
DBMS@Ch7 Page 1

 Structured Query Language(SQL)

Data Definition Language - Data Manipulation Language - Basic SQL Queries – Views

ADVANTAGES:

1. It is an English-like language, easy-to-use yet powerful database query language.

2. It is a non-procedural language (i.e., user needs only to specify the system what data to get

from database, not how to get the information requested by the user.)

3. Standard. It means it is supported by all major RDBMS. Thus skills learned on one platform

may be applied to another platform.

4. Portable: Programs written in SQL are portable, i.e., programs written on one platform can be

transferred to another platform and they work fine.

TYPES OF SQL:

 DDL (Data Definition Language)

 DML (Data Manipulation Language)

 DCL (Data Control Language).

DATA DEFINITION LANGUAGE (DDL):

There are three main commands in DDL.

1.CREATE

2.ALTER

3.DROP

 4. View

5.Truncate

 6. Rename

1.CREATE COMMAND:

Used for Creation of a table

Syntax: CREATE TABLE table-name (Column_name1 datatype(size) constraint,

 Column_name2 datatype(size) constraint,

…

);

DBMS@Ch7 Page 2

 Basic components necessary to create a table:

 A table must have the following components:

 The key words CREATE TABLE

 A name for the table you want to create

 Opening bracket

 At least one column with its data type.

 Optional size of the data type and constraints on the column

 Closing bracket

 SQL statement terminator –a semicolon

Syntactical and naming conventions to be followed when creating a table:

 Each column must be separated by a comma (,) except the last column.

 Table and column names must start with an alphabet, but they can include alphabets,

numerals, and underscores.

 Blank spaces cannot be used in a table name. In order to separate the table name, the only

character allowed is an underscore.

 Table name cannot exceed 30 characters in length

 Table name must be unique in the Schema.

 Column names in a table must be unique.

Constraints:

The purpose of constraints is to enforce some checks and balances to maintain the integrity of the

database e.g. primary key, foreign key etc. These constraints will also reduce the work at the

application level by letting the database handle the work of maintaining the integrity of the data.

Constraints can be specified either at the column level (Column constraint) or at the table level

(Table constraint).

Note: Constraints on multiple columns e.g. composite primary keys are defined using table

constraints. Single column constraints can be defined using either table constraints or column

constraints.

Column constraint:

CREATE TABLE employee

 (empno NUMBER (4) PRIMARY KEY,

ename VARCHAR2(10),

 job CHAR(9) NOT NULL,

mgr_id NUMBER(4) REFERENCES employee(empno),

hiredate DATE,

salary NUMBER(7,2),

 commission NUMBER(7,2),

deptno NUMBER(2) REFERENCES DEPT(DEPTNO)

DBMS@Ch7 Page 3

);

Table constraint:

CREATE TABLE employee

 (empno NUMBER(4),

ename VARCHAR2(10),

…

deptno NUMBER(2) NOT NULL, PRIMARY KEY (empno, ename)

);

CREATE TABLE employee

 (empno NUMBER(4),

ename VARCHAR2(10),

…

deptnoNUMBER(2) NOT NULL,FOREIGN KEY(deptno) REFERENCESdept (deptno)

);

Note: The FOREIGN KEY reserved word should be used only for table constraints.

CONSTRAINT clause:

Constraints can be named by users using the CONSTRAINT clause as shown below.

 CREATE TABLE employee

 (empno NUMBER(4),

ename VARCHAR2(10),

…

deptno NUMBER(2) NOT NULL,CONSTRAINTpk_empPRIMARY KE(empno, ename)

);

The primary key constraint is named as pk_emp in the above example. In the following example,

the foreign key constraint is named fk_deptno.

CREATE TABLE employee

 (empno NUMBER(4),

ename VARCHAR2(10),

…

deptno NUMBER(2) NOT NULL,

CONSTRAINTfk_deptnoFOREIGN KEY (deptno) REFERENCESdept (deptno)

);

2.ALTER COMMAND:

DBMS@Ch7 Page 4

Tables can be altered in one of two ways: by changing a column’s definition, or by adding a

column.

Adding a column:

Syntax: ALTER TABLE table_name ADD ([column] / [constraint]);

Ex: ALTER TABLE employee ADD (deptnoNUMBER(2));

Rules for adding a column:

 When adding a column, NOT NULL cannot be specified with the column (if some data

already exists in table).

 NOT NULL column can be added in three steps:

1. Add the column without NOT NULL specified

2. Fill every row in that column with data

3. Modify the column to be NOT NULL

Modifying a column:

Syntax: ALTER TABLE table_name MODIFY ([column] / [constraint]);

Ex: ALTER TABLE employee MODIFY (last_name VARCHAR2(15),

 first_nameVARCHAR2(20) NOT NULL);

Rules to modify a column:

 Increase a character column’s width at any time

 Increase the number of digits in a NUMBER columns at any time

 Increase or decrease the number of decimal places in a NUMBER column at any time

3.DROP COMMAND:

Used to drop tables when they are no longer needed.

Syntax: DROP TABLE table_name;

Ex: DROP TABLE employee;

SQL> drop table Studentt;

Table dropped.

SQL>descStudentt;

ERROR:

ORA-04043: object Studentt does not exist

DBMS@Ch7 Page 5

4.TRUNCATE COMMAND :

Syntax:

truncate table <table_name>;

Description:

The details in the table are deleted but the table structure remains.

Example:

SQL> truncate table Student;

Table truncated.

SQL>desc Student;

Name Null? Type

----------------------- ----------------------- -----------------------

REGNO NUMBER(8)

NAME VARCHAR2(15)

DEPT VARCHAR2(20)

YEAR NUMBER(4)

5.RENAME COMMAND :

Syntax:

rename<old_table_name> to <new_table_name>;

Description:

The old table name is replaced with the new table name.

Example

SQL> rename Student to Studentt;

Table renamed.

SQL>desc Student;

ERROR:

ORA-04043: object Student does not exist

SQL>descStudentt;

Name Null? Type

----------------------- ----------------------- -----------------------

DBMS@Ch7 Page 6

REGNO NUMBER(8)

NAME VARCHAR2(15)

DEPT VARCHAR2(20)

YEAR NUMBER(4)

6.CREATE VIEW COMMAND :

Syntax:

create view <view_name> as select <field_name> from <table_name> where <condition>;

Description:

A view is named, derived, virtual table. A view takes the output of a query and treats it as a

table; therefore, a view can be thought of as a “stored query “or a “virtual table”. The tables upon

which a view is based are called base tables.

Example:

SQL> create view Studentview as select * from Student;

View created.

SQL>descStudentview;

Name Null? Type

----------------------- ----------------------- -----------------------

REGNO NUMBER(8)

NAME VARCHAR2(15)

DEPT VARCHAR2(20)

YEAR NUMBER(4)

DROP VIEW COMMAND :

Syntax:

drop view <view_name;

Description:

A View can be dropped (deleted) by using a drop view command.

Example:

SQL> drop view Studentview;

View dropped.

DBMS@Ch7 Page 7

7.CREATE DUPLICATE TABLE :

SQL> create table Stud as select * from Student;

Table created.

SQL>desc Stud;

Name Null? Type

----------------------- ----------------------- -----------------------

REGNO NUMBER(8)

NAME VARCHAR2(15)

DEPT VARCHAR2(20)

YEAR NUMBER(4)

DATA MANIPULATION LANGUAGE (DML):

There are four commands in DML.

1.SELECT (This actually doesn’t belong to DML, but is considered a part of it)

2.UPDATE

3.INSERT

4.DELETE

INSERT COMMAND :

Syntax:

insert into <table_name> values(Column_name);

Description:

The ‘insert into’ command insert the values in the specified table .In the insert into SQL sentence

the columns and values have a one to one relationship (i.e) the first value described into the first

column, the second value described being inserted into the second column and so on.

Example:

SQL> insert into Student values(®no,'&name','&city','&dept');

Enter value for regno: 100

Enter value for name: A

Enter value for city: Cuddalore

Enter value for dept: IT

old 1: insert into Student values(®no,'&name','&city','&dept')

DBMS@Ch7 Page 8

new 1: insert into Student values(100,'A','Cuddalore','IT')

1 row created.

(Or)

SQL>insert into student values(1001,’Radha’,’Chennai’,’IT’);

DELETE COMMAND :

Syntax:

delete from <table_name> [where <Condition>];

Description:

The delete in SQL is used to remove rows from table. To remove

All the rows from a table.

(OR)

A select set of rows from a table.

Example:

SQL> delete from Student where regno=101;

1 row deleted.

UPDATE COMMAND :

Syntax:

update<table_name> set <field_name>=<Expression/Values> [where <Condition>];

Description:

The update command is used to change or modify data values in a table. To update

All the rows from a table.

(OR)

A select set of rows from a table.

Example:

SQL> update Student set dept='CSE' where regno=101;

1 row updated.

SELECT COMMAND:

SELECT command is used to retrieve the information from a table or tables.

Format: SELECT column1, column2…

 FROM table_name

WHERE conditions;

DBMS@Ch7 Page 9

SELECT clause

The SELECT clause is used to specify which columns are to be selected. In the following

statement ‘*’ retrieves all the columns from the table employee.

Ex: SELECT *

 FROM employee;

FROM clause

FROM is used to specify the names of the table or tables from which the data is retrieved.

WHERE clause:

The WHERE clause is used to specify what qualifiers are to be imposed on the data to be

retrieved. This is known as SELECTION. A table that is built from columns from one or more

tables is called a PROJECTION, or a RESULT TABLE. The following statement retrieves all

the records whose department_id is 13 and reports only those columns, which are in the SELECT

clause.

Ex: SELECT employee_id, last_name

 FROM employee

 WHERE department_id = 13;

DISTINCT keyword:

The following statement retrieves all the manager_ids with no duplicates.

Ex: SELECT DISTINCT manager_id

 FROM employee;

ORDER BY clause:

The ORDER BY clause is used to sort the selected data in a specific order. By default, records

are sorted in ascending order. The key word DESC is used to sort in the descending order (ASC

is used for ascending).

Ex: SELECT first_name

 FROM employee

 ORDER BY first_name;

SINGLE VALUE CONDITIONS:

RELATIONAL OPERATORS:

DBMS@Ch7 Page 10

Logical operators such as ‘=’, ‘<’, ‘>’, ‘<=’, ‘>=’, ‘!=’ or ‘^=’ or ‘<>’ are used to compare a

column or expression with a single value.

Ex: SELECT last_name, first_name, job_id

 FROM employee

 WHERE first_name=’JOHN’

WILD CARD (%) & POSITION MARKER (_):

LIKE performs pattern matching. An underscore(_) represents one character. A percent sign

(%) represents any number of characters. The following statement reports all the records that

have ‘JO’ in last_name column.

Ex: SELECT first_name

 FROM employee

WHERE last_name LIKE ‘%JO%’.

NULL checking:

NULL tests to see if data exists in a column for a row. If the column is completely empty, it is

said to be NULL, and if it is non-empty, it is said to be NOT NULL. The keyword ‘IS’ must be

used to check if a value is NULL or NOT NULL. The following statement returns all the records

where data does not exist in manager_id column. (NULL is generally used to represent a value

which is not known, NULL is not equal to any value)

Ex: SELECT first_name, last_name

 FROM employee

 WHERE manager_id IS NULL;

The following statement returns all the records where data exists in commission column.

Ex: SELECT first_name, last_name

 FROM employee

 WHERE commission IS NOT NULL;

MULTI-VALUE CONDITIONS:

IN:

IN checks if the expression is equal to any member of the given list of values.IN works with

VARCHAR2, CHAR, DATE, and NUMBER data types. The following statement retrieves all

records whose department_id is 10,20 or 30.

Ex: SELECT first_name

DBMS@Ch7 Page 11

 FROM employee

 WHERE department_id IN (10, 20, 30);

NOT IN:

NOT IN means the expression is not equal to any member of the given list of values. NOT IN

works with VARCHAR2, CHAR, DATE, and NUMBER data types. The following statement

retrieves all those records whose job_id is neither 670 nor 669.

Ex: SELECT first_name

 FROM employee

 WHERE job_id NOT IN (670, 669);

BETWEEN clause:

BETWEEN…AND clause is used to check if an expression is between a pair of values. The

following statement retrieves all those records whose salary is greater than or equal to 3000 and

less than or equal to 5000.

Ex: SELECT first_name

 FROM employee

WHERE salary BETWEEN 3000 AND 5000.

NOT BETWEEN:

If NOT is combined with BETWEEN clause, only those records are retrieved which are not in

the specified range, including the specified values. The following statement retrieves all the

records whose salary is less than 3000 and greater than 5000.

Ex: SELECT first_name

 FROM employee

 WHERE salary NOT BETWEEN 3000 AND 5000

LOGICAL OPERATORS:

The AND and OR are called Logical operators. They are used to combine multiple conditions in

the queries.

‘AND’ OPERATOR

Returns TRUE only when both conditions are true. The following statement retrieves those

records which satisfy both the conditions in the WHERE clause.

Ex: SELECT first_name,last_name FROM employee

DBMS@Ch7 Page 12

 WHERE salary = 5000

ANDJob_id IN (670, 669)

‘OR’ OPERATOR

Returns TRUE when either one of the conditions is true. The following statement retrieves those

records which satisfy at least one condition in the WHERE clause.

Ex: SELECT first_name,last_name FROM employee

 WHERE salary = 5000

ORJob_id IN (670, 669)

SUBQUERIES

A query (that is, a SELECT statement) may be used as a part of another SQL statement (called

the parent, or outer statement), including CREATE TABLE, DELETE, INSERT, SELECT and

UPDATE. The results of the child query (also called a sub-query) are passed to the parent SQL

statement. A sub-query cannot contain ORDER BY clause.

SINGLE VALUE FROM A SUBQUERY:

The sub-query returns a single value to the outer-query. All of the logical operators that test

single values can work with sub-queries, as long as the sub-query returns a single row. The

following example illustrates a sub-query, which returns only one value.

SELECT first_name, last_name, job_id

FROM employee

WHERE job_id = (SELECT job_id FROM job

 WHERE function = 'ANALYST')

MULTIPLE VALUES FROM A SUB-QUERY:

The sub-query may return one or more rows, the value in the column for each row will be

stacked up in a list. The following are some relevant points:

 The sub-query must be enclosed in parentheses.

 Sub-queries that produce more than one row can be used only with many-value (or

multiple-row) sub-queries.

 Sub-queries that produce only one row can be used with either single or many value

operators.

 BETWEEN cannot be used with a sub-query.

DBMS@Ch7 Page 13

In the following statement, the sub-query returns more than one row to the outer query. So, IN

operator is used.

SELECT DISTINCT job_id

FROM employee

 WHERE employee_id IN (SELECT manager_id FROM employee)

NESTED SUBQUERIES:

Nested sub-queries are those, which have a sub-query for an inner query. The following

example demonstrates a nested sub-query.

 SELECT first_name, last_name

 FROM employee

 WHERE salary > (SELECT salary

 FROM employee

 WHERE employee_id = (SELECT manager_id

 FROM employee

 WHERE last_name = ‘DENNIS’)

OPERATOR ‘ANY’:

 =ANY is the equivalent of IN. Operator can be any one of ‘=’, ’>’, ‘>=’, ‘<’, ‘<=’, ‘!=’

and list can be a series of literal strings (such as ‘RAVI’,’KISHORE’,’RAJU’) or a series of

literal numbers (such as 2, 43, 76, 32.06, 44) or a column from a sub-query, where each row of

the sub-query becomes a member of the list.

Ex: SELECT last_name

 FROM employee

 WHERE department_id=10

 AND

Job_id =ANY (SELECT job_id

 FROM employee

 WHERE department_id=20);

OPERATOR ‘ALL’:

 !=ALL is the equivalent of NOT IN. Operator can be any of ‘>’, ‘>=’, ‘<’, ‘<=’, ‘!=’

and list can be a series of literal strings (such as ‘RAVI’,’KISHORE’,’KIRAN’), or a series of

literal numbers (such as 2, 23, 76, 32.06, 44), or a column from a sub-query, where each row of

the sub-query becomes a member of the list.

DBMS@Ch7 Page 14

 SELECT last-name

 FROM employee

 WHERE manager-id IN (SELECT employee-id FROM employee

 WHERE Last-name IN (‘Dennis’, ‘Doyle’))

 AND Hire-date <ALL (SELECT hire-date FROM employee

 WHERE last-name= ‘Dennis’ or last-name= ‘Doyle’);

CORRELATED SUB-QUERIES:

 A correlated sub-query is that which is executed repeatedly once for each value of a

candidate row selected by the main query. The outcome of each execution of the sub-query

depends on the values of one or more fields in the candidate row; that is, the sub-query is

correlated with the main query.

In the following example, the department_id of each row in the main query is correlated

with the department_id of the rows in the subquery.

SELECT first_name, last_name FROM employee E

WHERE hire_date = (SELECT MIN(hire_date) FROM employee

 WHERE department_id = E.department_id)

EXISTS:

 Exists is test for existence. It is placed the way IN might be with a subquery, but differs

in two ways. (1) It does not match a column or columns and (2) It is typically used only with a

correlated sub-query. EXISTS returns true in a WHERE clause if the sub-query that follows it

returns at least one row.

The following example illustrates the efficacy of EXISTS clause.

SELECT department_id, name FROM department D

 WHERE EXISTS (SELECT department_id FROM employee

 WHERE department_id = D.department_id)

DBMS@Ch7 Page 15

The above query can also be written using IN as follows.

 SELECT department_id, name FROM department

 WHERE department_id IN (SELECTdepartment_id FROM employee)

NOT EXISTS:

NOT EXISTS is typically used to determine which values in one table do not have

matching values in another table. NOT EXISTS allows you to use a correlated a sub-

query to eliminate from a table all the records that may successfully be joined to another

table

SELECT department_id, name FROM department D

 WHERE NOT EXISTS (SELECT department_id FROM employee

 WHERE department_id = D.department_id)

GROUP FUNCTIONS:

 A GROUP FUNCTION computes a single summary value (such as sum or average) from

the individual number values in a group of values. Group functions are useful only in queries and

sub-queries.

Group functions ignore NULL’s.

AVG(): gives the average of the values for a group of rows.

 SELECT AVG (salary) FROM employee;

COUNT(): gives the count of rows for a column, or for a table (with *).

 SELECT COUNT(*) FROM employee

MIN():- gives the minimum of all values for a group for rows.

 SELECT MIN (salary) FROM employee;

MAX ():- gives the maximum of all values for a group of rows.

 SELECT MAX (salary) FROM employee;

SUM(): gives the sum of all values for a group of rows.

 SELECT SUM (salary) FROM employee;

DBMS@Ch7 Page 16

JOINS:

 A join combines columns and data from two or more tables (and in rare cases, of one

table with itself). The tables are all listed in FROM clause of the SELECT statement, and the

relationship between the two tables is specified in the WHERE clause, usually by a simple

equality. This is often called an

Equi-Join because it uses the equal sign in the WHERE clause. The tables can also be joined

using other forms of equality, such as >=, < and so on, then it is called a Non-Equi Join. If a

table is combined with itself then, it is called Self-Join.

Equi-Join or Simple Join example:

 SELECT E.last_name,D.name

FROM employee E, department D

WHERE E.department_id = D.department_id

Non-Equi-Join example:

SELECT E.first_name, E.last_name, and S.grade_id

FROM employee E, salary_grade S

WHERE E.salary BETWEEN S.lower_bound AND S.upper_bound

Self-Join example

SELECT M.first_name, M.last_name

FROM employee E, employee M

WHERE E.manager_id = M.employee_id

 AND E.salary>M.salary

OUTER JOINS:An OUTER-JOIN is a method for intentionally retrieving selected rows for one

table that don’t match rows in the other table. (+) must immediately follow the join column of

the shorter table, as saying add an extra (NULL) row.

The following example illustrates an outer join.

DBMS@Ch7 Page 17

List the name of departments and employees including which do not have any employee.

 SELECT D.department_id, D.name, E.last_name, E.first_name FROM employee E,

department D WHERE E.department_id(+) = D.department_id

GROUP BY:

 GROUP BY causes a SELECT to produce one summary row for all selected rows that

have identical values in one or more specified columns or expressions. Each expression in the

SELECT clause must be one of these things.

 A constant

 A function without parameters (sysdate, user)

 A group function like SUM, AVG, MIN, MAX, COUNT

 A column/expression matching identically to an expression in the GROUP BY clause.

The following example illustrates the GROUP BY clause.

 Ex. Find the maximum salary of all employees of their departments?

SELECT department_id, MAX(salary), MIN(salary) FROM employee

GROUP BY department_id

HAVING CLAUSE:

 HAVING is used to determine which groups the GROUP BY is to include. A WHERE

clause, on the other hand, determines which rows are to be included in groups.

Ex. For each department find the no. of analysts.

SELECT department_id, COUNT(*), AVG(salary) FROM employee

GROUP BY department_idHAVING COUNT(*) > 3

UNION:

UNION combines two SELECT queries. It returns all distinct rows for both SELECT

statements. But there are some stipulations.

1. The SELECT’s must have the same number of columns.

2. The matching top, bottom columns must be of the same data type (they needn’t be of

the same length.)

SELECT DISTINCT(department_id) FROM employee

DBMS@Ch7 Page 18

GROUP BY department_id

HAVING COUNT(*) > 1

UNION

SELECT department_id

FROM department d, location l

WHERE d.location_id=l.location_id AND regional_group=’KAKINADA’;

UNION ALL:

When UNION ALL is used, it returns all rows for both SELECT statements, regardless

of duplicates.

 SELECT DISTINCT(department_id) FROM employee

GROUP BY department_id

HAVING COUNT(*) > 1

UNION ALL

SELECT department_id

FROM department d, location l

WHERE d.location_id=l.location_id AND regional_group=’RAJAMUNDRY’;

INTERSECT:

INTERSECT combines two queries and returns only those rows from the first SELECT

statement that are identical to at least one row from the second SELECT statement. The number

of columns and data types must be identical between SELECT statements.

 SELECT department_id

FROM employee

GROUP BY department_id

HAVING COUNT(*) > 1

INTERSECT

SELECT department_id

DBMS@Ch7 Page 19

FROM department d, location l

WHERE d.location_id=l.location_id AND regional_group = ‘VISAKHAPATNAM’;

MINUS:

MINUS combines two queries. It returns only those rows from the first SELECT

statement that are not produced by the second SELECT statement (the first SELECT MINUS the

second SELECT). The number of columns and data types must be identical between SELECT

statements, although the names of

the columns need not be same.

 SELECT department_id

FROM employee

GROUP BY department_id

HAVING COUNT(*) > 1

MINUS

SELECT department_id

FROM department d,location l

WHERE d.location_id=l.location_id AND regional_group = ‘CHICAGO’ ;

ORDER BY POSITION:

The resultant rows from SELECT statements can also be sorted in ascending or

descending order by specifying the position of the column to be sorted.

 (SELECT department_id,job_id

FROM employee

WHERE department_id=20

UNION

SELECT department_id,job_id

FROM employee

WHERE department_id=10)ORDER BY 2;

