UNIT - II
Non Linear Wave shaping

The clipping circuit comprises of linear events like resistors and non-linear elements like juneton diodes and transistors. But it does not contain energy storage elements like capacitors. clipping circuits are used to select to a purpose of transmission that part of a signal wave form which lies above or below a certain reference voltage level. Thus, clipper circuit can remove ceriain portions of an arbitrary wave form near the tie or -re peaks. clipping vottrige may be achieved either at one level or at two levels. for example. For example, a sinusoidal wave can be converted into a trapezoidal wave using two level clipper.
 $V_{R_{1}}$ \& $V_{R_{2}}$ are the reference voltage levels.
clipping circuits are also called as slices amplitude Selector or limiter
classification:-
practically, clippers are classified into two types
(1) Shunt clippers.
(2) series dippers.
characteristics of liner. Ideal and practical diode
\Rightarrow An Ideal diode exhibits the following characteristics
The forward resistance $k_{f}=0$

The reverse resistance $\quad R_{\lambda}=\infty$
cut in voltage $V_{8}=0$
\Rightarrow For practical diode, the forward resistance is of the order of a few ohms. The reverse resistance
 is quite largo Also, cut-in-vodtage $v_{3}=0.2 \mathrm{~V}$ (Di$) \quad 0.6 \mathrm{~V}$

Shunt clippers:-

Transfer characteristic
shunt dippers:-
shunt clipper clipping above the V_{R}.

clipping above reference voltage

D is the diode which is connected in series with batters V_{R} and this series combination forms a parallel path across the olp voltage ' v_{0} '. ' v_{R} ' represents the reference voltage ' R ' is a current
limiting resistance. Let 'vo' denotes the op voltage when lp voltage v_{i} which transmitted through the circuit
Working of the diodes-
For $v_{i}<v_{R}+v_{z}$ the diode D is offed since if is reverse biased and hence doesnot conduct. So, no current flows and there is no voltage drop across Resistance R.

$$
\therefore v_{0}=v_{i} \text { for } v_{i}<v_{R}+v_{i}
$$

For $v_{i}>v_{R}+v_{2}$, the diode D is $O N$, since it is in forward bias and the potential barales is overcome.

Let ' i ' denotes the current

$$
i=\frac{v_{i}-\left(v_{R}+v_{i}\right)}{R+R_{F}}
$$

The olp voltage $v_{0}=V_{i}-I R$.

$$
v_{0}=v_{i}-\left(\frac{v_{i}-\left(v_{R}+v_{j}\right)}{R+R_{F}}\right) R
$$

Neglecting RF

$$
\begin{aligned}
& v_{0}=\frac{V_{i}-\left(V_{i}-\left(V_{R}+V_{z}\right)\right)}{R} \propto R \\
& V_{0}=V_{R}+V_{z}
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}=v_{i} \text { for }\left(v_{i}\left\langle v_{R}+v_{8}\right)\right. \\
& v_{0}=v_{R}+v_{i} \text { for }\left(v_{i}>v_{R}+v_{8}\right)
\end{aligned}
$$

Transfer characteristics:
when $V_{0}=V_{i}$, then $\frac{V_{0}}{v_{i}}=1$

$$
\therefore \text { Slope }=1
$$

when $v_{0}=v_{R}+v_{2}$, then v_{0} is constant, since both V_{R} and V_{i} are of fixed magnitude

$$
\therefore \text { Slope }=0
$$

It is evident that $v_{0}=v_{1}$, when D is off, there; no clipping action and the lp signal is transmitted without any alteration of wave shape

When D is $O N$, it is seen that v_{0} is constant and whatever the magnituck $\&$ instantaneous V_{i}, Hence there is dipping action for the portion of ils signal greater, than $v_{R}+v_{7}$ is not transmitted. In practice if $V_{R} \gg V_{V}$ we have $V_{R}+V_{i}=V_{R}$ and V_{R} itself can be taken as level below which transmission occurs without clipping action but beyond which clipping really occurs
b) Clipping Below the Reference voltage V_{R}.

Transfer Characteristic
$V_{0}=V_{i}$ for $V_{1}>V_{R}$
 Input signal

Let ' D ' is an ideal diode so that $R_{f}=0$ and $V_{\gamma}=0$ and V_{R} is the reference voltage it is of fixed magnitude, v_{i} is the inpul-vitage and V_{0} is the outpul-voltage.

Working:-
For $V_{i}<V_{R}$, Diode is $O \mathbb{N}$ since V_{R} is greater than V_{i}, the diode gets forward Biased and conduction readily peculers. The ideal diode acts as short circuit and there is no voltage drop a cross the diode aredtenc, $V_{0}=V_{R}$.

For $V_{s} \ngtr V_{R}$, Diode ' D ' is OFF since it opts Reverse Biased there is no conduction and no voltage drop across ' R '. Therefore $V_{0}=V_{9}$.

Transfer characteristics 2.

$$
\begin{array}{lll}
V_{0}=v_{R} & \text { for } & V_{i}<v_{R} \\
V_{0}=v_{i} & \text { for } & v_{i}>v_{R}
\end{array}
$$

when $V_{0}=V_{R}$ the slope vs zero and when $v_{0}=v_{i}$ the slope is " 1 .

When the diode is 'ON' clipping action readily takes place since the output $V_{0}=V_{R}$ of constant magnitude Thus for all values of $v_{1}<V_{R}$, the output voltage has the magnitude V_{R} (DR) The portion of the input voltage waveform below the reference stage V_{R} is readily clipped. When the diode 18 off. We have $V_{0}=V_{i}$ and there is no clipping. Hence the portion of the input signal waveform lying above the reference voltage V_{R} is readily, transmitter without attenuation.

Ex:- Let the sine wave $E=15 \sin \omega t$ be passed through the above clipper circuit, The output voltage has the waveform as follow if $v_{R}=10 \mathrm{~V}$

SERIES CHPPERS:-
Clipping above the Reference voltage V_{R} :-

$$
v_{0}=v_{i} \text { for } v_{i}<N_{R}
$$

$$
v_{0}=v_{R} \text { for } v_{i}>v_{R}
$$

Transfer characteristics

clipping Below the reference voltage V_{R} 's

Transfer characteristics

clipping above reference voltage:.
Let ' D ' is an ideal Diode, the diode that connected in the circuit-forms a series path connecting the input and output with polarity as Shown. Hence $R_{f}=0$ for an ideal diode the diode acts as short circuit when conducting. and as open circuit when reverse biased. Working:-
when $V_{1}<V_{R}$, the diode if forward biased. and hence it conducts, since it is 0 N the diode acts as short circuit the $v=v_{i}$ for whatever the current -when, $N_{\rho}>V_{R}$, the diode
is reverse blased and hence it is off. It acts as open arcuit. since there us no conduction of diode.

Transfer characteristics:-
For $V_{i}<V_{R}, V_{0}=V_{i}$, Therefore slope $=1$.
for $V_{i}>V_{R}, V_{0}=V_{R}$ since V_{R} is of fired magnitude Hence slope $=0$.
An input signal is transmitted without attemation until $V_{q}=V_{R}$. For $V_{i}>V_{R}$ clipping occurs and portion of the waveform above V_{R} is clipped clipping below the reference voltage:-

Let ' D ' is an ideal diode, the diode that connected in the circuit forms a series path connecting the input and output with polarity as shown. Hence $R_{f}=0$ for an ideal diode. The diode acts as short circuit. when reverse biased and open circuit when conducting.

Working:-
when $V_{i}<V_{R}$, the diode is reverie biased and hence it is OFF it acts as open circuit since there is no. conduction of diode when $v_{i}>v_{R}$, the diode is forward biased whence it is $O N$ it acts as short circuit.

Transfer characteristics:-
For $v_{i}<v_{R}, v_{0}=v_{R}$ since V_{R} is of fixed voltage. Hence slope $=0$. for $v_{i}>v_{R}, v_{0}=v_{i}$ - Therefore slope $=1$.

An input signal is tot transmitted untill $V_{i}=V_{R}$. after it gets V_{R}. input signal is transited. Therefore signal below the reference voltage is clipped off.
Assignment - slicer:- (clipping at tho levels).

Some single ended clipping circuits

for $v_{i}<0$
for $v_{i}>0$

D IS ON
(a) Shunt clipper, positive peak clipping without reference

for $v_{i}<0$
for $v_{1}>0$

D is $O N$
D is OFF

$$
V_{0}=0
$$

$$
v_{0}=v_{i}
$$

(b) shunt -clipper, negative peak clipping without reference

for $v_{1}<0$
for $v_{i}>0$

D is off
D is 0 N

$$
v_{0}=0
$$

$$
v_{0}=v_{1}
$$

(1) series clipping, negative peak clipping without reference

for $v_{i}<0$
for $V_{i}>0$

D is ON
D) IS OFF

$v_{0}=v_{1}$
$v_{0}=0$
(d) Series clipper, positive peak clipping without reference.

for $v_{i}<-v_{R}$
for $v_{i}>-v_{R}$

Slope $=1$
D is OFF
D is ON
(e) shunt clipper, negative base clipping above reference level

for $v_{1}<-v_{R}$
for $v_{i}>-v_{R}$

D is $O N$
D is UFF

$$
\begin{aligned}
& v_{0}=-v_{R} \\
& v_{0}=v_{1}
\end{aligned}
$$

$v_{0}=v_{q}$
$v_{0}=-v_{R}$

for $v_{i}<v_{R}$
for $V_{1}>V_{R}$

D is ON
D is OFF

$v_{0}=v_{i}$
$v_{0}=V_{R}$
(g) serves clipper, positive base dipping above reference level

for $v_{T}<v_{R}$
for $v_{i}>v_{n}$

D is of F
D is $0 N$

$v_{0}=v_{R}$
$v_{0}=v_{1}$
(h) series clipper, positive base clipping above reference level

for $v_{i}<-v_{R}$
for $v_{1}>-v_{R}$

D ISOFF
D is $O N$

$V_{0}=-v_{R}$
$v_{0}=v_{1}$
(in) Series clipper, negative base clipping above reference level

for $v_{1}<-v_{R}$
for $v_{i}>-v_{R}$

slope $=1$
DIS ON

D 1 \triangle off

$\therefore v_{0}=v_{1}$
$v_{0}=-v_{R}$
(jj) series clipper, negative base clipping above reference level

for $V_{i}<V_{R}$
for $V_{i}>V_{R}$

D is OFF
D is 0 N

$$
\therefore V_{0}=0
$$

$$
v_{0}=v_{i}-v_{R}
$$

(k) seales clipper (Biased)

for $V_{1}<v_{R}{ }^{\prime}$
for $V_{1}>V_{R^{\prime}}$

slope >1
D is ONN
Dis of f
(l) series Clipper (Biased,

for $v_{1}<v_{R}$,
for $V_{1}>-V_{R^{k}}$

Q is OFF
D is $O N$

$v_{0}=0$
$N_{0}=v_{i}+v_{R}$
(n) scales Clipper (Based)

for $v_{1}<-v_{R}$

D is 0 N
D is $O F F$

$$
v_{0}=v_{i}+v_{R}
$$

$$
v_{0}=0
$$

for $v_{i}>-v_{k^{\prime}}$
(N) Series clipper (Biased)

for $v_{i}<-v_{z}$,
for $v_{i}>-v_{z}$

Zobreaks
D is on, z breaks

$$
\text { Dis off, } z \text { is off }
$$

$V_{0}=-V_{z}$
$v_{0}=v_{1}$
(o) shunt clipper using zenes diode, negative clipping
comparator:-
A comparator cracult is one which may be used to mark the instant. when an arbitrary wave. form attains some particular reference level The Non-linear circuit which an be used to perform the operation of clipping may also be used to perform the operation of compoaiston. The clipping circuits become elements of a comparator system. and are usually simply referred to as comparators. The Distinction between comparator circuits and the clipping circuits is that in a comparat or there is no interest in reproducing any part of the signal waveform. Whereas in clipping circuit, past of the signal waveform is needed to bereproduced without any distortion.

Fig shows the circuit diagram of a diode comparator as long. as the input voltage V_{i} is less than the Reference voltage V_{R}. The Diode D is $O N$, and the output is fired at V_{R} when $V_{i}>V_{R}$, the diode is OFF and fence. $V_{0}=V_{i}$, The bread e occurs at $V_{i}=V_{R}$ at time $t=t_{1}$. This circuit can be used to mark the instant at which the input voltage reaches a particular reference level V_{R}.
comparators may be non-regenerating or regenerating. clipping circuits fall into the category of Non-regenerating comparators.

In Regenerative comparators feedback is emplo jed to obtain an infinite forward of ain. (unity looper gain), The sames. sohmitt trigger.
and blocking oscillator are examples of regenerative comparators.
\rightarrow Nose applications of comparators make use of step or puls natures of the input. operational amplifier and tunnel diodes may also be used as comparators.

Applications of Voltage comparators:-
(1) In accurate time measurements.
(2) In pulse throne modulation.
(3) As thing makers generated from a sine wave
(4) In phase meters.
(5) In Amplitude distribution analysers to obtain square wave from a sloe wave
(6) In Analog to Digital converters. champers:-

Consider $V_{i}<0$ (Negative cycle)
Diode will be forward blared and acts as short circuit. The capacitor start charging to Diode to Vm

Applying KVL,

$$
\begin{gathered}
v_{m}-v_{i}=0 \\
v_{m}=v_{i}
\end{gathered}
$$

and $V_{0}=0$.
consider, $v_{i}>0$ (positive Half cycle).
Diode will be reverse biased and acts as reference open circuit. Applying $k V L$ to below circuit

$$
\begin{aligned}
V_{0} & -V_{i}-V_{m}=0 \\
V_{0} & =V_{i}+v_{m} \quad\left(\because v_{m}=V_{i}\right) \quad \text { from above) } \\
& =v_{i}+v_{i} \\
& =2 v_{i}
\end{aligned}
$$

Biased. Clamper circuit

Negative half cycle:-

Apply. $K \vee L$,

$$
\begin{gathered}
v_{M}-v_{i}-v_{R}=0 \\
v_{m}=v_{i}+V_{R}
\end{gathered}
$$

$$
\begin{aligned}
& v_{m}=v+v_{e} \\
& v_{0}=v_{R}
\end{aligned}
$$

Positive thalf cyele:.
0 to $\frac{t}{2} \therefore$
$e v_{m} \rightarrow$

Apply KVL.

$$
\begin{gathered}
v_{0}-V_{1}-v_{m}=0 \\
V_{0}=V_{0}+V_{m} \\
V_{0}=V+V+V_{R} \\
V_{0}=2 V+V_{R}
\end{gathered}
$$

Problem:-

1) Sketch the op waveform of the circuit shown in fig

for positive halt cycle

$$
\text { Apply } \begin{aligned}
V_{i} & -V_{m}-2=0 \\
V_{n} & =V_{i}-2 \\
& =10-2 \\
V_{m} & =8 V \\
\therefore V_{0} & =2 V
\end{aligned}
$$

For Negative Half cycle

$$
\begin{aligned}
V_{0} & =V_{R}=2 V \\
V_{0} & =2 V+V_{R} \\
& =2 \times 10+2
\end{aligned}
$$

$$
222
$$

CLAMPING CIRCUIT THEOREM:-

The theorem states that under steady state ondition the ratio of the area under outpulture 1 the forward direction (DIode is ON) to the area under the output curvet in the reverse direction (Diode is off) is given as

$$
\frac{A f f_{f}}{A_{I T}}=\frac{R_{f}}{R_{1}}
$$

where $R_{f}=$ forward resistance of Diode. $R_{R}=$ Resistance of Diode in reverse bias

PROOF:-
Let us consider simple negative clamper circuit Let the input be a square wave, the diode is off during the interval from t_{1} to t_{2}. Hence, the capacitor ' c ' discharges. Let i_{x} denote the discharge current. The charge lost in tome interval t_{1} to t_{2} is, given as

$$
q=\int_{t_{1}}^{t_{2}} i_{r} d t
$$

but $i_{r}=\frac{V_{r}}{R}$
where $v_{r}=$ Rellerse output voltage

$$
\begin{align*}
\therefore q & =\int_{t_{1}}^{t_{2}} \frac{V_{1}}{R} d t \\
q & =\frac{1}{R} \int_{G_{1}}^{t_{2}} V_{\theta} d t \tag{1}
\end{align*}
$$

In the interval t_{2} to t_{3}, the diode 15 ON. Hence the capacitor changes and regains the lost charge. Let if denote the charging current. The charge regain is given by

$$
q^{\prime}=\int_{t_{2}}^{t_{2}} i_{f} d t
$$

but if $=\frac{V_{f}}{R_{f}}$

$$
\begin{aligned}
& q^{\prime}=\int_{t_{2}}^{t_{3}} \frac{V_{f}}{R_{f}} d t \\
& q^{\prime}=\frac{1}{R f} \int_{t_{2}}^{t_{3}} v_{f} d t
\end{aligned}
$$

where v_{f} is the forward ils voltage
At steady state, we have the charge lost is equal to the charge regain

$$
\begin{aligned}
& \text { le, } q=q \\
& \frac{s}{R} \int_{t_{1}}^{t_{2}} v_{r} d t=\frac{1}{R_{f}} \int_{t_{2}}^{t_{3}} v_{f} d t
\end{aligned}
$$

But $\int_{t_{1}}^{t_{2}} v_{s} d t=A_{r}$ and
$\int_{t_{2}}^{t_{3}} V_{f} d t=A f \quad$ from the fig

$$
\begin{aligned}
\frac{1}{R}\left(A_{r}\right) & =\frac{1}{R_{f}}\left(A_{f}\right) \\
\frac{A_{f}}{A_{r}} & =\frac{R_{f}}{R}
\end{aligned}
$$

where $A_{f}=$ Area under the olp curve in the forward direction with Diode "D' ONN

Ar = Area under the olp curve in the reverse direction with Diode ' D ' OFF.

Transistor as a switch:-
A Transistor can be used as a switch. it has three regions of operation when both emitter base and collector base function. are reverse blased. The transistor operates in cuttoffregion. and it acts as off (on) open switch.
when the Emitter Base function is forward biased and collector base junction is reverse biased. It operates in the active region. It acts as an amplifier.
when Both the Emitter base and collector base junctions are forward biased, it operates in the saturation region and acts as a closed switch.
when the transistor is switched from cuttoff to saturation and from saturation to cuttoff with negligible active region, The transistor is operated as a switch. when the transistor is in saturation, junction voltages are very small but the operating currents are large.
when the transistor is in cuttoff, the currents are zero except small leakage current but the junction voltages are large.

Transistor used as a switch.

output characteristics with load line $D C$.

From the output characteristics, the region below the $I_{B}=Q$ curve is cutt-off region.
\Rightarrow The intersection of the load line with $i_{B}=0$ curve is the cuttoff point. At this point the Base current $I_{B}=0$ and collector current is negligible The transistor appears like an open switch.
\Rightarrow The intersection of the Load line with the $I_{B}=I_{B}$ (sat) curve is called the saturation point. At this point, the base current is I_{B} (sat), and the collector current is maximum. and the transistor appears like a closed switch.

Transistor switching times:2108117

(a) Transistor acts as a-switch.

(b) Spat waveform

(c) The response of collector current v_{s} fine

The transistor acts as a switch it is either in cutoff or in saturation. Consider the behaviour of the transistor as it makes transition from one state to the other. The circuit is driven by a pulse waveform shown in fig. (b). The pulse waveform makes transitions between the voltage levels V_{2} and V_{1}. At V_{2}, the transistor is at cuttoff and at V_{1} the transistor is in saturation. The input waveform v_{i} is applied
between the base and the emitter to a resistor R_{B}. The response of the collector current I_{c} to the input waveform together with its time relationship to that waveform is shown in fig(l). The collector current doe is not immediatell respond to the input signal instead there is a delay and time that elapses during this delay together that with the time required for the current to rise to 10% of its maximum (saturation) values is called the delay time ' ${ }^{\prime} d$. The current waveform has a non-zero site time 'tr which is the rise time required for the warent from 10% to 90% of ICS (collect current saturation point). The total turn on time (tr) is the sum of the delay time and the ruse time. 1

$$
\text { ier } \quad t_{O N}=t_{d}+t_{r}
$$

when the input signal returns to its initial stage the collector current again fails to
respond immediately the interval which elapses between the transition of the input waveform and the time when $I c$ has dropped to 90%. of ICS. is called the storage time 'ts'. The storage interval is collthed by the fall time $\left(t_{f}\right)$ which is the time required for Ic to fall from 90% to 10% of ICc. The turnoff time ' $t_{\text {off }}$ is defined as the sum of the storage and fall time.

$$
t_{0 f f}=t_{s}+t_{f}
$$

The Delay Time:
There are three factors that contribute to the delay time.
(1) There is a delay which results from the fact that when the driving signal is applied to the transistor input, a nOA-zero tine is required to charge up the junction capacitance So that the transistor may be plot from cuttoff to the active region.
when
(2) Even the transistor has been plot to the point where minority carriers have begun to cross the emitter junction into the base, a non-zerd time is required before these carsick. can cross' the base region to the collector junction and be recorded as collector current. Finally, the non- zero time is required before the collector current can rise to 10% of its maximum value

Ruse time and Fall time:.
The rise time and fall time. ore due to Thee-fact that if a base current step is used to saturate the transistor or to return It from saturation in 10 cuttoff the collector current must travels the active region. The collector current increases or decreases along an exponential term. e.
storage time:
The failure of the transistor to respond to the trailing edge of the diving pulse for the time interval "ts'. results from the fact that a transistor in saturation has a saturation charge of excess minority candles stored in the base. The transistor cannot respond until the saturation excess charge has been removed.

Emitter coupled dipper:-

