
Software Engineering

MCET, SE Study Material Page 1

UNIT-V:

Testing Strategies: A strategic approach to software testing, strategies issues, test

strategies for O-O software, Validation testing, System testing, the art of Debugging.

Testing Tactics: Software Testing Fundamentals, Black-Box and White-Box Testing,

basis path Testing, Control Structure Testing, O-O Testing methods, Testing Methods

applicable on the class level, inter class test case design, Testing for Specialized

environments, architectures and applications, Testing Patterns.

Product metrics: Software Quality, A Frame work for Product Metrics, Metrics for

Analysis Model, Metrics for Design Model, Metrics for source code, Metrics for testing,

Metrics for maintenance.

Software Testing Strategies

Testing is the process of exercising a program with the specific intent of finding
errors prior to delivery to the end user.

Software Testing is One of the important phases of software development. Testing is
the process of execution of a program with the intention of finding errors Involves 40%
of total project cost.

Who Tests the Software?

o Development engineers
 Understand the system, but test ―gently‖
 Driven by ―delivery‖
 Only perform unit tests and integration tests

o Test engineers
 Need to learn the system, but attempt to break it
 Driven by ―quality‖
 Define test cases, write test specifications, run tests, analyze results

o Customers
 Driven by ―requirements‖
 Determine if the system satisfies the acceptance criteria

Software testing is one element of a broader topic: verification and validation (V&V)
Verification – are we building the product correctly?*

The set of activities to ensure that software correctly implements specific
functions

Validation – are we building the correct product?*
The set of activities to ensure that the developed software is traceable to
customer requirements

Software Engineering

MCET, SE Study Material Page 2

A strategic Approach for Software testing

Testing Strategy is
 A road map that incorporates test planning, test case design, test execution and

resultant data collection and execution
 Validation refers to a different set of activities that ensures that the software is

traceable to the customer requirements.
 V&V encompasses a wide array of Software Quality Assurance

The definition of V&V encompasses many activities that is referred to as software

quality assurance (SQA) including

– Formal technical review
– Quality and configuration audits
– Performance monitoring
– Simulation
– Feasibility study
– Documentation review
– Database review
– Algorithm analysis
– Development testing
– Qualification testing
– Installation testing

• Perform Formal Technical reviews(FTR) to uncover errors during software

development
• Begin testing at component level and move outward to integration of entire

component based system.
• Adopt testing techniques relevant to stages of testing
• Testing can be done by software developer and independent testing group
• Testing and debugging are different activities. Debugging follows testing
• Low level tests verifies small code segments.
• High level tests validate major system functions against customer requirements

Testing Strategies for Conventional Software

1)Unit Testing
2)Integration Testing
3)Validation Testing and
4)System Testing

Software Engineering

MCET, SE Study Material Page 3

Spiral Representation for Conventional Software

Strategic Issues

 Specify product requirements in a quantifiable manner long before testing.
 State testing objectives explicitly.
 Understand the users of the software and develop a profile for each user

category.
 Develop a testing plan that emphasizes ―rapid cycle testing.‖
 Build ―robust‖ software that is designed to test itself
 Use effective formal technical reviews as a filter prior to testing
 Conduct formal technical reviews to assess the test strategy and test cases

themselves.
 Develop a continuous improvement approach for the testing process.

The V model

 Emerged in reaction to some waterfall models that showed testing as a single phase
following the traditional development phases of requirements analysis, high-level
design, detailed design and coding.

 The V model portrays several distinct testing levels and illustrates how each level
addresses a different stage of the software lifecycle.

 The V shows the typical sequence of development activities on the left-hand
(downhill) side and the corresponding sequence of test execution activities on the
right-hand (uphill) side.

Software Engineering

MCET, SE Study Material Page 4

 The V model is valuable because it highlights the existence of several levels of

testing and delineates how each relates to a different development phase:

o Unit testing: concentrates on each unit (i.e., component) of the software

(white box)

o Integration testing: focuses on design and the construction of the software

architecture (black box, limited amount of white box)

o System testing: verifies that all elements mesh properly and that overall

system function/performance is achieved.

o Acceptance testing: are ordinarily performed by the business/users to

confirm that the product meets the business requirements.

(1). Unit Testing

Unit testing focuses verification effort on the smallest unit of software design—the
software component or module. Using the component-level design description as a
guide, important control paths are tested to uncover errors within the boundary of
the module. The relative complexity of tests and uncovered errors is limited by the
constrained scope established for unit testing. The unit test is white-box oriented,
and the step can be conducted in parallel for multiple components.

Software Engineering

MCET, SE Study Material Page 5

The module interface is tested to ensure that information properly flows into and out
of the program unit under test. The local data structure is examined to ensure that
data stored temporarily maintains its integrity during all steps in an algorithm's exe-
cution. Boundary conditions are tested to ensure that the module operates properly
at boundaries established to limit or restrict processing. All independent paths (basis
paths) through the control structure are exercised to ensure that all statements in a
module have been executed at least once. And finally, all error handling paths are
tested.

Unit Test Environment

Because a component is not a stand-alone program, driver and/or stub software
must be developed for each unit test. The unit test environment is illustrated in the
above figure. In most applications a driver is nothing but a "main program" that
accepts test case data, passes such data to the component (to be tested), and prints
relevant results. Stubs serve to replace modules that are subordinate (called by) the
component to be tested. A stub or "dummy subprogram" uses the subordinate mod-
ule's interface, may do minimal data manipulation, prints verification of entry, and
returns control to the module undergoing testing.

Software Engineering

MCET, SE Study Material Page 6

Drivers and stubs represent overhead. That is, both are software that must be writ-
ten (formal design is not commonly applied) but that is not delivered with the final
software product. If drivers and stubs are kept simple, actual overhead is relatively
low. Unfortunately, many components cannot be adequately unit tested with "sim-
ple" overhead software. In such cases, complete testing can be postponed until the
integration test step (where drivers or stubs are also used).

Among the more common errors in computation are:
 (1) misunderstood or incor-rect arithmetic precedence, (2) mixed mode operations, (3)
incorrect initialization, (4) precision inaccuracy, (5) incorrect symbolic representation of
an expression. Com-parison and control flow are closely coupled to one another (i.e.,
change of flow fre-quently occurs after a comparison).

Test cases should uncover errors such as:
(1) comparison of different data types, (2) incorrect logical operators or precedence,
(3) expectation of equality when precision error makes equality unlikely, (4) incor-
rect comparison of variables, (5) improper or nonexistent loop termination, (6) fail-
ure to exit when divergent iteration is encountered, and (7) improperly modified loop
variables.

(2). Integration Testing Strategies
Integration testing is a systematic technique for constructing the program struc-
ture while at the same time conducting tests to uncover errors associated with inter-
facing. The objective is to take unit tested components and build a program structure
that has been dictated by design.

Options:

• The “big bang” approach
 All components are combined in advance. The entire program is tested as a
 whole. And chaos usually results! A set of errors is encountered. Correction is
 difficult because isolation of causes is com-plicated by the vast expanse of the
 entire program. Once these errors are corrected, new ones appear and the
 process continues in a seemingly endless loop.

• An incremental construction strategy

 Top-down integration
 Bottom-up integration
 Sandwich integration

Top-down integration
Top-down integration testing is an incremental approach to construction of program
structure. Modules are integrated by moving downward through the control hierar-
chy, beginning with the main control module (main program). Modules subordinate
(and ultimately subordinate) to the main control module are incorporated into the

Software Engineering

MCET, SE Study Material Page 7

structure in either a depth-first or breadth-first manner.

Depth-first integration would integrate all components on a major control path of the

structure. Selection of a major path is somewhat arbitrary and depends on application-

specific characteristics. For example, selecting the left-hand path, components M1, M2 ,

M5 would be integrated first. Next, M8 or (if neces-sary for proper functioning of M2) M6

would be integrated. Then, the central and right-hand control paths are built. Breadth-

first integration incorporates all components directly subordinate at each level, moving

across the structure horizontally. From the figure, components M2, M3, and M4 (a

replacement for stub S4) would be integrated first. The next control level, M5, M6, and

so on, follows.

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted for
 all components directly subordinate to the main control module.
2. Depending on the integration approach selected (i.e., depth or breadth first),
 subordinate stubs are replaced one at a time with actual components.
3. Tests are conducted as each component is integrated.
4. On completion of each set of tests, another stub is replaced with the real
 component.
5. Regression testing may be conducted to ensure that new errors have not been
 introduced.

The process continues from step 2 until the entire program structure is built.

Top-down strategy sounds relatively uncomplicated, but in practice, logistical problems
can arise. The most common of these problems occurs when processing at low levels in
the hierarchy is required to adequately test upper levels. Stubs replace low-level
modules at the beginning of top-down testing.

Software Engineering

MCET, SE Study Material Page 8

• Advantages

– This approach verifies major control or decision points early in the test
process

• Disadvantages
– Stubs need to be created to substitute for modules that have not been

built or tested yet; this code is later discarded
– Because stubs are used to replace lower level modules, no significant

data flow can occur until much later in the integration/testing process

Bottom-up Integration

Bottom-up integration testing, as its name implies, begins construction and testing
with atomic modules (i.e., components at the lowest levels in the program structure).
Because components are integrated from the bottom up, processing required for com-
ponents subordinate to a given level is always available and the need for stubs is
eliminated.

A bottom-up integration strategy may be implemented with the following steps:
1. Low-level components are combined into clusters (sometimes called builds)
 that perform a specific software subfunction.
2. A driver (a control program for testing) is written to coordinate test case
 input and output.
3. The cluster is tested.
4. Drivers are removed and clusters are combined moving upward in the pro-
 gram structure.

Integration follows the pattern illustrated in the Figure. Components are com-bined to
form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown as a
dashed block). Components in clusters 1 and 2 are subordinate to Ma. Drivers D1 and
D2 are removed and the clusters are interfaced directly to Ma. Similarly, driver D3 for
cluster 3 is removed prior to integration with module Mb. Both Ma and Mb will ultimately
be integrated with component Mc, and so forth.

Software Engineering

MCET, SE Study Material Page 9

As integration moves upward, the need for separate test drivers lessens. In fact,
if the top two levels of program structure are integrated top down, the number of
drivers can be reduced substantially and integration of clusters is greatly simplified.

Sandwich integration

• Consists of a combination of both top-down and bottom-up integration
• Occurs both at the highest level modules and also at the lowest level modules
• Proceeds using functional groups of modules, with each group completed before the

next
– High and low-level modules are grouped based on the control and data

processing they provide for a specific program feature
– Integration within the group progresses in alternating steps between the high

and low level modules of the group
– When integration for a certain functional group is complete, integration and

testing moves onto the next group
• Reaps the advantages of both types of integration while minimizing the need for

drivers and stubs
• Requires a disciplined approach so that integration doesn‘t tend towards the ―big

bang‖ scenario

Software Engineering

MCET, SE Study Material Page 10

Regression Testing

Each time a new module is added as part of integration testing, the software changes.
New data flow paths are established, new I/O may occur, and new control logic is
invoked. These changes may cause problems with functions that previously worked
flawlessly. In the context of an integration test strategy, regression testing is the re-
execution of some subset of tests that have already been conducted to ensure that
changes have not propagated unintended side effects.

Regression testing may be conducted manually, by re-executing a subset of all test
cases or using automated capture/playback tools. Capture/playback tools enable the
software engineer to capture test cases and results for subsequent playback and
com-parison.
 The regression test suite (the subset of tests to be executed) contains three differ-ent
classes of test cases:

• A representative sample of tests that will exercise all software functions.
• Additional tests that focus on software functions that are likely to be affected
 by the change.
• Tests that focus on the software components that have been changed.

As integration testing proceeds, the number of regression tests can grow quite large.
Therefore, the regression test suite should be designed to include only those tests
that address one or more classes of errors in each of the major program functions.

Smoke Testing

Smoke testing is an integration testing approach that is commonly used when ―shrink-
wrapped‖ software products are being developed. It is designed as a pacing mecha-
nism for time-critical projects, allowing the software team to assess its project on a
frequent basis. In essence, the smoke testing approach encompasses the following
activities:

1. Software components that have been translated into code are integrated into a
 ―build.‖ A build includes all data files, libraries, reusable modules, and engi-neered
 components that are required to implement one or more product functions.
2. A series of tests is designed to expose errors that will keep the build from properly
 performing its function. The intent should be to uncover ―show stop-per‖ errors that
 have the highest likelihood of throwing the software project behind schedule.
3. The build is integrated with other builds and the entire product (in its current form) is
 smoke tested daily. The integration approach may be top down or bottom up.

The smoke test should exercise the entire system from end to end. It does not have to
be exhaustive, but it should be capable of exposing major problems. The smoke test

Software Engineering

MCET, SE Study Material Page 11

should be thorough enough that if the build passes, you can assume that it is stable
enough to be tested more thoroughly.

Smoke testing provides a number of benefits when it is applied on complex, time-
critical software engineering projects:

• Integration risk is minimized. Because smoke tests are conducted daily, incom-
 patibilities and other show-stopper errors are uncovered early, thereby reduc-ing
 the likelihood of serious schedule impact when errors are uncovered.
• The quality of the end-product is improved. Because the approach is construc- tion
 (integration) oriented, smoke testing is likely to uncover both functional errors and
 architectural and component-level design defects. If these defects are corrected early,
 better product quality will result.
• Error diagnosis and correction are simplified. Like all integration testing approaches,
 errors uncovered during smoke testing are likely to be associ-ated with ―new software
 increments‖—that is, the software that has just been added to the build(s) is a
 probable cause of a newly discovered error.
• Progress is easier to assess. With each passing day, more of the software has been
integrated and more has been demonstrated to work. This improves team
morale and gives managers a good indication that progress is being made.

Validation Testing

At the culmination of integration testing, software is completely assembled as a pack-
age, interfacing errors have been uncovered and corrected, and a final series of soft-
ware tests—validation testing—may begin.

Software validation is achieved through a series of black-box tests that demonstrate
conformity with requirements. A test plan outlines the classes of tests to be conducted
and a test procedure defines specific test cases that will be used to demonstrate con-
formity with requirements. Both the plan and procedure are designed to ensure that
all functional requirements are satisfied, all behavioral characteristics are achieved,
all performance requirements are attained, documentation is correct, and human-
engineered and other requirements are met (e.g., transportability, compatibility, error
recovery, maintainability).

An important element of the validation process is a configuration review. The intent
of the review is to ensure that all elements of the software configuration have been
properly developed, are cataloged, and have the necessary detail to bolster the sup-
port phase of the software life cycle.

Alpha and Beta Testing:

Software Engineering

MCET, SE Study Material Page 12

The alpha test is conducted at the developer's site by a customer. The software is used
in a natural setting with the developer "looking over the shoulder" of the user
and recording errors and usage problems. Alpha tests are conducted in a controlled
environment.

The beta test is conducted at one or more customer sites by the end-user of the
software. Unlike alpha testing, the developer is generally not present. Therefore, the
beta test is a "live" application of the software in an environment that cannot be con-
trolled by the developer. The customer records all problems (real or imagined) that
are encountered during beta testing and reports these to the developer at regular
intervals. As a result of problems reported during beta tests, software engineers make
modifications and then prepare for release of the software product to the entire cus-
tomer base.

Object-Oriented Testing

Although there are similarities between testing conventional systems and Object-
Oriented systems, Object-Oriented testing has significant differences
The characteristics of Object-Oriented systems influence both testing strategy and
testing methods.

– The class become the natural unit for test case design
– Implications of Object-Oriented concepts such as inheritance,

encapsulation, and polymorphism pose testing challenges
– Testing the state-dependent behavior of Object-Oriented systems become

important since no clear control flow in Object-Oriented programs
– Integration strategies change significantly since no obvious ‗top‘ module to

the system for top-down integration

 testing strategy changes

 the concept of the ‗unit‘ broadens due to encapsulation
 integration focuses on classes and their execution
 validation uses conventional black box methods

 test case design draws on conventional methods, but also encompasses special
features

OOT Strategy

 class testing is the equivalent of unit testing

 operations within the class are tested
 the state behavior of the class is examined

 integration applied three different strategies
 thread-based testing—integrates the set of classes required to respond to

one input or event
 use-based testing—integrates the set of classes required to respond to one

use case

Software Engineering

MCET, SE Study Material Page 13

 cluster testing—integrates the set of classes required to demonstrate one
collaboration

System Testing

The system software is tested as a whole. It verifies all elements mesh properly to make
sure that all system functions and performance are achieved in the target environment.
The focus areas are

– System functions and performance
– System reliability and recoverability (recovery test)
– System installation (installation test)
– System behavior in the special conditions (stress and load test)
– System user operations (acceptance test/alpha test)
– Hardware and software integration and collaboration
– Integration of external software and the system

Its primary purpose is to test the complete software.

1) Recovery Testing
2) Security Testing
3) Stress Testing and
4) Performance Testing

(1)Recovery tests

– Verify that the system can recover when forced to fail in various ways
database recovery is particularly important

– Example: measure time to recover (MTTR)

(2) Security tests

– Verify that access protection mechanisms work make penetration cost
more than value of entry

– Subject to compromise attempts
– E.G., Measure average time to break in

(3) Stress tests

– Verify that the system can continue functioning when confronted with
many simultaneous requests (abnormal situations)

– Execute the system by demanding resource in abnormal quantity,
frequency, or volume (subject to extreme data & event traffic)

– Excessive interrupt, high input data rate, maximum memory, …
– How high can we go? Do we fail-soft or collapse?
– Sensitivity testing (a variation of stress testing)

Software Engineering

MCET, SE Study Material Page 14

– Attempts to uncover data combinations within valid input classes that may
cause instability or improper processing (performance degradation)

(4) Performance

– Is designed to test the run-time performance of software (real-time and
embedded systems) within the context of an integrated system

– Measure speed, resource utilization under various circumstances.
– Is often coupled with stress testing and usually requires both hardware

and software instrumentation
– Occurs throughout all steps in the testing process

The Debugging Process

Software Engineering

MCET, SE Study Material Page 15

Debugging occurs as a consequence of successful testing. That is, when a test case
uncovers an error, debugging is the process that results in the removal of the error.
Although debugging can and should be an orderly process,

The debugging process begins with the execution of a test case. Results are assessed
and a lack of correspondence between expected and actual performance is
encountered. In many cases, the no corresponding data are a symptom of an
underlying cause as yet hidden. The debugging process attempts to match
symptom with cause, thereby leading to error correction. The debugging process will
always have one of two outcomes: (1) the cause will be found and corrected, or (2) the
cause will not be found. In the latter case, the per-son performing debugging may
suspect a cause, design a test case to help validate that suspicion, and work toward
error correction in an iterative fashion.

1. The symptom and the cause may be geographically remote. That is, the
 symptom may appear in one part of a program, while the cause may actually
 be located at a site that is far removed. Highly coupled program structures
 exacerbate this situation.
2. The symptom may disappear (temporarily) when another error is corrected.
3. The symptom may actually be caused by nonerrors (e.g., round-off inaccuracies).
4. The symptom may be caused by human error that is not easily traced.
5. The symptom may be a result of timing problems, rather than processing problems.
6. It may be difficult to accurately reproduce input conditions (e.g., a real-time
 application in which input ordering is indeterminate).
7. The symptom may be intermittent. This is particularly common in embedded systems
 that couple hardware and software inextricably.
8. The symptom may be due to causes that are distributed across a number of tasks
 running on different processors.

Software Engineering

MCET, SE Study Material Page 16

Debugging Approaches

1. Brute force
Dump the memory

2. Backtracking
Start from presence of error, go backward in the code manually

3. Cause elimination
Cause hypothesis …

1. The brute force category of debugging is probably the most common and least effi-
cient method for isolating the cause of a software error. We apply brute force debug-
ging methods when all else fails. Using a "let the computer find the error" philosophy,
memory dumps are taken, run-time traces are invoked, and the program is loaded
with WRITE statements.

2. Backtracking is a fairly common debugging approach that can be used success-
fully in small programs. Beginning at the site where a symptom has been uncovered,
the source code is traced backward (manually) until the site of the cause is found.
Unfortunately, as the number of source lines increases, the number of potential back-
ward paths may become unmanageably large.

3. cause elimination—is manifested by induction or deduction and introduces the
concept of binary partitioning. Data related to the error occurrence are organized to
isolate potential causes. A "cause hypothesis" is devised and the aforementioned data
are used to prove or disprove the hypothesis.

Each of these debugging approaches can be supplemented with debugging tools.
We can apply a wide variety of debugging compilers, dynamic debugging aids
 ("trac-ers"), automatic test case generators, memory dumps, and cross-reference
maps. However, tools are not a substitute for careful evaluation based on a complete
soft-ware design document and clear source code
Consequences of Bugs

Software Engineering

MCET, SE Study Material Page 17

Testing Methods

Two general software testing methods:

- White-box testing: (logic-driven)

Design tests to exercise internal structures of the software to make sure they
operates according to specifications and designs

– Black-box testing: (data-driven or input/output-driven)
Design tests to exercise each function of the software and check its errors.

– White-box and black-box testing approaches can uncover different class of errors
and are complement each other

White-Box Testing

White-box testing

– Also known as glass-box testing or structural testing
– Has the knowledge of the program‘s structures
– A test case design method that uses the control structure of the

procedural design to derive test cases
– Focus on the control structures, logical paths, logical conditions, data

flows, internal data structures, and loops.
– W. Hetzel describes white-box testing as ―testing in the small‖

Using white-box testing methods, we can derive test cases that

– Guarantee that all independent paths within a module have been
exercised at least once.

– Exercise all logical decisions on their true and false sides.
– Execute all loops at their boundaries and within their operational bounds.
– Exercise internal data structures to assure their validity.

White box testing techniques

1. Basis path testing
2. Control structure testing

1. Basis path testing

Basic path testing (a white-box testing technique):

 First proposed by Tom McCabe.
 Can be used to derive a logical complexity measure for a procedure design.
 Used as a guide for defining a basis set of execution path.

 Guarantee to execute every statement in the program at least one time.

Software Engineering

MCET, SE Study Material Page 18

 Flow Graph Notation
 Cyclomatic Complexity
 Deriving Test Cases

(i) Flow Graph Notation

 Flow graph notation (control flow graph)

 Node represents one or more procedural statements.
 A sequence of process boxes and a decision diamond can map into a

single node
 A predicate node is a node with two or more edges emanating from it

 Edge (or link) represents flow of control
 Region: areas bounded by edges and nodes

 When counting regions, include the area outside the graph as a region

 Compound condition
 Occurs when one or more Boolean operators (OR, AND, NAND, NOR)

is present in a conditional statement
 A separate node is created for each of the conditions C1 and C2 in the

statement IF C1 AND C2

Software Engineering

MCET, SE Study Material Page 19

binarySearch() Example

Software Engineering

MCET, SE Study Material Page 20

Cyclomatic Complexity

Cyclomatic complexity is a software metric
– provides a quantitative measure of the global complexity of a program.
– When this metric is used in the context of the basis path testing

the value of cyclomatic complexity defines the number of
independent paths in the basis set of a program
 the value of cyclomatic complexity defines an upper bound of
number of tests (i.e., paths) that must be designed and exercised to
guarantee coverage of all program statements

Independent path
– An independent path is any path of the program that introduce at least one

new set of procedural statements or a new condition
– In a flow graph, an independent path must move along at least one edge

that has not been traversed before the path is defined
Examples: consider the CFG of binarySearch()

– Path 1: 1-2-10
– Path 2: 1-2-3-4-6-8-9-2-10
– Path 3: 1-2-3-4-6-8-9-2-3-10
– Path 4: 1-2-3-4-6-8-9-2-3-4-6-8-9-2-10 (not an independent

path)

Software Engineering

MCET, SE Study Material Page 21

Three ways to compute cyclomatic complexity:
– The number of regions of the flow graph correspond to the cyclomatic

complexity.
– Cyclomatic complexity, V(G), for a flow graph G is defined as V(G) = E - N

+ 2
where E is the number of flow graph edges and N is the number of flow
graph nodes.

– Cyclomatic complexity, V(G) = P + 1
 where P is the number of predicate nodes contained in the flow graph G.

Deriving Basis Test Cases

The following steps can be applied to derive the basis set:

1. Using the design or code as a foundation, draw the corresponding flow graph.
2. Determine the cyclomatic complexity of the flow graph.

 V(G) = 5 regions
 V(G) = 13 edges – 10 nodes + 2 = 5
 V(G) = 4 predicate nodes + 1 = 5

Software Engineering

MCET, SE Study Material Page 22

3. Determine a basis set of linearly independent paths.
 Path 1: 1-2-10
 Path 2: 1-2-3-10
 Path 3: 1-2-3-4-5-9-2- …
 Path 4: 1-2-3-4-6-7-9-2-…
 Path 5: 1-2-3-4-6-8-9-2-…

4. Prepare test cases that force the execution of each path in the basis set
 Path 1 test case:

Inputs: sortedArray = { }, searchValue = 2
Expected results: locationOfSearchValue = -1

Path 2 test case: cannot be tested stand-alone!

– Inputs: sortedArray = {2, 4, 6}, searchValue = 8
– Expected results: locationOfSearchValue = -1

Path 3 test case:
– Inputs: sortedArray = {2, 4, 6, 8, 10}, searchValue = 6
– Expected results: locationOfSearchValue = 2

Path 4 test case:
– Inputs: sortedArray = {2, 4, 6, 8, 10}, searchValue = 4
– Expected results: locationOfSearchValue = 1

 Path 5 test case:
– Inputs: sortedArray = {2, 4, 6, 8, 10}, searchValue = 10
– Expected results: locationOfSearchValue = 4

Each test cases is executed and compared to its expected results.
Once all test cases have been exercised, we can be sure that all statements are
executed at least once

Note: some independent paths cannot be tested stand-alone because the input data
required to traverse the paths cannot be achieved

In binarySearch(), the initial value of variable found is FALSE, hence path
2 can only be tested as part of path 3, 4, and 5 tests

Graph Matrices

A graph matrix

– A tabular representation of a flow graph
– A square matrix with a size equal to the number of nodes on the flow

graph
– Matrix entries correspond to the edges between nodes
– Adding link weight to each edge to represent

 The connection between nodes

 The probability of the edge to be executed

 The resource (e.g., processing time or memory) required for
traversing the edge

Software Engineering

MCET, SE Study Material Page 23

A connection matrix

 A graph matrix with the link weight is 1 (representing a
connection exists) or 0 (representing a connection does not
exist)

 Each row of the matrix with two or more entries represents a
predicate node

 Provide another method for computing the cyclomatic
complexity of a flow graph

Product metrics

• Product metrics for computer software helps us to assess quality.
• Measure

-- Provides a quantitative indication of the extent, amount, dimension, capacity or size of
some attribute of a product or process

• Metric(IEEE 93 definition)
-- A quantitative measure of the degree to which a system, component or process
possess a given attribute

• Indicator
-- A metric or a combination of metrics that provide insight into the software process, a
software project or a product itself

Software Engineering

MCET, SE Study Material Page 24

• Product metrics for the Analysis model
 Function point Metric
 First proposed by Albrecht
 Measures the functionality delivered by the system
 FP computed from the following parameters
1) Number of external inputs(EIS)
2) Number external outputs(EOS)
3) Number of external Inquiries(EQS)
4) Number of Internal Logical Files(ILF)
5) Number of external interface files(EIFS)

 Each parameter is classified as simple, average or complex and weights are assigned
as follows

Information Domain Count Simple avg Complex
 EIS 3 4 6
 EOS 4 5 7
 EQS 3 4 6
 ILFS 7 10 15
 EIFS 5 7 10

FP=Count total *[0.65+0.01*E(Fi)]

Metrics for Design Model

• DSQI(Design Structure Quality Index)
• US air force has designed the DSQI
• Compute s1 to s7 from data and architectural design
• S1:Total number of modules
• S2:Number of modules whose correct function depends on the data input
• S3:Number of modules whose function depends on prior processing
• S4:Number of data base items
• S5:Number of unique database items
• S6: Number of database segments
• S7:Number of modules with single entry and exit
• Calculate D1 to D6 from s1 to s7 as follows:
• D1=1 if standard design is followed otherwise D1=0
• D2(module independence)=(1-(s2/s1))
• D3(module not depending on prior processing)=(1-(s3/s1))
• D4(Data base size)=(1-(s5/s4))
• D5(Database compartmentalization)=(1-(s6/s4)
• D6(Module entry/exit characteristics)=(1-(s7/s1))
• DSQI=sigma of WiDi
• i=1 to 6,Wi is weight assigned to Di
• If sigma of wi is 1 then all weights are equal to 0.167
• DSQI of present design be compared with past DSQI. If DSQI is significantly

lower than the average, further design work and review are indicated

Software Engineering

MCET, SE Study Material Page 25

METRIC FOR SOURCE CODE

• HSS(Halstead Software science)
• Primitive measure that may be derived after the code is generated or estimated

once design is complete
• n1 = the number of distinct operators that appear in a program
• n2 = the number of distinct operands that appear in a program
• N1 = the total number of operator occurrences.
• N2 = the total number of operand occurrence.
• Overall program length N can be computed:
• N = n1 log2 n1 + n2 log2 n2
• V = N log2 (n1 + n2)

METRIC FOR TESTING

• n1 = the number of distinct operators that appear in a program
• n2 = the number of distinct operands that appear in a program
• N1 = the total number of operator occurrences.
• N2 = the total number of operand occurrence.
• Program Level and Effort
• PL = 1/[(n1 / 2) x (N2 / n2 l)]
• e = V/PL

METRICS FOR MAINTENANCE

• Mt = the number of modules in the current release
• Fc = the number of modules in the current release that have been changed
• Fa = the number of modules in the current release that have been added.
• Fd = the number of modules from the preceding release that were deleted in the

current release
• The Software Maturity Index, SMI, is defined as:
• SMI = [Mt – (Fc + Fa + Fd)/ Mt]

