Kataria & Sons Publications, 2010.
- R3. Satish Kumar Peddapelli, G. Sridhar, Electrical Machines A Practical Approach, De Gruyter Publications, 2020.
- R4. Hughes, Electrical Technology", 7th Edition, International Student -on, Addison Welsey Longman Inc, 1995.

MCET, Hyder	abad		w. e. f Academic Year 2021-22						
Course c	ode	Course Title		Co	re/ Electi	ve			
		Engineering			Core		_		
5ES2520	CE	Graphics Lab	L T	P/D	Credits	CIE	SEE		
		Graphics Lab	1 0	4	3	40	60		
Prerequisite:									
Course Objec	tives: Th	e objective of this cou	rse is to 1	nake (he studen	t			
> To in	➢ To inculcate a good understanding of engineering drawing conventions &								
their	significan	ice.							
To in	npart skill	s to make technical dra	wings.						
To in	npart capa	bility to identify and d	raw engin	eering	curves to	scale.			
≻ To d	evelop s	kills of drafting proje	ections of	f stand	lard geon	netric	entities		
(poin	ts, lines, p	planes, solids with section	on).						
To de	evelop 3D	visualization skills to	understan	d 2D	drawings i	n 3D	space &		
vice v	versa								
Course Outco	omes:								
After	completi	on of the course, the st	ident will	be abl	e to				
> CO-1	l. Use app	propriate instruments ar	id apply th	he eng	ineering co	onven	tions to		
draw	engineeri	ng objects to scale on a	a drawing	sheet.	(PO1, PO	5)			
➤ CO-2	2. Make u	se of AutoCAD softwa	re to draft	engin	eering cur	ves lil	ke		
conic	s, involut	es & cycloids. (PO1, P	05)						
> CO-3	3. Make u	se of AutoCAD softwa	re to draft	projec	ctions of li	nes, p	olanes,		
solids	s and dete	rmine unknown length	s & angle	s in lin	es. (PO1,	PO5)			
> CO-4	. Make u	se of AutoCAD softwa	re to draft	sectio	ns of solic	ls and			
devel	opment o	f surfaces. (PO1, P05)			-				
> CO-5	5. Convert	t isometric views to ort	hographic	& vic	e versa. (F	Ю1, Р	PO5)		
					Conta	ct Ho	urs		
Sheet No		Description of the To	pic						
		-	-		Lecture	Ι	Drawing		
	D 1		1						
1	Principi	es of Engineering Grap	nics and		1		2		
1.	their sig	initicance, Usage of dra	iwing		1		2		
	instrum	ents. Lettering							
	Conias	actions I							
2	Construct	ction of allinga narsha	lo ond						
۷.	bunorho	ction of empse, parado	la alla		1		2		
	nyperbo	a given locus and ecc	cuchuluty.						
	Conic	ections II				Γ			
	Constru	ction of ellipse (given)	naior and						
3.	minor a	xis) narahola (given ha	najor and		1		2		
	height)	rectangular hyperbola	ise and				4		
	mergint),	rectangular hyperbola.							

Cycloids (cycloid & epicycloid) and

1

2

4.

	Involutes (involute of triangle, square & circle)		
5.	Scales (plain & diagonal scales)	1	2
6.	Introduction to AutoCAD Basic commands and simple drawings.	1	2 + 2
7.	Orthographic Projections - Projections of points placed in different quadrants.	1	2
8.	Projections of straight lines. Lines parallel to both the planes, line perpendicular to or inclined to one reference plane, Line inclined to both the reference planes.	1	2+2
9.	Projections of planes – I: Orthographic projection of planes in different positions	1	2+2
10.	Projections of solids – I: Regular Prism/Pyramids, cylinders & cones, Projections of solids in simple positions.	1	2
11.	Projection of solids – II: Projections of solids when the axes inclined to one or both the reference planes.	1	2
12.	Section of solids – I: When the sectional plane is parallel or perpendicular to one reference plane.	1	2
13.	Section of solids – II: When the sectional plane is inclined to one reference plane.	1	2
14.	Development of surfaces-I Prism and Cylinders	1	2
15.	Development of Surfaces-II Pyramids and Cones	1	2
16.	Isometric projection – I: Conversion of 3D Isometric/oblique views of compound solids to 2D Orthographic views	1	2

17.	Isometric projection – II: Isometric projection of Stacked regular solids" regular solids being prisms, pyramids, spheres & their frustum	1	2
-----	--	---	---

Note: A minimum of Fourteen Drawing Work Sheets to be completed.

Text Books:

T1. Engineering Drawing, ND Bhatt, Charotar Publication, 53rd Edition, 2014 (All sheets)

T2. Engineering Drawing, KL Narayana & amp; P Kannaya, Scitech publications, 3rd Edition, 2013 (All sheets)

References:

R1 Engineering Drawing and Graphic Technology, T.E French et al, Mc Graw Hill International, 14th Edition, 2012

R2. Engineering Drawing Graphics & amp; AutoCAD, K Venugopal, New Age International, 5 $^{\rm th}$ Edition, 2009

R3: Engineering Drawing with a primer on AutoCAD, AN Siddique et al, Prentice Hall of India Ltd., Eastern Economy Edition, 2004

R4: Engineering Drawing, Basant Agrawal & C M Agrawal, McGraw Hill Publications, Third edition 2019