MODERN MACHINING & FORMING METHODS

(ELECTIVE - III) Instruction 4 Periods per week Duration of University Examination 3 Hours University Examination 75 Marks Sessional 25 Marks

Unit-IV

Syllabus

Rubber Pad Forming: Principle of the process, process details & its types; Guerin, wheelon, Marfoming & Hydro forming processes & applications.

High Energy Rate Forming (HERF): HERF hammers, principle of explosive forming, Explosive materials, types of explosive forming, stand off operation & contact operation, the pressure pulse, Gas bubble & the process applications.

Electro-Hydraulic forming (EHF): Schematic of the process description & its applications.

Suggested Reading:

- 1. P.C. Pandey & H.S. Shah, Modern Machining Process, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1980.
- 2. A. Bhattacharya, New Technology, The Institution of Engineers (India), 1984.
- 3. Davies & Austin, Developments in High Speed Metal Forming, The Machinery Publishing Co. Ltd., 1985.
- 4. Production Technology, HMT.

METAL FORMING

The process in which the desired shape & size are obtained through plastic deformation of thin sheet metal.

- Very economical process.
- Any desired shape, size & finish can be obtained
- No significant loss of material.
- Improves the strength of the product due to strain hardening.

Conventional Forming

- Force is applied using simple hammer blow or power press.
 - Source: Hydraulic / Pneumatic, gravity (drop forge)
- Disadvantages:
 - Tools are heavy & relative velocities are low.
 - Limited by size of parts.

- Techniques include Forging, Extrusion, Drawing, Punching, Joining etc...
- Spring back effect is significant.
- Applications:
 - Bending (Straight flanges, sections)
 - Flanged parts (Stretch, shrink)
 - Linear contoured parts (Angles, channels)
 - Plane contoured parts.

Rubber Pad Forming:

Principle of the process, process details ϑ its types; ϑ applications.

Basic Introduction

A metal forming process where a sheet metal is pressed between a die 8 a rubber pad.

- The rubber pad regains its original shape due to elastic property.
- The rubber pads can have a general purpose shape, like a membrane
- The sheet metal, undergoes plastic deformation & retains its final shape from die.
- Used in production lines since many years.
- It can be accomplished in many different ways.
- The applications for this simple process have advanced with the technology.

Types if any

Guerin Process / Stamping Verson Wheelon, Marfoming Hydro forming processes

Working principle

Sheet metal is pressed between a die ϑ a rubber block, made of polyurethane.

- The rubber drives sheet metal into the die under pressure.
- Both conform to die shape & thus form the part.
- The rubber pads can have a general purpose shape, like a membrane.
 - They can also be machined in the shape of die or punch.

Equipment

- An elastic upper die, usually made of rubber.
- Hydraulic Press.
- Form Block: A rigid lower die having shape of forming required.
- Sheet metal or blank to be formed.

Process Description

- A rubber pad is pressed against the lower rigid die with the sheet / blank in between.
 - A hydraulic press provides necessary force.
- The rubber deforms putting pressure on the sheet which takes shape of the lower die.
- After relaxation, the rubber regains is initial shape due to its elastic nature.
- The sheet retains the deformed shape from die as it undergoes plastic deformation.
- In positive pressing, the sheet is pressed over the tool.
- In negative pressing, the sheet is pressed inside the die.
- When combining both tools, a positive & a negative die, even more demanding designs can be created.

In +ve pressing the sheet is pressed over the tool.

In -ve pressing the sheet is pressed inside the die.

When combining both tools, a positive & a negative die, even more demanding designs can be created.

Process Parameters

Type of rubber used Shape of rubber used Forming shape

Performance Characteristics Surface finish Spring back action Strain hardening Thickness uniformity

Advantages

- Minimal damage of the material surface.
- Low tooling costs
- Shorter time to market
- Minimal damage of material surface.
- The same upper (male) die can be used with different lower (female) dies,
 - Hence, the process is relatively cheap & flexible.
 - Low tooling costs.
- Unique combination in shape, price & lead time
- Smart & efficient design by integrating functionalities
- Lightweight optimised constructions
- More hygiene through design (no welding seams).
- No sharp edges & little to no surface damages.
- Appealing specific design with flowing shapes.

Disadvantages

- Rubber pads exert less pressure in the same circumstances as non-elastic parts.
 - This may lead to less deformation in forming.
- rubber pads wear more quickly than steel parts.

Applications

- Up to 60% of all sheet metal parts in the aerospace industry are fabricated using this process.
- It is frequently used in prototyping shops & for the production of kitchenware.
- An important additional operation within the process is 3D cutting of the product with a CNC driven 3D laser cutting machine.