METHODIST COLLEGE OF ENGINEERING AND TECHNOLOGY
 (Affiliated to Osmania University, Hyderabad)

King Koti Road, Abids Hyderabad.
[image: image1.emf]
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
OPERATING SYSTEMS LAB MANUAL

With effect from the Academic year 2017-2018

PC 552 CS

Credits:1
 Instruction : 2 hrs per week

 Duration of SEE : 2 hours

CIE : 25 Marks

 SEE : 50 Marks

Course Objectives:

· To learn shell programming and the use of filters in the LINUX environment

· To practice multithreaded programming

· To implement CPU Scheduling Algorithms and memory management algorithms

Course Outcomes :

Student will be able to

· Write shell scripts for simple system administration tasks

· Write concurrent programs with synchronization constricts

· Compare the performance of various CPU Scheduling Algorithm

· Critically analyze the performance of the various Memory management algorithms

1-3. Memory Management Algorithms

4. Examples of Multithreading

5-6 .Producer & Consumer problem using Semaphores and Shared memory

7-9 . Processor Scheduling algorithms

10. Dining Philosophers problem using Semaphores

11.Readers and Writers problem using Semaphores

12.Shell-programming exercises

1-3. Memory Management Algorithms
In the operating system, the following are four common memory management techniques.

Single contiguous allocation: Simplest allocation method used by MS-DOS. All memory (except some reserved for OS) is available to a process.
Partitioned allocation: Memory is divided in different blocks or partitions.Each process is allocated accroding to the requirment.
Paged memory management: Memory is divided into fixed sized units called page frames, used in a virtual memory environment.
Segmented memory management: Memory is divided in different segments (a segment is a logical grouping of the process’ data or code).In this management, allocated memory doesn’t have to be contiguous.

Most of the operating systems (for example Windows and Linux) use Segmentation with Paging. A process is divided into segments and individual segments have pages.

In Partition Allocation, when there is more than one partition freely available to accommodate a process’s request, a partition must be selected. To choose a particular partition, a partition allocation method is needed. A partition allocation method is considered better if it avoids internal fragmentation.

Below are the various partition allocation schemes :

1. First Fit: In the first fit, the partition is allocated which is first sufficient block from the top of Main Memory.

2. Best Fit Allocate the process to the partition which is the first smallest sufficient partition among the free available partition.

3. Worst Fit Allocate the process to the partition which is the largest sufficient among the freely available partitions available in the main memory.

4. Next Fit Next fit is similar to the first fit but it will search for the first sufficient partition from the last allocation point.

Best fit uses the best memory block based on the Process memory request. In best fit implementation the algorithm first selects the smallest block which can adequately fulfill the memory request by the respective process.

Because of this memory is utilized optimally but as it compares the blocks with the requested memory size it increases the time requirement and hence slower than other methods. It suffers from Internal Fragmentation which simply means that the memory block size is greater than the memory requested by the process, then the free space gets wasted.

Once we encounter a process that requests a memory which is higher than block size we stop the algorithm.

Best Fit Algorithm

1. Get no. of Processes and no. of blocks.

2. After that get the size of each block and process requests.

3. Then select the best memory block that can be allocated using the above definition.

4. Display the processes with the blocks that are allocated to a respective process.

5. Value of Fragmentation is optional to display to keep track of wasted memory.

6. Stop.

1.Program for Best Fit Algorithm in C

#include<stdio.h>

void main()

{

int fragment[20],b[20],p[20],i,j,nb,np,temp,lowest=9999;

static int barray[20],parray[20];

printf("\n\t\t\tMemory Management Scheme - Best Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of processes:");

scanf("%d",&np);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

 {

printf("Block no.%d:",i);

 scanf("%d",&b[i]);

 }

printf("\nEnter the size of the processes :-\n");

for(i=1;i<=np;i++)

 {

 printf("Process no.%d:",i);

 scanf("%d",&p[i]);

 }

for(i=1;i<=np;i++)

{

for(j=1;j<=nb;j++)

{

if(barray[j]!=1)

{

temp=b[j]-p[i];

if(temp>=0)

if(lowest>temp)

{

parray[i]=j;

lowest=temp;

}

}

}

fragment[i]=lowest;

barray[parray[i]]=1;

lowest=10000;

}

printf("\nProcess_no\tProcess_size\tBlock_no\tBlock_size\tFragment");

for(i=1;i<=np && parray[i]!=0;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,p[i],parray[i],b[parray[i]],fragment[i]);

}

Page Replacement Algorithms in Operating Systems

In an operating system that uses paging for memory management, a page replacement algorithm is needed to decide which page needs to be replaced when new page comes in.

Page Fault – A page fault happens when a running program accesses a memory page that is mapped into the virtual address space, but not loaded in physical memory.

Since actual physical memory is much smaller than virtual memory, page faults happen. In case of page fault, Operating System might have to replace one of the existing pages with the newly needed page. Different page replacement algorithms suggest different ways to decide which page to replace. The target for all algorithms is to reduce the number of page faults.

Page Replacement Algorithms :
· First In First Out (FIFO) –
This is the simplest page replacement algorithm. In this algorithm, the operating system keeps track of all pages in the memory in a queue, the oldest page is in the front of the queue. When a page needs to be replaced page in the front of the queue is selected for removal.

Example-1Consider page reference string 1, 3, 0, 3, 5, 6 with 3 page frames.Find number of page faults.
[image: image2.png]Page

1,3,0,3,5,6,3
reference
1 3 0 3 5 6 3
O] |of| [o] o] [3
3 3 3 3 6 6
1 1 1 1 5 5 5
Miss Miss Miss Hit Miss Miss Miss
Total Page Fault = 6

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —> 3 Page Faults.
when 3 comes, it is already in memory so —> 0 Page Faults.
Then 5 comes, it is not available in memory so it replaces the oldest page slot i.e 1. —>1 Page Fault.
6 comes, it is also not available in memory so it replaces the oldest page slot i.e 3 —>1 Page Fault.
Finally when 3 come it is not avilable so it replaces 0 1 page fault
Belady’s anomaly – Belady’s anomaly proves that it is possible to have more page faults when increasing the number of page frames while using the First in First Out (FIFO) page replacement algorithm

2.AIM: A program to simulate FIFO Page Replacement Algorithm

 PROGRAM:

#include<stdio.h>

#include<conio.h> void main()

{

int a[5],b[20],n,p=0,q=0,m=0,h,k,i,q1=1; char f='F';

clrscr();

printf("Enter the Number of Pages:"); scanf("%d",&n);

printf("Enter %d Page Numbers:",n); for(i=0;i<n;i++)

scanf("%d",&b[i]);

for(i=0;i<n;i++)

{if(p==0)

{

if(q>=3)

q=0;

a[q]=b[i];

q++;

if(q1<3)

{

q1=q;

}

}

printf("\n%d",b[i]);

printf("\t");

for(h=0;h<q1;h++)

printf("%d",a[h]);

if((p==0)&&(q<=3))

{

printf("-->%c",f); m++;

}

p=0;

for(k=0;k<q1;k++)

{

if(b[i+1]==a[k])

p=1;

}

}

printf("\nNo of faults:%d",m); getch();

}

OUTPUT:

Input:

Enter the Number of Pages: 12 Enter 12 Page Numbers:

2 3 2 1 5 2 4 5 3 2 5 2

Output:

2-> F

23-> F

23

231-> F

531-> F

521-> F

524-> F

5
524

3
324-> F

2
324

354-> F

352-> F

No of faults: 9

The LRU Page Replacement

· In the Least Recently Used (LRU) page replacement policy, the page that is used least recently will be replaced.

· Implementation:

· Add a register to every page frame - contain the last time that the page in that frame was accessed

· Use a "logical clock" that advance by 1 tick each time a memory reference is made.

· Each time a page is referenced, update its register

· The following figure shows the behavior of the program in paging using the LRU page replacemen

Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 4 page frames.Find number of page faults.
[image: image3.png]Page

7,0,1,2,0,3,04,2,3,0,3,2,3 No. of Page frame - 4
reference
7 0 1 2 0 3 0 4 2 3 0 3 2 3
2| |2 2| |2 2|12l 12| [2] [2]]2 2
1 1 1 1 1 4|14 a4l [4 4| [4 4
o] [0] 0 0 0 0 0 0] |0 0 0 0 0
71 17] |7 7| |7] 3] |3 3 13] (3] [3] [3]]3 3
Miss Miss Miss Miss Hit Miss Hit Miss Hit Hit Hit Hit Hit Hit
Total Page Fault =6

Here LRU has same number of page fault as optimal but it may differ according to question.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults
0 is already their so —> 0 Page fault.
when 3 came it will take the place of 7 because it is least recently used —>1 Page fault
0 is already in memory so —> 0 Page fault.
4 will takes place of 1 —> 1 Page Fault
Now for the further page reference string —> 0 Page fault because they are already available in the memory.

2.write a program to simulate LRU Page Replacement Algorithm

#include<stdio.h>

int main()

{

int a[5],b[20],p=0,q=0,m=0,h,k,i,q1=1,j,u,n;

char f='F';

printf("Enter the number of pages:");

scanf("%d",&n);

printf("Enter %d Page Numbers:",n);

for(i=0;i<n;i++)

scanf("%d",&b[i]);

for(i=0;i<n;i++)

{

if(p==0)

{

if(q>=3)

q=0;

a[q]=b[i];

q++;

if(q1<3)

{

q1=q;

}

}

printf("\n%d",b[i]);

printf("\t");

for(h=0;h<q1;h++)

printf("%d",a[h]);

if((p==0)&&(q<=3))

{

printf("-->%c",f);

m++;

}

p=0;

if(q1==3)

{

for(k=0;k<q1;k++)

{

if(b[i+1]==a[k])

p=1;

}

for(j=0;j<q1;j++)

{

u=0;

k=i;

while(k>=(i-1)&&(k>=0))

{

if(b[k]==a[j])

u++;

k--;

}

if(u==0)

q=j;

}

}

else

{

for(k=0;k<q;k++)

{

if(b[i+1]==a[k])

p=1;

}

}

}

printf("\nNo of faults:%d",m);

}

output

$./a.out

Enter the number of pages:12

Enter 12 Page Numbers:2 3 4 5 1 2 6 7 8 3 7 8

2
2-->F

3
23-->F

4
234-->F

5
534-->F

1
514-->F
2
512-->F

6
612-->F
7
672-->F

8
678-->F
3
378-->F

7
378
8
378

No of faults:10

4-5 . Multithreading
A thread is a path which is followed during a program’s execution. Majority of programs written now a days run as a single thread.Lets say, for example a program is not capable of reading keystrokes while making drawings. These tasks cannot be executed by the program at the same time. This problem can be solved through multitasking so that two or more tasks can be executed simultaneously.

Multitasking is of two types: Processor based and thread based. Processor based multitasking is totally managed by the OS, however multitasking through multithreading can be controlled by the programmer to some extent.

The concept of multi-threading needs proper understanding of these two terms – a process and a thread. A process is a program being executed. A process can be further divided into independent units known as threads.

A thread is like a small light-weight process within a process. Or we can say a collection of threads is what is known as a process.

[image: image4.jpg]Single-threaded Process Multi-threaded Process

Threads of
Execution

Single Instruction Stream Multiple Instruction Stream
Common

Single Thread and Multi Thread Process

Applications –
Threading is used widely in almost every field.
· Most widely it is seen over the internet now days where we are using transaction processing of every type like recharges, online transfer, banking etc.
· Threading is a segment which divide the code into small parts that are of very light weight and has less burden on CPU memory so that it can be easily worked out and can achieve goal in desired field.
· The concept of threading is designed due to the problem of fast and regular changes in technology and less the work in different areas due to less application

3 . Write a program to implement the concept of Multithreading.

#include<pthread.h>

#include<stdio.h>

#define NUM_THREADS 3

int je,jo,evensum=0,sumn=0,oddsum=0,evenarr[50],oddarr[50];

void *Even(void *threadid)

{

int i,n;

je=0;

n=(int)threadid;

for(i=1;i<=n;i++)

{

if(i%2==0)

{

evenarr[je]=i;

evensum=evensum+i;

je++;

}

}

}

void *Odd(void *threadid)

{

int i,n;

jo=0;

n=(int)threadid;

for(i=0;i<=n;i++)

{

if(i%2!=0)

{

oddarr[jo]=i;

oddsum=oddsum+i;

jo++;

}

}

}

void *SumN(void *threadid)

{

int i,n;

n=(int)threadid;

for(i=1;i<=n;i++)

{

sumn=sumn+i;

}

}

int main()

{

pthread_t threads[NUM_THREADS];

int i,t;

printf("enter a number\n");

scanf("%d",&t);

pthread_create(&threads[0],NULL,Even,(void *)t);

pthread_create(&threads[1],NULL,Odd,(void *)t);

pthread_create(&threads[2],NULL,SumN,(void *)t);

for(i=0;i<NUM_THREADS;i++)

{

pthread_join(threads[i],NULL);

}

printf("the sum of first N natural nos is %d\n",sumn);

 printf("the sum of first N even natural nos is %d\n",evensum);

printf("the sum of first N odd natural nos is %d\n",oddsum);

printf("the first N even natural nos is----\n");

for(i=0;i<je;i++)

printf("%d\n",evenarr[i]);

printf("the first N odd natural nos is----\n");

for(i=0;i<jo;i++)

printf("%d\n",oddarr[i]);

pthread_exit(NULL);

}

output

$ cc threads.c -pthread

$./a.out

enter a number

12

the sum of first N natural nos is 78

the sum of first N even natural nos is 42

the sum of first N odd natural nos is 36

the first N even natural nos is----2,4,6,8,1,12

the first N odd natural nos is----1,3,5,7,9,11
5-6 .Producer & Consumer problem using Semaphores and Shared memory

5 Producer & Consumer problem using Semaphores
Prerequisite – Semaphores in operating system, Inter Process Communication
Producer consumer problem is a classical synchronization problem. We can solve this problem by using semaphores.

A semaphore S is an integer variable that can be accessed only through two standard operations : wait() and signal().
The wait() operation reduces the value of semaphore by 1 and the signal() operation increases its value by 1.
wait(S){

while(S<=0); // busy waiting

S--;

}

signal(S){

S++;

}

Semaphores are of two types:

1. Binary Semaphore – This is also known as mutex lock. It can have only two values – 0 and 1. Its value is initialized to 1. It is used to implement solution of critical section problem with multiple processes.

2. Counting Semaphore – Its value can range over an unrestricted domain. It is used to control access to a resource that has multiple instances.

Problem Statement – We have a buffer of fixed size. A producer can produce an item and can place in the buffer. A consumer can pick items and can consume them. We need to ensure that when a producer is placing an item in the buffer, then at the same time consumer should not consume any item. In this problem, buffer is the critical section.

To solve this problem, we need two counting semaphores – Full and Empty. “Full” keeps track of number of items in the buffer at any given time and “Empty” keeps track of number of unoccupied slots.

Initialization of semaphores –
mutex = 1
Full = 0 // Initially, all slots are empty. Thus full slots are 0
Empty = n // All slots are empty initially

Solution for Producer –
do{

//produce an item

wait(empty);

wait(mutex);

//place in buffer

signal(mutex);

signal(full);

}while(true)

When producer produces an item then the value of “empty” is reduced by 1 because one slot will be filled now. The value of mutex is also reduced to prevent consumer to access the buffer. Now, the producer has placed the item and thus the value of “full” is increased by 1. The value of mutex is also increased by 1 beacuse the task of producer has been completed and consumer can access the buffer.

Solution for Consumer –
do{

wait(full);

wait(mutex);

// remove item from buffer

signal(mutex);

signal(empty);

// consumes item

}while(true)

· As the consumer is removing an item from buffer, therefore the value of “full” is reduced by 1 and the value is mutex is also reduced so that the producer cannot access the buffer at this moment.
· Now, the consumer has consumed the item, thus increasing the value of “empty” by 1. The value of mutex is also increased so that producer can access the buffer now.

#include<stdio.h>
#include<stdlib.h>
 int mutex=1,full=0,empty=3,x=0;
 int main()
{
 int n;
 void producer();
 void consumer();
 int wait(int);
 int signal(int);
 printf("\n1.Producer\n2.Consumer\n3.Exit");
 while(1)
 {
 printf("\nEnter your choice:");
 scanf("%d",&n);
 switch(n)
 {
 case 1: if((mutex==1)&&(empty!=0))
 producer();
 else
 printf("Buffer is full!!");
 break;
 case 2: if((mutex==1)&&(full!=0))
 consumer();
 else
 printf("Buffer is empty!!");
 break;
 case 3:
 exit(0);
 break;
 }
 }

 return 0;
}

int wait(int s)
{
 return (--s);
}

int signal(int s)
{
 return(++s);
}

void producer()
{
 mutex=wait(mutex);
 full=signal(full);
 empty=wait(empty);
 x++;
 printf("\nProducer produces the item %d",x);
 mutex=signal(mutex);
}

void consumer()
{
 mutex=wait(mutex);
 full=wait(full);
 empty=signal(empty);
 printf("\nConsumer consumes item %d",x);
 x--;
 mutex=signal(mutex);
}
Output
1.Producer
2.Consumer
3.Exit
Enter your choice:1
Producer produces the item 1
Enter your choice:2
Consumer consumes item 1
Enter your choice:2
Buffer is empty!!
Enter your choice:1
Producer produces the item 1
Enter your choice:1
Producer produces the item 2
Enter your choice:1
Producer produces the item 3
Enter your choice:1
Buffer is full!!
Enter your choice:3
6.Write a program to implement producer consumer Shared memory

file 1: Shmem.h

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <stdio.h>

#include<stdlib.h>

#include<unistd.h>

#define PERMS 0666

#define mkey 45787

file 2: sender.c

#include "shmem.h"

int main()

{

int shmemid,n;

char *pshmem;

if((shmemid=shmget(mkey,10,PERMS|IPC_CREAT))<0)

{

printf("\n Sender: Cant get shared memory");

exit(1);

}

pshmem=shmat(shmemid,(char *) 0,0);

if(pshmem < 0)

{

perror("Sender: Cant attach shared memory");

exit(1);

}

n=read(0,pshmem,10);

pshmem[n]='\0';

exit(0);

}

file 3: receiver.c

#include "shmem.h"

int main()

{

int shmemid,n;

char *pshmem;

if((shmemid=shmget(mkey,10,PERMS|IPC_CREAT))<0)

{

printf("\nReceiver: Error opening shared memory");

exit(1);

}

pshmem=shmat(shmemid,(char *) 0,0);

if(pshmem < 0)

{

printf("\n Receiver : Can't attach shared memory");

exit(1);

}

printf("%s",pshmem);

shmctl(shmemid,IPC_RMID,NULL);

exit(0);

}

output

cc sender.c

$./a.out

hi

7-9 . Processor Scheduling algorithms

Scheduling of processes/work is done to finish the work on time.

Below are different time with respect to a process.

Arrival Time : Time at which the process arrives in the ready queue.

Completion Time : Time at which process completes its execution.

Burst Time : Time required by a process for CPU execution.

Turn Around Time : Time Difference between completion time and arrival time.

 Turn Around Time = Completion Time - Arrival Time

Waiting Time(W.T) : Time Difference between turn around time and burst time.

 Waiting Time = Turn Around Time - Burst Time

Why do we need scheduling?
A typical process involves both I/O time and CPU time. In a uniprogramming system like MS-DOS, time spent waiting for I/O is wasted and CPU is free during this time. In multiprogramming systems, one process can use CPU while another is waiting for I/O. This is possible only with process scheduling.

Objectives of Process Scheduling Algorithm
Max CPU utilization [Keep CPU as busy as possible]

Fair allocation of CPU.

Max throughput [Number of processes that complete their execution per time unit]

Min turnaround time [Time taken by a process to finish execution]

Min waiting time [Time a process waits in ready queue]

Min response time [Time when a process produces first response]

Different Scheduling Algorithms
First Come First Serve (FCFS): Simplest scheduling algorithm that schedules according to arrival times of processes. First come first serve scheduling algorithm process that requests the CPU first is allocated the CPU first. It is implemented by using the FIFO queue. When a process enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to the process at the head of the queue. The running process is then removed from the queue. FCFS is a non-preemptive scheduling algorithm.

Note:First come first serve suffers from convoy effect.
Shortest Job First(SJF): Process which have the shortest burst time are scheduled first.If two processes have the same bust time then FCFS is used to break the tie. It is a non-preemptive scheduling algorithm.
Longest Job First(LJF): It is similar to SJF scheduling algorithm. But, in this scheduling algorithm, we give priority to the process having the longest burst time. This is non-preemptive in nature i.e., when any process starts executing, can’t be interrupted before complete execution.
Shortest Remaining Time First(SRTF): It is preemptive mode of SJF algorithm in which jobs are schedule according to shortest remaining time.
Longest Remaining Time First(LRTF): It is preemptive mode of LJF algorithm in which we give priority to the process having largest burst time remaining.
Round Robin Scheduling: Each process is assigned a fixed time(Time Quantum/Time Slice) in cyclic way.It is designed especially for the time-sharing system. The ready queue is treated as a circular queue. The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of up to 1-time quantum. To implement Round Robin scheduling, we keep the ready queue as a FIFO queue o£ processes. New processes are added to the tail of the ready queue. The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after 1-time quantum, and dispatches the process. One of two things will then happen. The process may have a CPU burst of less than 1-time quantum. In this case, the process itself will release the CPU voluntarily. The scheduler will then proceed to the next process in the ready queue. Otherwise, if the CPU burst of the currently running process is longer than 1-time quantum, the timer will go off and will cause an interrupt to the operating system. A context switch will be executed, and the process will be put at the tail o£ the ready queue. The CPU scheduler will then select the next process in the ready queue.
Priority Based scheduling (Non-Preemptive): In this scheduling, processes are scheduled according to their priorities, i.e., highest priority process is scheduled first. If priorities of two processes match, then schedule according to arrival time. Here starvation of process is possible.

Highest Response Ratio Next (HRRN) In this scheduling, processes with highest response ratio is scheduled. This algorithm avoids starvation.

Response Ratio = (Waiting Time + Burst time) / Burst time
Multilevel Queue Scheduling: According to the priority of process, processes are placed in the different queues. Generally high priority process are placed in the top level queue. Only after completion of processes from top level queue, lower level queued processes are scheduled. It can suuffer from starvation.
Multi level Feedback Queue Scheduling: It allows the process to move in between queues. The idea is to separate processes according to the characteristics of their CPU bursts. If a process uses too much CPU time, it is moved to a lower-priority queue.

Some useful facts about Scheduling Algorithms:
1. FCFS can cause long waiting times, especially when the first job takes too much CPU time.

2. Both SJF and Shortest Remaining time first algorithms may cause starvation. Consider a situation when the long process is there in the ready queue and shorter processes keep coming.

3. If time quantum for Round Robin scheduling is very large, then it behaves same as FCFS scheduling.

4. SJF is optimal in terms of average waiting time for a given set of processes,i.e., average waiting time is minimum with this scheduling, but problems are, how to know/predict the time of next job

7 .write a program to implement FCFS CPU Scheduling algorithm

FCFS CPU SCHEDULING
#include<stdio.h>

int main()

{

char pn[10][10];

int arr[10],bur[10],star[10],finish[10],tat[10],wt[10],i,n;

int totwt=0,tottat=0;

printf("Enter the number of processes:");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter the Process Name, Arrival Time & Burst Time:");

scanf("%s%d%d",&pn[i],&arr[i],&bur[i]);

}

for(i=0;i<n;i++)

{

if(i==0)

{

star[i]=arr[i];

wt[i]=star[i]-arr[i];

finish[i]=star[i]+bur[i];

tat[i]=finish[i]-arr[i];

}

else

{

star[i]=finish[i-1];

wt[i]=star[i]-arr[i];

finish[i]=star[i]+bur[i];

tat[i]=finish[i]-arr[i];

}

}

printf("\nPName
Arrtime Burtime Start TAT Finish");

for(i=0;i<n;i++)

{

printf("\n%s\t%6d\t\t%6d\t%6d\t%6d\t%6d",pn[i],arr[i],bur[i],star[i],tat[i],finish[i]);

totwt+=wt[i];

tottat+=tat[i];

}

printf("\nAverage Waiting time:%f",(float)totwt/n);

printf("\nAverage Turn Around Time:%f",(float)tottat/n);

}

OUTPUT:

PName Arrtime Burtime Start TAT Finish

1 0 4 0 4 4

2 1 3 4 6 7

3 2 1 7 6 8

4 3 2 8 7 10

5 4 5 10 11 15

Average Waiting time:3.800000

Average Turn Around Time:6.800000

Process exited after 36.89 seconds with return value 34

Press any key to continue . . .

8 .write a program to implement SJF CPU Scheduling algorithm

#include <stdio.h>

int main()

{

 int arrival_time[10], burst_time[10], temp[10];

 int i, smallest, count = 0, time, limit;

 double wait_time = 0, turnaround_time = 0, end;

 float average_waiting_time, average_turnaround_time;

 printf("\nEnter the Total Number of Processes:\t");

 scanf("%d", &limit);

 printf("\nEnter Details of %d Processes\n", limit);

 for(i = 0; i < limit; i++)

 {

 printf("\nEnter Arrival Time:\t");

 scanf("%d", &arrival_time[i]);

 printf("Enter Burst Time:\t");

 scanf("%d", &burst_time[i]);

 temp[i] = burst_time[i];

 }

 burst_time[9] = 100;

 for(time = 0; count != limit; time++)

 {

 smallest = 9;

 for(i = 0; i < limit; i++)

 {

 if(arrival_time[i] <= time && burst_time[i] < burst_time[smallest] && burst_time[i] > 0)

 {

 smallest = i;

 }

 }

 burst_time[smallest]--;

 if(burst_time[smallest] == 0)

 {

 count++;

 end = time + 1;

 wait_time = wait_time + end - arrival_time[smallest] - temp[smallest];

 turnaround_time = turnaround_time + end - arrival_time[smallest];

 }

 }

 average_waiting_time = wait_time / limit;

 average_turnaround_time = turnaround_time / limit;

 printf("\n\nAverage Waiting Time:\t%lf\n", average_waiting_time);

 printf("Average Turnaround Time:\t%lf\n", average_turnaround_time);

 getch();

 return 0;

}

9 .write a program to implement ROUND ROBIN CPU Scheduling algorithm

#include<stdio.h>

struct process

{

int burst,wait,comp,f;

}p[20]={0,0};

int main()

{

int n,i,j,totalwait=0,totalturn=0,quantum,flag=1,time=0;

printf("\nEnter The No Of Process
:");

scanf("%d",&n);

printf("\nEnter The Quantum time (in ms) :");

scanf("%d",&quantum);

for(i=0;i<n;i++)

{

printf("Enter The Burst Time (in ms) For Process #%2d :",i+1);

scanf("%d",&p[i].burst);

p[i].f=1;

}

printf("\nOrder Of Execution \n");

printf("\nProcess Starting Ending Remaining");

printf("\n\t\tTime \tTime \t Time");

while(flag==1)

{

flag=0;

for(i=0;i<n;i++)

{

if(p[i].f==1)

{

flag=1;

j=quantum;

if((p[i].burst-p[i].comp)>quantum)

{

p[i].comp+=quantum;

}

else

{

p[i].wait=time-p[i].comp;

j=p[i].burst-p[i].comp;

p[i].comp=p[i].burst;

p[i].f=0;

}

printf("\nprocess # %-3d %-10d %-10d %-10d", i+1, time, time+j, p[i].burst-p[i].comp);

time+=j;

}

}

}

printf("\n\n------------------");

printf("\nProcess \t Waiting Time TurnAround Time ");

for(i=0;i<n;i++)

{

printf("\nProcess # %-12d%-15d%-15d",i+1,p[i].wait,p[i].wait+p[i].burst);

totalwait=totalwait+p[i].wait;

totalturn=totalturn+p[i].wait+p[i].burst;

}

printf("\n\nAverage\n------------------

");

printf("\nWaiting Time : %fms",totalwait/(float)n);

printf("\nTurnAround Time : %fms\n\n",totalturn/(float)n);

return 0;

}

10. Dining Philosophers problem using Semaphores
Prerequisite – Process Synchronization, Semaphores, Dining-Philosophers Solution Using Monitors
The Dining Philosopher Problem – The Dining Philosopher Problem states that K philosophers seated around a circular table with one chopstick between each pair of philosophers. There is one chopstick between each philosopher. A philosopher may eat if he can pickup the two chopsticks adjacent to him. One chopstick may be picked up by any one of its adjacent followers but not both.

[image: image5.png]Philosopher

Semaphore Solution to Dining Philosopher –
Each philosopher is represented by the following pseudocode:

process P[i]

 while true do

 { THINK;

 PICKUP(CHOPSTICK[i], CHOPSTICK[i+1 mod 5]);

 EAT;

 PUTDOWN(CHOPSTICK[i], CHOPSTICK[i+1 mod 5])

 }

There are three states of philosopher : THINKING, HUNGRY and EATING. Here there are two semaphores : Mutex and a semaphore array for the philosophers. Mutex is used such that no two philosophers may access the pickup or putdown at the same time. The array is used to control the behavior of each philosopher. But, semaphores can result in deadlock due to programming errors.

#include<stdio.h>

#include<semaphore.h>

#include<pthread.h>

#define N 5

#define THINKING 0

#define HUNGRY 1

#define EATING 2

#define LEFT (ph_num+4)%N

#define RIGHT (ph_num+1)%N

sem_t mutex;

sem_t S[N];

void * philospher(void *num);

void take_fork(int);

void put_fork(int);

void test(int);

int state[N];

int phil_num[N]={0,1,2,3,4};

int main()

{

 int i;

 pthread_t thread_id[N];

 sem_init(&mutex,0,1);

 for(i=0;i<N;i++)

 sem_init(&S[i],0,0);

 for(i=0;i<N;i++)

 {

 pthread_create(&thread_id[i],NULL,philospher,&phil_num[i]);

 printf("Philosopher %d is thinking\n",i+1);

 }

 for(i=0;i<N;i++)

 pthread_join(thread_id[i],NULL);

}

void *philospher(void *num)

{

 while(1)

 {

 int *i = num;

 sleep(1);

 take_fork(*i);

 sleep(0);

 put_fork(*i);

 }

}

void take_fork(int ph_num)

{

 sem_wait(&mutex);

 state[ph_num] = HUNGRY;

 printf("Philosopher %d is Hungry\n",ph_num+1);

 test(ph_num);

 sem_post(&mutex);

 sem_wait(&S[ph_num]);

 sleep(1);

}

void test(int ph_num)

{

 if (state[ph_num] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING)

 {

 state[ph_num] = EATING;

 sleep(2);

 printf("Philosopher %d takes fork %d and %d\n",ph_num+1,LEFT+1,ph_num+1);

 printf("Philosopher %d is Eating\n",ph_num+1);

 sem_post(&S[ph_num]);

 }

}

void put_fork(int ph_num)

{

 sem_wait(&mutex);

 state[ph_num] = THINKING;

 printf("Philosopher %d putting fork %d and %d down\n",ph_num+1,LEFT+1,ph_num+1);

 printf("Philosopher %d is thinking\n",ph_num+1);

 test(LEFT);

 test(RIGHT);

 sem_post(&mutex);

}
11.Readers and Writers problem using Semaphores

Consider a situation where we have a file shared between many people.

· If one of the people tries editing the file, no other person should be reading or writing at the same time, otherwise changes will not be visible to him/her.

· However if some person is reading the file, then others may read it at the same time.

Precisely in OS we call this situation as the readers-writers problem
Problem parameters:

· One set of data is shared among a number of processes

· Once a writer is ready, it performs its write. Only one writer may write at a time

· If a process is writing, no other process can read it

· If at least one reader is reading, no other process can write

· Readers may not write and only read

Solution when Reader has the Priority over Writer
Here priority means, no reader should wait if the share is currently opened for reading.

Three variables are used: mutex, wrt, readcnt to implement solution

1. semaphore mutex, wrt; // semaphore mutex is used to ensure mutual exclusion when readcnt is updated i.e. when any reader enters or exit from the critical section and semaphore wrt is used by both readers and writers

2. int readcnt; // readcnt tells the number of processes performing read in the critical section, initially 0

Functions for sempahore :
– wait() : decrements the semaphore value.

– signal() : increments the semaphore value.

Writer process:
1. Writer requests the entry to critical section.

2. If allowed i.e. wait() gives a true value, it enters and performs the write. If not allowed, it keeps on waiting.

3. It exits the critical section.
do {

 // writer requests for critical section

 wait(wrt);

 // performs the write

 // leaves the critical section

 signal(wrt);

} while(true);

Reader process:
1. Reader requests the entry to critical section.

2. If allowed:

· it increments the count of number of readers inside the critical section. If this reader is the first reader entering, it locks the wrt semaphore to restrict the entry of writers if any reader is inside.

· It then, signals mutex as any other reader is allowed to enter while others are already reading.

· After performing reading, it exits the critical section. When exiting, it checks if no more reader is inside, it signals the semaphore “wrt” as now, writer can enter the critical section.

3. If not allowed, it keeps on waiting.
do {

 // Reader wants to enter the critical section

 wait(mutex);

 // The number of readers has now increased by 1

 readcnt++;

 // there is atleast one reader in the critical section

 // this ensure no writer can enter if there is even one reader
 // thus we give preference to readers here
 if (readcnt==1)

 wait(wrt);

 // other readers can enter while this current reader is inside

 // the critical section

 signal(mutex);

 // current reader performs reading here

 wait(mutex); // a reader wants to leave

 readcnt--;

 // that is, no reader is left in the critical section,

 if (readcnt == 0)

 signal(wrt); // writers can enter

 signal(mutex); // reader leaves

} while(true);

Thus, the semaphore ‘wrt‘ is queued on both readers and writers in a manner such that preference is given to readers if writers are also there. Thus, no reader is waiting simply because a writer has requested to enter the critical section.

12.Shell-programming exercises

Swapping Without Temporary Variables

SOURCE CODE

echo "enter two numbers"

read a

read b

echo "Before swapping"

echo " A = $a B = $b"

a=`expr $a + $b`

`expr $a + $b` = $(($a + $b))

b=`expr $a - $b`

a=`expr $a - $b`

echo "After swapping "

echo "A = $a B = $b"

OUTPUT:

[lalitha@linux shellscripts]$ vi swap.sh

[lalitha@linux shellscripts]$ sh swap.sh

enter two numbers

10

20

Before swapping

 A = 10 B = 20

After swapping

A = 20 B = 10

[lalitha@linux shellscripts]$

Swapping Using Temporary Variables

SOURCE CODE

echo "enter two numbers"

read a

read b

echo "Before swapping"

echo " A = $a B = $b"

c=$a

a=$b

b=$c

echo "After swapping "

echo "A = $a B = $b"

OUTPUT:

[lalitha@linux shellscripts]$ vi swaptemp.sh

[lalitha@linux shellscripts]$ sh swaptemp.sh

enter two numbers

100

200

Before swapping

 A = 100 B = 200

After swapping

A = 200 B = 100

[lalitha@linux shellscripts]$

Square and Cubes of A Number

SOURCE CODE:

echo "enter a number"

read num

sqr=`expr $num * $num`

cube=`expr $sqr * $num`

echo "the squre of $num is $sqr"

echo "the cube of $num is $cube"

OUTPUT:

[lalitha@linux shellscripts]$ vi sqrcub.sh

[lalitha@linux shellscripts]$ sh sqrcub.sh

enter a number

10

the squre of 10 is 100

the cube of 10 is 1000

[lalitha@linux shellscripts]$

Even or Odd Number

SOURCE CODE:

echo “enter the number”

read n

r=1

r=`expr $n % 2`

if [$r -eq 0]

“-eq” for digits or numbers

then

echo “even”

else

echo “odd”

 fi

OUTPUT:

[lalitha@linux shellscripts]$ vi evenodd.sh

[lalitha@linux shellscripts]$ sh evenodd.sh

enter the number

5

odd

[lalitha@linux shellscripts]$

Given Input Is File or Directory

SOURCE CODE

echo “enter a filename”

read fname

if test -f $fname

then

echo "$fname is a ordinary file"

elif test -d $fname

then

echo "$fname is a Directory"

 else

echo "$fname is Invaliddd"

fi

OUTPUT:

[lalitha@linux shellscripts]$ vi filedir.sh

[lalitha@linux shellscripts]$ sh filedir.sh

enter a filename

dir

dir is a Directory

[lalitha@linux shellscripts]$

Comparison of Two Strings

SOURCE CODE

echo "enter a string1"

read first

echo "enter a string2"

read second

if [$first = $second]

this “ =” for other than digits equals

then

echo “equal”

else

echo “unequal”

fi

OUTPUT:

[lalitha@linux shellscripts]$ vi compare1.sh

[lalitha@linux shellscripts]$ sh compare1.sh

enter a string1

abcxyz

enter a string2

abcxyz

equal

[lalitha@linux shellscripts]$

Comparison Of Two Strings From Command Lines

SOURCE CODE:

if [$1 = $2]

then

echo "Strings are equal….."

else

echo "Strings are not equal….."

fi

OUTPUT

[lalitha@linux shellscripts]$ vi compare2.sh

[lalitha@linux shellscripts]$ sh compare2.sh methodist methodist

Strings are equal…..

[lalitha@linux shellscripts]$ sh compare2.sh methodist tsidohtem

Strings are not equal…..

[lalitha@linux shellscripts]$

Value of xn
SOURCE CODE:

echo -n "enter the value of x:"

read x

echo -n "enter the value of n:"

read n

sum=1

i=1

while [$i -le $n]

do

sum=`expr $sum * $x`

i=`expr $i + 1`

done

echo "the value of $x power $n is $sum"

OUTPUT:

[lalitha@linux shellscripts]$ vi xpown.sh

[lalitha@linux shellscripts]$ sh xpown.sh

enter the value of x:10

enter the value of n:2

the value of 10 power 2 is 100

[lalitha@linux shellscripts]$

List of Even Numbers in a Given Limit

SOURCE CODE:

echo -n "enter the limit:"

x=2

read num

while [$x -lt $num]

do

echo -n "$x \t"

x=`expr $x + 2`

done

OUTPUT:

[lalitha@linux shellscripts]$ vi evennums.sh

[lalitha@linux shellscripts]$ sh evennums.sh

enter the limit:20

2
4
6
8
10
12
14
16
18

[lalitha@linux shellscripts]$

Generate Fibonacci Series

SOURCE CODE:

echo “enter the no. of numbers in the series”

read n

a=0

b=1

d=2

echo “$a”

echo “$b”

while [$d -lt $n]

do

c=`expr $a + $b`

echo “$c”

a=$b

b=$c

d=`expr $d + 1`

done

OUTPUT:

[lalitha@linux shellscripts]$ vi fibonacci.sh

[lalitha@linux shellscripts]$ sh fibonacci.sh

enter the no. of numbers in the series

10

0

1

1

2

3

5

8

13

21

34

[lalitha@linux shellscripts]$

Find the Reverse of a Number

SOURCE CODE:

echo “enter a number”

read n

rev=0

while [$n -gt 0]

do

dig=`expr $n % 10`

rev=`expr $rev * 10 + $dig`

n=`expr $n / 10`

done

echo “$rev”

OUTPUT:

[lalitha@linux shellscripts]$ vi revnum.sh

[lalitha@linux shellscripts]$ sh revnum.sh

enter a number

123

321

[lalitha@linux shellscripts]$

Armstrong Number

SOURCE CODE:

echo "Enter a number:"

read num

x=$num

sum=0

while [$num -gt 0]

do

y=`expr $num % 10`

z=`expr $y * $y * $y`

sum=`expr $num + $z`

num=`expr $num / 10`

done

if [$x -eq $sum]

then

echo "$x is an armstrong number"

else

echo " $x is not an armstrong number"

fi

OUTPUT:

[lalitha@linux shellscripts]$ vi armstrong.sh

[lalitha@linux shellscripts]$ sh armstrong.sh

Enter a number:

153

153 is an armstrong number

[lalitha@linux shellscripts]$ sh armstrong.sh

Enter a number:

123

123 is not an armstrong number

[lalitha@linux shellscripts]$

