
 Software Engineering

MCET, SE Study Material Page 1

UNIT I

 UNIT-I:

 Introduction to Software Engineering:

 A Generic view of process: Software engineering, Process Framework, CMM,
Process patterns, process assessment, Personal and Team process, Process
Technology, Product and process.

 Process models: Perspective Models, The waterfall model, Incremental process
models, Evolutionary process models, Specialized Process Models, The Unified
process.

 An Agile View of Process: What is agility, Agile Process, and Agile Process
Models

Introduction to Software Engineering

Software engineering is an engineering discipline that is concerned with all
aspects of software development and production. We can alternatively view it as
a systematic collection of past experience. The experience is arranged in the
form of methodologies and guidelines. Software engineers should adopt a
systematic and organised approach to their work and use appropriate tools and
techniques depending on the problem to be solved, the development constraints
and the resources available.

Definition of SOFTWARE ENGINEERING

SE is defined as systematic, disciplined and quantifiable approach for the
development, operation and maintenance of software by applying engineering
principles.

o Software engineering can be defined as ―The establishment and use of
sound engineering principles in order to obtain economically software that
is reliable and woks efficiently on real time machines.‖

 Software Engineering

MCET, SE Study Material Page 2

Software is defined as computer programs, procedures, rules and possibly associated

documentation and data pertaining to the operation of a computer based systems.

―Computer Software‖ is synonymous with ―software product‖.

Another definition of Software is

 Instructions
- Programs that when executed provide desired function

 Data structures
-Enable the programs to adequately manipulate information

 Documents
-Describe the operation and use of the programs

Characteristics of software

 Software is developed or engineered;

 it is not manufactured in the classical sense.

 Software does not wear out. However it deteriorates due to change.

 Software is custom built rather than assembling existing components.

Categories of Software

 Seven Broad Categories of software are challenges for software engineers

 System software

 Application software

 Engineering and scientific software

 Embedded software

 Product-line software

 Web-applications

 Artificial intelligence software

 Software Engineering

MCET, SE Study Material Page 3

Legacy software are older programs that are developed decades ago. The quality of

legacy software is poor because it has inextensible design, convoluted code, poor and

nonexistent documentation, test cases and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

 The software must be adapted to meet the needs of new computing environment
or technology.

 The software must be enhanced to implement new business requirements.

 The software must be extended to make it interoperable with more modern
systems or database

 The software must be rearchitected to make it viable within a network
environment.

Software Myths
Software Myths- beliefs about software and the process used to build it - can be traced
to the earliest days of computing. Myths have a number of attributes that have made
them insidious. For instance, myths appear to be reasonable statements of fact, they
have an intuitive feel, and they are often promulgated by experienced practitioners who
―know the score‖.

Management Myths
Managers with software responsibility, like managers in most disciplines, are often
under pressure to maintain budgets, keep schedules from slipping, and improve quality.
A software manager often grasps at belief in a software myth, If the Belief will lessen the
pressure.

Myth : We already have a book that’s full of standards and procedures for building
 software. Won’t that provide my people with everything they need to know?
Reality : The book of standards may very well exist, but is it used?
 - Are software practitioners aware of its existence?
 - Does it reflect modern software engineering practice?
 - Is it complete? Is it adaptable?
 - Is it streamlined to improve time to delivery while still maintaining a focus on
 Quality?
In many cases, the answer to these entire question is no.

Myth : If we get behind schedule, we can add more programmers and catch up
 (sometimes called the Mongolian horde concept)
Reality : Software development is not a mechanistic process like manufacturing. In the
 words of Brooks ―Adding people to a late software project makes it later.‖ At first,
this statement may seem counterintuitive. However, as new people are added, people
who were working must spend time educating the newcomers, thereby reducing the
amount of time spent on productive development effort
Myth : If we decide to outsource the software project to a third party, I can just relax and
 let that firm build it.
Reality : If an organization does not understand how to manage and control software

 Software Engineering

MCET, SE Study Material Page 4

 project internally, it will invariably struggle when it out sources software project.
Customer Myths

A customer who requests computer software may be a person at the next desk, a
technical group down the hall, the marketing /sales department, or an outside company
that has requested software under contract. In many cases, the customer believes
myths about software because software managers and practitioners do little to correct
misinformation. Myths led to false expectations and ultimately, dissatisfaction with the
developers.

Myth : A general statement of objectives is sufficient to begin writing programs we can
 fill in details later.
Reality : Although a comprehensive and stable statement of requirements is not always
 possible, an ambiguous statement of objectives is a recipe for disaster.
 Unambiguous requirements are developed only through effective and continuous
 communication between customer and developer.

Myth : Project requirements continually change, but change can be easily
 accommodated because software is flexible.
Reality : It’s true that software requirement change, but the impact of change varies
 with the time at which it is introduced. When requirement changes are requested
 early, cost impact is relatively small. However, as time passes, cost impact grows
 rapidly – resources have been committed, a design framework has been
 established, and change can cause upheaval that requires additional resources
 and major design modification.

Practitioner Myths

Myth(1) Once we write the program and get it to work, our
job is done―

Reality 60% to 80% of all effort expended on software
occurs after it is delivered

Myth(2) Until I get the program running, I have no way of
assessing its quality

Reality Formal technical reviews of requirements analysis
 documents, design documents, and source code
 (more effective than actual testing)

Myth(3) The only deliverable work product for a successful
project is the working program―

Reality Software, documentation, test drivers, test results
Myth(4) Software engineering will make us create voluminous

and unnecessary documentation and will invariably
slow us down

Reality Creates quality, not documents; quality reduces rework and provides
software on time and within the budget

 Software Engineering

MCET, SE Study Material Page 5

aa ““qquuaalliittyy”” ffooccuuss

pprroocceessss mmooddeell

mmeetthhooddss

ttoooollss

A Generic view of process

Process: A set of activities, methods, practices, and transformations that people use to

develop and maintain software and the associated products (e.g., project plans, design

documents, code, test cases, and user manuals)

Software Engineering - A Layered Technology

Software engineering encompasses a process, the management of activities, technical
methods, and use of tools to develop software products

 The foundation for software engineering is the process layer. It is the glue that
holds the technology layers together and enables rational and timely
development of computer software.

 Process defines a framework that must be established for effective delivery of
software engineering technology.

 The software process forms the basis for management control of software
projects and establishes the context in which technical methods are applied,
work products (models, documents, data, reports, etc.) are produced, milestones
are established, quality is ensured, and change is properly managed.

 Software engineering methods provide the technical ―how to’s‖ for building
software. Methods encompass a broad array of tasks that include
communication, req. analysis, design, coding, testing and support.

 Software engineering tools provide automated or semi-automated support for the
process and the methods.

 When tools are integrated so that info. Created by one tool can be used by
another, a system for the support of software development called computer-aided
software engineering is established

A PROCESS FRAMEWORK

 Establishes the foundation for a complete software process

 Identifies a number of framework activities applicable to all software projects

 Also include a set of umbrella activities that are applicable across the entire
software process.

 Software Engineering

MCET, SE Study Material Page 6

 Used as a basis for the description of process models

 Generic process activities
- Communication
- Planning
- Modeling
- Construction
- Deployment
-

Communication activity
Planning activity
Modeling activity

o analysis action
o requirements gathering work task
o elaboration work task
o negotiation work task
o specification work task
o validation work task
o design action
o data design work task
o architectural design work task
o interface design work task
o component-level design work task
o Construction activity
o Deployment activity

 Software Engineering

MCET, SE Study Material Page 7

 Umbrella activities (examples)

- software project tracking and control
- risk management
- software quality assurance
- formal technical reviews
- measurement
- s/w configuration management
- reusability management
- work product preparation and production (e.g., models, documents,

logs)

CMM Levels.

Level 1: Initial.

 A software development organization at this level is characterized by ad hoc
activities.

 Very few or no processes are defined and followed.

 Since software production processes are not defined, different engineers follow
their own process and as a result development efforts become chaotic.

 The success of projects depends on individual efforts and heroics.

 Since formal project management practices are not followed, under time
pressure short cuts are tried out leading to low quality.

Level 2: Repeatable

 At this level, the basic project management practices such as tracking cost and
schedule are established.

 Size and cost estimation techniques like function point analysis, COCOMO, etc.
are used.

 The necessary process discipline is in place to repeat earlier success on projects
with similar applications. Opportunity to repeat a process exists only when a
company produces a family of products

 Software Engineering

MCET, SE Study Material Page 8

Level 3: Defined

 At this level the processes for both management and development activities are
defined and documented.

 There is a common organization-wide understanding of activities, roles, and
responsibilities.

 The processes though defined, the process and product qualities are not
measured.

 ISO 9000 aims at achieving this level.

Level 4: Managed

 At this level, the focus is on software metrics.

 Two types of metrics are collected.
o Product metrics measure the characteristics of the product being

developed, such as its size, reliability, time complexity, understandability,
etc.

o Process metrics reflect the effectiveness of the process being used, such
as average defect correction time, productivity, average number of defects
found per hour inspection, average number of failures detected during
testing per LOC, etc.

 Quantitative quality goals are set for the products. The software process and
product quality are measured and quantitative quality requirements for the
product are met.

 Various tools like Pareto charts, fishbone diagrams, etc. are used to measure the
product and process quality.

 Thus, the results of process measurements are used to evaluate project
performance rather than improve the process.

Level 5: Optimizing

 Process and product measurement data are analyzed for continuous process
improvement.

 The process may be fine tuned to make the review more effective.

 The lessons learned from specific projects are incorporated in to the process.

 Continuous process improvement is achieved both by carefully analyzing the
quantitative feedback from the process measurements and also from application
of innovative ideas and technologies.

 These best practices are transferred throughout the organization.

Key process areas (KPA):

Each maturity level is characterized by several Key Process Areas (KPAs) except for SEI CMM

level 1 that includes the areas an organization should focus to improve its software process to

the next level.

 Software Engineering

MCET, SE Study Material Page 9

Process Patterns

 Process patterns define a set of activities, actions, work tasks, work products
and/or related behaviors

 A template is used to define a pattern

 Typical examples:
o Customer communication (a process activity)
o Analysis (an action)
o Requirements gathering (a process task)
o Reviewing a work product (a process task)
o Design model (a work product)

Process Assessment

 The process should be assessed to ensure that it meets a set of basic process
criteria that have been shown to be essential for a successful software
engineering.

The generic process framework – Detailed Activities of each phase

 Communication

 Planning

 Modeling

 Construction

 Deployment

 Software Engineering

MCET, SE Study Material Page 10

Communication Practices

Principles

 Listen

 Prepare before you communicate

 Facilitate the communication

 Face-to-face is best

 Take notes and document decisions

 Collaborate with the customer

 Stay focused

 Draw pictures when things are unclear

 Move on …

 Negotiation works best when both parties win.

 Initiation

o The parties should be physically close to one another

o Make sure communication is interactive

o Create solid team ―ecosystems‖

o Use the right team structure

 An abbreviated task set

o Identify who it is you need to speak with
o Define the best mechanism for communication
o Establish overall goals and objectives and define the scope
o Get more detailed

 Have stakeholders define scenarios for usage
 Extract major functions/features

o Review the results with all stakeholders

Planning Practices

Principles

 Understand the project scope

 Involve the customer (and other stakeholders)

 Recognize that planning is iterative

 Estimate based on what you know

 Consider risk

 Software Engineering

MCET, SE Study Material Page 11

 Be realistic

 Adjust granularity as you plan

 Define how quality will be achieved

 Define how you’ll accommodate changes

 Track what you’ve planned

 Initiation

o Ask Boehm’s questions

 Why is the system begin developed?

 What will be done?

 When will it be accomplished?

 Who is responsible?

 Where are they located (organizationally)?

 How will the job be done technically and managerially?

 How much of each resource is needed?

 An abbreviated task set

o Re-assess project scope

o Assess risks

o Evaluate functions/features

o Consider infrastructure functions/features

o Create a coarse granularity plan

 Number of software increments
 Overall schedule
 Delivery dates for increments

o Create fine granularity plan for first increment

o Track progress

Modeling Practices

 We create models to gain a better understanding of the actual entity to be built

 Analysis models represent the customer requirements by depicting the software

in three different domains: the information domain, the functional domain, and the

behavioral domain.

 Software Engineering

MCET, SE Study Material Page 12

 Design models represent characteristics of the software that help practitioners to

construct it effectively: the architecture, the user interface, and component-level

detail.

Analysis Modeling Practices

 Analysis modeling principles

o Represent the information domain

o Represent software functions

o Represent software behavior

o Partition these representations

o Move from essence toward implementation

 Elements of the analysis model

o Data model

o Flow model

o Class model

o Behavior model

Design Modeling Practices

 Principles

o Design must be traceable to the analysis model
o Always consider architecture
o Focus on the design of data
o Interfaces (both user and internal) must be designed
o Components should exhibit functional independence
o Components should be loosely coupled
o Design representation should be easily understood
o The design model should be developed iteratively

 Elements of the design model

o Data design
o Architectural design
o Component design
o Interface design

Construction Practices

 Preparation principles:

 Understand of the problem you’re trying to solve (see communication and
modeling)

 Understand basic design principles and concepts.

 Software Engineering

MCET, SE Study Material Page 13

 Pick a programming language that meets the needs of the software to be built
and the environment in which it will operate.

 Select a programming environment that provides tools that will make your work
easier.

 Create a set of unit tests that will be applied once the component you code is
completed.

 Coding principles: After started writing code

 Constrain your algorithms by following structured programming practice.
 Select data structures that will meet the needs of the design.
 Understand the software architecture and create interfaces that are consistent

with it.
 Keep conditional logic as simple as possible.
 Create nested loops in a way that makes them easily testable.
 Select meaningful variable names and follow other local coding standards.
 Write code that is self-documenting.
 Create a visual layout (e.g., indentation and blank lines) that aids understanding.

 Validation Principles: After completing first coding pass:
o Conduct a code walkthrough when appropriate.
o Perform unit tests and correct errors you’ve uncovered.
o Refactor the code

 Testing Principles

o All tests should be traceable to requirements
o Tests should be planned
o The Pareto Principle applies to testing
o Testing begins ―in the small‖ and moves toward ―in the large‖
o Exhaustive testing is not possible

Deployment Practices

Principles

 Manage customer expectations for each increment
 A complete delivery package should be assembled and tested
 A support regime should be established
 Instructional materials must be provided to end-users
 Buggy software should be fixed first, delivered later

 Software Engineering

MCET, SE Study Material Page 14

Software Process

 PSP TSP

Personal Software Process (PSP)

 Recommends five framework activities:

o Planning
o High-level design
o High-level design review
o Development
o Postmortem

 stresses the need for each software engineer to identify errors early and as
important, to understand the types of errors

Team Software Process (TSP)

 Each project is ―launched‖ using a ―script‖ that defines the tasks to be
accomplished

 Teams are self-directed

 Measurement is encouraged

 Measures are analyzed with the intent of improving the team process

Software Process

Software Process

Assessment

is examined by identifies capabilities

and risk of

identifies

modifications to

Software Process

Improvement

Capability

Determination
leads to leads to

motivates

Software Process

 Software Engineering

MCET, SE Study Material Page 15

PROCESS MODELS

1. PRESCRIPTIVE MODEL

2. WATERFALL MODEL

CLASSICAL WATERFALL ITERATIVE WATERFALL
 MODEL MODE

3. INCREMENTAL PROCESS MODELS

 INCREMENTAL MODEL RAD (RAPID APPLICATION DEVELOPMENT MODEL)

4. EVOLUTIONARY PROCESS MODEL

PROTOTYPING MODEL SPIRAL MODEL CONCURRENT DEVELOPMENT MODEL

5. SPECIALISED PROCESS MODELS

CONCEPTUAL BASE FORMAL METHOD ASPECT ORIENTED
DEVELOPMENT S/W DEVELOPMENT

6. THE UNIFIED PROCESS

 Software Engineering

MCET, SE Study Material Page 16

Process Models

Life cycle model

A software life cycle model also called process model is a descriptive and diagrammatic

representation of the software life cycle. A life cycle model represents all the activities

required to make a software product transit through its life cycle phases. It also captures

the order in which these activities are to be undertaken. In other words, a life cycle

model maps the different activities performed on a software product from its inception to

retirement.

Different life cycle models may map the basic development activities to phases in

different ways. Thus, no matter which life cycle model is followed, the basic activities

are included in all life cycle models though the activities may be carried out in different

orders in different life cycle models. During any life cycle phase, more than one activity

may also be carried out.

1. Classical Waterfall Model
2. Iterative Waterfall Model
3. Prototyping Model
4. Incremental Model
5. RAD Model
6. Spiral Model

1. Classical Waterfall Model

• Oldest software lifecycle model and best understood by upper management
• Used when requirements are well understood and risk is low
• Work flow is in a linear (i.e., sequential) fashion
• Used often with well-defined adaptations or enhancements to current software
• Begins with customer specification of Requirements and progresses through

planning, modeling, construction and deployment

 Software Engineering

MCET, SE Study Material Page 17

Advantages:

 It is very simple

 It divides the large task of building a software system into a seri es of clearly

divided phases.

 Each phase is well documented

Problems

 Doesn't support iteration, so changes can cause confusion

 Difficult for customers to state all requirements explicitly and up front

 Requires customer patience because a working version of the program doesn't

occur until the final phase

 Problems can be somewhat alleviated in the model through the addition of

feedback loops

2. Iterative Waterfall Model

INCREMENTAL PROCESS MODELS

 Software Engineering

MCET, SE Study Material Page 18

1. Incremental Model

o In this life cycle model, the software is first broken down into several modules which
can be incrementally constructed and delivered.

o Used when requirements are well understood
o Multiple independent deliveries are identified
o Work flow is in a linear (i.e., sequential) fashion within an increment and is staggered

between increments
o Iterative in nature; focuses on an operational product with each increment
o The development team first develops the core modules of the system.
o This initial product skeleton is refined into increasing levels of capability adding new

functionalities in successive versions.
o Each evolutionary version may be developed using an iterative waterfall model of

development.
o Provides a needed set of functionality sooner while delivering optional components

later
o Useful also when staffing is too short for a full-scale development

2. Rapid Application Model (RAD)

• RAD is a high speed adaptation of linear sequential model. It is characterized by
a very short development life cycle, in which the objective is to accelerate the
development.

• The RAD model follows a component based approach.
• In this approach individual components developed by different people are

assembled to develop a large software system.

 Software Engineering

MCET, SE Study Material Page 19

The RAD model consist of the following phases

• Business Modeling:
 In this phase, define the flow of information within the organization, so that it
 covers all the functions. This helps in clearly understand the nature, type
 source and process of information.

• Data Modeling:
 In this phase, convert the component of the information flow into a set of data
 objects. Each object is referred as an Entity.

• Process Modeling:
 In this phase, the data objects defined in the previous phase are used to
 depict the flow of information . In addition adding , deleting, modifying and
 retrieving the data objects are included in process modeling.

• Application Designing:
 In this phase, the generation of the application and coding take place. Using
 fourth generation programming languages or 4 GL tools is the preferred choice
 for the software developers.

• Testing:
 In this phase, test the new program components.

 Software Engineering

MCET, SE Study Material Page 20

The RAD has following advantages

• Due to emphasis on rapid development , it results in the delivery of fully
functional project in short time period.

• It encourages the development of program component reusable.

The RAD has following disadvantages

• It requires dedication and commitment on the part of the developers as well as
the client to meet the deadline. If either party is indifferent in needs of other, the
project will run into serious problem.

• For large but scalable projects It is not suitable as RAD requires sufficient human
resources to create the right number of RAD teams.

• RAD requires developers and customers who are committed to rapid fire
activities

• Its application area is restricted to system that are modular and reusable in
nature.

• It is not suitable for the applications that have a high degree of technical risk.
• For large but scalable projects, RAD requires sufficient human resources to

create the right number of RAD teams.
• RAD requires developers and customers who are committed to rapid fire

activities.
• Not all types of applications are appropriate for RAD.
• RAD is not appropriate when technical risks are high.

Evolutionary Process Models:

Prototype Models:

A prototype is a toy implementation of the system. A prototype usually exhibits limited

functional capabilities, low reliability, and inefficient performance compared to the actual

software. A prototype is usually built using several shortcuts. The shortcuts might

involve using inefficient, inaccurate, or dummy functions. The shortcut implementation

of a function, for example, may produce the desired results by using a table look-up

instead of performing the actual computations.

Need for a prototype in software development

There are several uses of a prototype. An important purpose is to illustrate the input
data formats, messages, reports, and the interactive dialogues to the customer. This is
a valuable mechanism for gaining better understanding of the customer’s needs:

• how the screens might look like
• how the user interface would behave
• how the system would produce outputs

 Software Engineering

MCET, SE Study Material Page 21

Another reason for developing a prototype is that it is impossible to get the perfect

product in the first attempt. Many researchers and engineers advocate that if you want

to develop a good product you must plan to throw away the first version. The

experience gained in developing the prototype can be used to develop the final product.

• Follows an evolutionary and iterative approach

• Used when requirements are not well understood

• Serves as a mechanism for identifying software requirements

• Focuses on those aspects of the software that are visible to the customer/user

• In this model, product development starts with an initial requirements gathering

phase.

• A quick design is carried out and the prototype is built.

• The developed prototype is submitted to the customer for his evaluation.

• Based on the customer feedback, the requirements are refined and the prototype

is suitably modified.

• This cycle of obtaining customer feedback and modifying the prototype continues

till the customer approves the prototype.

• The actual system is developed using the iterative waterfall approach. However,

in the prototyping model of development, the requirements analysis and

specification phase becomes redundant as the working prototype approved by

the customer becomes redundant as the working prototype approved by the

customer becomes an animated requirements specification.

 Software Engineering

MCET, SE Study Material Page 22

Disadvantages

 The customer sees a "working version" of the software, wants to stop all
development and then buy the prototype after a "few fixes" are made

 Developers often make implementation compromises to get the software running
quickly (e.g., language choice, user interface, operating system choice, inefficient
algorithms)

 Lesson learned
o Define the rules up front on the final disposition of the prototype before it is

built
o In most circumstances, plan to discard the prototype and engineer the

actual production software with a goal toward quality
o

Spiral Model

• Invented by Dr. Barry Boehm in 1988
• Follows an evolutionary approach
• Used when requirements are not well understood and risks are high
• Inner spirals focus on identifying software requirements and project risks; may

also incorporate prototyping
• Outer spirals take on a classical waterfall approach after requirements have been

defined, but permit iterative growth of the software
• Operates as a risk-driven model…a go/no-go decision occurs after each

complete spiral in order to react to risk determinations
• Requires considerable expertise in risk assessment
• Serves as a realistic model for large-scale software development

First quadrant (Objective Setting)

 Software Engineering

MCET, SE Study Material Page 23

• During the first quadrant, it is needed to identify the objectives of the phase.

• Examine the risks associated with these objectives.

Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.

• Steps are taken to reduce the risks. For example, if there is a risk that the
requirements are inappropriate, a prototype system may be developed.

Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving the
identified risks.

Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the next
iteration around the spiral.

• Progressively more complete version of the software gets built with each
iteration around the spiral.

Spiral Model Advantages

• Focuses attention on reuse options.
• It is a realistic approach to the development of large scale systems and software.
• Focuses attention on early error elimination.
• Puts quality objectives up front.
• Integrates development and maintenance.
• Provides a framework for hardware/software development.

Disadvantages:

• Contractual development often specifies process model

• and deliverables in advance.

• Requires risk assessment expertise.

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses all other life cycle

models. Risk handling is inherently built into this model. The spiral model is suitable for

development of technically challenging software products that are prone to several

kinds of risks. However, this model is much more complex than the other models – this

is probably a factor deterring its use in ordinary projects.

 Software Engineering

MCET, SE Study Material Page 24

Comparison of different life-cycle models

The classical waterfall model can be considered as the basic model and all other life

cycle models as embellishments of this model. However, the classical waterfall model

can not be used in practical development projects, since this model supports no

mechanism to handle the errors committed during any of the phases.

This problem is overcome in the iterative waterfall model. The iterative waterfall model

is probably the most widely used software development model evolved so far. This

model is simple to understand and use. However, this model is suitable only for well-

understood problems; it is not suitable for very large projects and for projects that are

subject to many risks.

The prototyping model is suitable for projects for which either the user requirements

or the underlying technical aspects are not well understood. This model is especially

popular for development of the user-interface part of the projects.

The Incremental approach is suitable for large problems which can be decomposed

into a set of modules for incremental development and delivery. This model is also

widely used for object-oriented development projects. Of course, this model can only be

used if the incremental delivery of the system is acceptable to the customer.

The spiral model is called a meta model since it encompasses all other life cycle

models. Risk handling is inherently built into this model. The spiral model is suitable for

development of technically challenging software products that are prone to several

kinds of risks. However, this model is much more complex than the other models – this

is probably a factor deterring its use in ordinary projects.

The different software life cycle models can be compared from the viewpoint of the

customer. Initially, customer confidence in the development team is usually high

irrespective of the development model followed. During the lengthy development

process, customer confidence normally drops off, as no working product is immediately

visible.

Specialized Process Models

1. Component-based Development Model

• Consists of the following process steps
– Available component-based products are researched and evaluated for

the application domain in question
– Component integration issues are considered
– A software architecture is designed to accommodate the components
– Components are integrated into the architecture
– Comprehensive testing is conducted to ensure proper functionality

 Software Engineering

MCET, SE Study Material Page 25

• Relies on a robust component library
• Capitalizes on software reuse, which leads to documented savings in project cost

and time

Formal Methods Model

• Encompasses a set of activities that leads to formal mathematical specification of
computer software

• Enables a software engineer to specify, develop, and verify a computer-based
system by applying a rigorous, mathematical notation

• Ambiguity, incompleteness, and inconsistency can be discovered and corrected
more easily through mathematical analysis

• Offers the promise of defect-free software
• Used often when building safety-critical systems

Challenges of Formal Methods

• Development of formal methods is currently quite time-consuming and expensive
• Because few software developers have the necessary background to apply

formal methods, extensive training is required
• It is difficult to use the models as a communication mechanism for technically

unsophisticated customers

The Unified Process

• Birthed during the late 1980's and early 1990s when object-oriented languages
were gaining wide-spread use

• Many object-oriented analysis and design methods were proposed; three top
authors were Grady Booch, Ivar Jacobson, and James Rumbaugh

• They eventually worked together on a unified method, called the Unified
Modeling Language (UML)

– UML is a robust notation for the modeling and development of object-
oriented systems

 Software Engineering

MCET, SE Study Material Page 26

– UML became an industry standard in 1997
– However, UML does not provide the process framework, only the

necessary technology for object-oriented development
• Booch, Jacobson, and Rumbaugh later developed the unified process, which is a

framework for object-oriented software engineering using UML
– Draws on the best features and characteristics of conventional software

process models
– Emphasizes the important role of software architecture
– Consists of a process flow that is iterative and incremental, thereby

providing an evolutionary feel
• Consists of five phases: inception, elaboration, construction, transition, and

production

Inception Phase

• Encompasses both customer communication and planning activities of the
generic process

• Business requirements for the software are identified
• A rough architecture for the system is proposed
• A plan is created for an incremental, iterative development
• Fundamental business requirements are described through preliminary use

cases
– A use case describes a sequence of actions that are performed by a user

Elaboration Phase

• Encompasses both the planning and modelling activities of the generic process
• Refines and expands the preliminary use cases
• Expands the architectural representation to include five views

– Use-case model
– Analysis model
– Design model
– Implementation model
– Deployment model

• Often results in an executable architectural baseline that represents a first cut
executable system

• The baseline demonstrates the viability of the architecture but does not provide
all features and functions required to use the system

Construction Phase

• Encompasses the construction activity of the generic process
• Uses the architectural model from the elaboration phase as input
• Develops or acquires the software components that make each use-case

operational

 Software Engineering

MCET, SE Study Material Page 27

• Analysis and design models from the previous phase are completed to reflect the
final version of the increment

• Use cases are used to derive a set of acceptance tests that are executed prior to
the next phase

Transition Phase

• Encompasses the last part of the construction activity and the first part of the
deployment activity of the generic process

• Software is given to end users for beta testing and user feedback reports on
defects and necessary changes

• The software teams create necessary support documentation (user manuals,
trouble-shooting guides, installation procedures)

• At the conclusion of this phase, the software increment becomes a usable
software release

Production Phase

• Encompasses the last part of the deployment activity of the generic process
• On-going use of the software is monitored
• Support for the operating environment (infrastructure) is provided
• Defect reports and requests for changes are submitted and evaluated

 Software Engineering

MCET, SE Study Material Page 28

Agile Processing

What is Agility

Agility

• Effective response to change
• Effective communication among all stakeholders
• Drawing the customer onto the team; eliminate the ―us and them‖ attitude
• Organizing a team so that it is in control of the work performed
• Rapid, incremental delivery of software

12 Principles to achieve agility – by the Agile Alliance

1. Highest priority -> satisfy the customer
2. Welcome changing requirements
3. Deliver working software frequently
4. Business people and developers must work together
5. Build projects around motivated individuals
6. Emphasize face-to-face conversation
7. Working software is the primary measure of progress
8. Agile processes promote sustainable development
9. Continuous attention to technical excellence and good design enhances agility
10. Simplicity – the art of maximizing the amount of work not done – is essential
11. The best designs emerge from self-organizing teams
12. The team tunes and adjusts its behavior to become more effective

 Software Engineering

MCET, SE Study Material Page 29

Agile Process Models

1. Extreme Programming (XP)
2. Adaptive Software Development (ASD)
3. Dynamic Systems Development Method (DSDM)
4. Scrum
5. Crystal
6. Feature Driven Development (FDD)
7. Agile Modeling (AM)

1. Extreme Programming (XP)

• The most widely used agile process, originally proposed by Kent Beck [BEC99]
• XP uses an object-oriented approach as its preferred development paradigm
• Defines four (4) framework activities

– Planning
– Design
– Coding
– Testing

XP Planning

– Begins with the creation of ―user stories‖ and then placed on an index

card.

– The customer assigns a value to the story based on the overall business

value of the function.

– Agile team assesses each story and assigns a cost ―measured in

development weeks.‖

– Stories are grouped to form a deliverable increment

– A commitment is made on delivery date

 Software Engineering

MCET, SE Study Material Page 30

Once a commitment is made on delivery date, the XP team orders the stories that will

be developed in one of three ways:

1. All stories will be implemented immediately within a few weeks.

2. The stories with the highest value will be moved up in the schedule and

implemented first.

3. The riskiest stories will be moved up in the schedule and implemented

first.

– After the first increment (project release), ―project velocity‖ is used to help

define subsequent delivery dates for other increments.

– Project velocity is the number of customer stories implemented during the

first release

XP – Design

• Follows the KIS (keep it simple) principle
• Encourage the use of CRC (class -responsibility - collaborator) cards
• For difficult design problems, suggests the creation of ―spike solutions‖—a design

prototype that is implemented and evaluated
• Encourages ―refactoring‖—an iterative refinement of the internal program design

that controls the code modifications by suggesting small design changes that
may improve the design.

• Design occurs both before and after coding commences

XP – Coding

• Recommends the construction of a series of unit tests for each of the stories
before coding commences

• Encourages ―pair programming‖
– Mechanism for real-time problem solving and real-time quality assurance
– Keeps the developers focused on the problem at hand

• Needs continuous integration with other portions (stories) of the s/w, which
provides a ―smoke testing‖ environment

XP – Testing

• Unit tests should be implemented using a framework to make testing automated.
This encourages a regression testing strategy.

• Integration and validation testing can occur on a daily basis
• Acceptance tests, also called customer tests, are specified by the customer and

executed to assess customer visible functionality
• Acceptance tests are derived from user stories

 Software Engineering

MCET, SE Study Material Page 31

Advantages

• Customer focus increase the chance that the software produced will actually
meet the needs of the users

• The focus on small, incremental release decreases the risk on your project:
– by showing that your approach works and
– by putting functionality in the hands of your users, enabling them to

provide timely feedback regarding your work.
• Continuous testing and integration helps to increase the quality of your work
• XP is attractive to programmers who normally are unwilling to adopt a software

process, enabling your organization to manage its software efforts better.

Disadvantages

• XP is geared toward a single project, developed and maintained by a single
team.

• XP is particularly vulnerable to "bad apple" developers who:
– don't work well with others
– who think they know it all, and/or
– who are not willing to share their "superior‖ code

• XP will not work in an environment where a customer or manager insists on a
complete specification or design before they begin programming.

• XP will not work in an environment where programmers are separated
geographically.

• XP has not been proven to work with systems that have scalability issues (new
applications must integrate into existing systems).

 Software Engineering

MCET, SE Study Material Page 32

• Originally proposed by Jim Highsmith
• ASD — distinguishing features

– Mission-driven planning
– Component-based focus
– Uses “time-boxing”
– Explicit consideration of risks
– Emphasizes collaboration for requirements gathering
– Emphasizes ―learning‖ throughout the process

• Speculation: An adaptive cycle-planning is conducted where it uses the

customer’s mission statement, project constraints (delivery dates, user
description) and basic requirements.

• Collaboration: People working together must trust one another to:
1. criticize without animosity
2. assist without resentment
3. work as hard or harder as they do
4. have the skill set to contribute to the work at hand
5. communicate problems or concerns in a way that leads to effective action

• Learning
• Learning will help them to improve their level of real understanding.

Dynamic Systems Development Method

• Dynamic System Development Method is an agile S/W development approach
that provides a framework for building and maintaining systems which meet tight
time constraints through the use of incremental prototyping in a controlled project
environment.

• Promoted by the DSDM Consortium
• DSDM—distinguishing features
• Nine guiding principles

• Active user involvement is imperative.
• DSDM teams must be empowered to make decisions.
• The focus is on frequent delivery of products.
• Fitness for business purpose is the essential criterion for

acceptance of deliverables.
• Iterative and incremental development is necessary to converge on

an accurate business solution.
• All changes during development are reversible.
• Requirements are baselined at a high level
• Testing is integrated throughout the life-cycle.

It defines three different iterative cycles preceded
by two additional life cycles activities:

 Software Engineering

MCET, SE Study Material Page 33

• Feasibility Study: Business requirements and constraints.
• Business Study: Establishes req. that will allow the application to provide

business value.
• Functional Model Iteration: Produce iterative prototypes.
• Design and build iteration: Revisit prototyping.
• Implementation: Include the latest prototype into the operational environment.

Development work is partitioned into ―packets‖

• Testing and documentation are on-going as the product is constructed
• Work occurs in ―sprints framework activities‖ and is derived from a ―backlog

requirements that provide business values‖ of existing requirements
• Meetings are very short and sometimes conducted without chairs
• ―Demos‖ are delivered to the customer with the time-box allocated

 Software Engineering

MCET, SE Study Material Page 34

Development Activities of SCRUM

 Software Engineering

MCET, SE Study Material Page 35

Crystal

• Proposed by Cockburn and Highsmith
• Crystal—distinguishing features

– Actually a family of process models that allow ―maneuverability‖ based on
problem characteristics

– Face-to-face communication is emphasized
– Suggests the use of ―reflection workshops‖ to review the work habits of the

team

8. Feature Driven Development (FDD)

 Software Engineering

MCET, SE Study Material Page 36

