
Software Engineering

MCET, SE Study Material Page 1

UNIT-II

Planning and Managing the Project: Tracking Progress, Project Personnel, Effort
Estimation, Risk Management, the Project Plan, Process Models and Project Management,
Information Systems Example, Real-time Example.

Requirement Engineering: A bridge to design and construction, Requirement Engineering
tasks, Initiating Requirement Engineering Process, Eliciting Requirement, Developing Uses
cases, Building the Analysis Model, Negotiating Requirements, Validating Requirements.

PART - I

Tracking Progress

The following questions will be raised during this process:

• Do we understand customer’s needs?

• Can we design a system to solve customer’s problems or satisfy customer’s needs?

• How long will it take to develop the system?

• How much will it cost to develop the system?

Project Schedule:

• Describes the software-development cycle for a particular project by

– enumerating the phases or stages of the project

– breaking each phase into discrete tasks or activities to be completed

• Portrays the interactions among the activities and estimates the times that each task

or activity will take

Project Schedule: Approach:

• Understanding customer’s needs by listing all project deliverables

– Documents

– Demonstrations of function

– Demonstrations of subsystems

– Demonstrations of accuracy

– Demonstrations of reliability, performance or security

• Determining milestones and activities to produce the deliverables

Milestones and activities:

• Activity: takes place over a period of time

Software Engineering

MCET, SE Study Material Page 2

• Milestone: completion of an activity -- a particular point in time

• Precursor: event or set of events that must occur in order for an activity to
start

• Duration: length of time needed to complete an activity

• Due date: date by which an activity must be completed

• Project development can be separated into a succession of phases which are

composed of steps, which are composed of activities

• Table 3.1 shows the phases, steps and activities to build a house

– landscaping phase

– building the house phase

• Table 3.2 lists milestones for building the house phase

Phases, Steps, and Activities in Building a House

Software Engineering

MCET, SE Study Material Page 3

Table 3.2 Milestones in Building a House

Phase 1: Landscaping the lot Phase 2: Building the house

Step 1.1:
Clearing
and
grubbing

 Step 2.1:
Prepare
the site

Activity 1.1.1: Remove trees Activity 2.1.1: Survey the land

Activity 1.1.2: Remove stumps Activity 2.1.2: Request permits

 Step 1.2:
Seeding
the turf

 Activity 2.1.3: Excavate for the
foundation

Activity 1.2.1: Aerate the soil Activity 2.1.4: Buy materials

Activity 1.2.2: Disperse the seeds Step 2.2:
Building
the
exterior

Activity 1.2.3: Water and weed Activity 2.2.1: Lay the foundation

 Step 1.3:
Planting
shrubs and
trees

Activity 2.2.2: Build the outside walls

Activity 1.3.1: Obtain shrubs and
trees

Activity 2.2.3: Install exterior
plumbing

Activity 1.3.2: Dig holes Activity 2.2.4: Exterior electrical
work

Activity 1.3.3: Plant shrubs and trees Activity 2.2.5: Exterior siding

Activity 1.3.4: Anchor the trees and
mulch around them

Activity 2.2.6: Paint the exterior

 Activity 2.2.7: Install doors and
fixtures

 Activity 2.2.8: Install roof

 Step 2.3:
Finishing
the interior

 Activity 2.3.1: Install the interior
plumbing

 Activity 2.3.2: Install interior
electrical work

 Activity 2.3.3: Install wallboard

 Activity 2.3.4: Paint the interior

 Activity 2.3.5: Install floor covering

 Activity 2.3.6: Install doors and
fixtures

1.1. Survey complete

1.2. Permits issued

1.3. Excavation complete

1.4. Materials on hand

2.1. Foundation laid

2.2. Outside walls complete

2.3. Exterior plumbing complete

2.4. Exterior electrical work complete

2.5. Exterior siding complete

2.6. Exterior painting complete

2.7. Doors and fixtures mounted

2.8. Roof complete

3.1. Interior plumbing complete

3.2. Interior electrical work complete

3.3. Wallboard in place

3.4. Interior painting complete

3.5. Floor covering laid

3.6. Doors and fixtures mounted

Software Engineering

MCET, SE Study Material Page 4

Work Breakdown and Activity Graphs:

• Work breakdown structure depicts the project as a set of discrete pieces of work

• Activity graphs depict the dependencies among activities

– Nodes: project milestones

– Lines: activities involved

• Activity graph for building a house

Software Engineering

MCET, SE Study Material Page 5

Estimating Completion:

• Adding estimated time in activity graph of each activity to be completed tells us more

about the project's schedule

Critical Path Method (CPM)

• Minimum amount of time it will take to complete a project

– Reveals those activities that are most critical to completing the project on time

Software Engineering

MCET, SE Study Material Page 6

• Real time (actual time): estimated amount of time required for the activity to be
completed

• Available time: amount of time available in the schedule for the activity's completion

• Slack time: the difference between the available time and the real time for that activity

• Critical path: the slack at every node is zero

• can be more than one in a project schedule

• Slack time = available time – real time = latest start time – earliest start time

CPM Bar Chart

• Including information about the early and late start dates

• Asterisks indicate the critical path

Activity Earliest start
time

Latest start
time

Slack

1.1 1 13 12

1.2 1 1 0

1.3 16 16 0

1.4 26 26 0

2.1 36 36 0

2.2 51 51 0

2.3 71 83 12

2.4 81 93 12

2.5 91 103 12

2.6 99 111 12

2.7 104 119 15

2.8 104 116 12

3.1 71 71 0

3.2 83 83 0

3.3 98 98 0

3.4 107 107 0

3.5 107 107 0

3.6 118 118 0

Finish 124 124 0

Software Engineering

MCET, SE Study Material Page 7

Tools to Track Progress

• Example: to track progress of building a communication software

Software Engineering

MCET, SE Study Material Page 8

Tools to Track Progress: Gantt Chart

• Activities shown in parallel

– helps understand which activities can be performed concurrently

Tools to Track Progress: Resource Histogram

• Shows people assigned to the project and those needed for each stage of

development

Software Engineering

MCET, SE Study Material Page 9

Tools to Track Progress: Expenditures Tracking

• An example of how expenditures can be monitored

Project Personnel

• Key activities requiring personnel

– requirements analysis

– system design

– program design

– program implementation

– testing

– training

– maintenance

– quality assurance

• There is great advantage in assigning different responsibilities to different people

Choosing Personnel:

• Ability to perform work

• Interest in work

• Experience with

– similar applications

– similar tools, languages, or techniques

– similar development environments

• Training

Software Engineering

MCET, SE Study Material Page 10

• Ability to communicate with others

• Ability to share responsibility

• Management skills

Communication:

• A project's progress is affected by

– degree of communication

– ability of individuals to communicate their ideas

• Software failures can result from breakdown in communication and understanding

• Line of communication can grow quickly

• If there is n worker in project, then there are n(n-1)/2 pairs of communication

Make Meeting Enhance Project Progress:

• Common complains about meeting

– the purpose is unclear

– the attendees are unprepared

– essential people are late or absent

– the conversation veers away from its purpose

– participants do not discuss, instead argue

– decisions are never enacted afterward

• Ways to ensure a productive meeting

Software Engineering

MCET, SE Study Material Page 11

– clearly decide who should be in the meeting

– develop an agenda

– have someone who tracks the discussion

– have someone who ensures follow-up actions

Work Styles:

• Extroverts: tell their thoughts

• Introverts: ask for suggestions

• Intuitives: base decisions on feelings

• Rationals: base decisions on facts, options

• Horizontal axis: communication styles

• Vertical axis: decision styles

• Work styles determine communication styles

• Understanding workstyles

– help to be flexible

– give information based on other's priorities

• Impacts interaction among customers, developers and users

Project Organization:

• Depends on

Software Engineering

MCET, SE Study Material Page 12

– backgrounds and work styles of team members

– number of people on team

– management styles of customers and developers

• Examples:

– Chief programmer team: one person totally responsible for a system's design

and development

– Egoless approach: hold everyone equally responsible

Project Organization: Chief Programmer Team:

• Each team member must communicate often with chief, but not necessarily with other

team members

• Characteristics of projects and the suggested organizational structure to address them

Structure vs. Creativity:

• Experiment by Sally Phillip examining two groups building a hotel

– structured team: clearly defined responsibilities

– unstructured team: no directions

Highly structured Loosely structured

High certainty Uncertainty

Repetition New techniques or technology

Large projects Small projects

Software Engineering

MCET, SE Study Material Page 13

• The results are always the same

– Structured teams finish a functional Days Inn

– Unstructured teams build a creative, multistoried Taj Mahal and never complete

• Good project management means finding a balance between structure and creativity

Effort Estimation

• Estimating project costs is one of the crucial aspects of project planning and

management

• Estimating cost has to be done as early as possible during the project life cycle

• Type of costs

– facilities: hardware, space, furniture, telephone, etc

– software tools for designing software

– staff (effort): the biggest component of cost

Estimation Should be Done Repeatedly:

• Uncertainty early in the project can affect the accuracy of cost and size estimations

Causes of Inaccurate Estimates:

• Key causes

– Frequent request for change by users

Software Engineering

MCET, SE Study Material Page 14

– Overlooked tasks

– User's lack of understanding of the requirements

– Insufficient analysis when developing estimates

– Lack of coordination of system development, technical services, operations, data
administration, and other functions during development

– Lack of an adequate method or guidelines for estimating

• Key influences

– Complexity of the proposed application system

– Required integration with existing system

– Complexity of the program in the system

– Size of the system expressed as number of functions or programs

– Capabilities of the project team members

– Project team's experience with the application, the programming language, and
hardware

– Capabilities of the project team members

– Database management system

– Number of project team member

– Extent of programming and documentation standards

Type of Estimation Methods:

• Expert judgment

• Top-down or bottom-up

• Analogy: pessimistic (x), optimistic (y), most likely (z); estimate as (x + 4y + z)/6

• Delphi technique: based on the average of ―secret‖ expert judgments

• Algorithmic methods: E = (a + bSc) m(X)

• Walston and Felix model: E = 5.25 S 0.91

• Bailey and Basili model: E = 5.5 + 0.73 S1.16

Expert Judgement: Wolverton Model:

• Two factors that affect difficulty

– whether problem is old (O) or new (N)

– whether it is easy (E) or moderate (M)

Software Engineering

MCET, SE Study Material Page 15

Algorithmic Method: Watson and Felix Model:

• A productivity index is inlcuded in the equation

• There are 29 factors that can affect productivity

– 1 if increase the productivity

– 0 if decrease the productivity

Watson and Felix Model Productivity Factors:

Software Engineering

MCET, SE Study Material Page 16

Software Cost Components

• Machine and tool costs
• Training and travel
• Efforts

– Engineer salaries, benefits, and overhead
• Insurances
• Office, phone and networking, shared facilities and supporting

Estimation Techniques

• Professional or expert judgment
– By experts with experiences in developing software in the application domain

• Past project experiences
– Comparing to similar project in cost datsbase

• Algorithmic cost modeling
– Function point analysis and object point
– COCOMO and COCOMO 2

Expert Judgement: Wolverton Model

• Two factors that affect difficulty
– whether problem is old (O) or new (N)
– whether it is easy (E) or moderate (M)

Effort Estimation

Machine Learning Techniques

• Example: case-based reasoning (CBR)

– user identifies new problem as a case

– system retrieves similar cases from repository

 Difficulty

Type of software OE OM OH NE NM NH

Control 21 27 30 33 40 49
Input/output 17 24 27 28 35 43
Pre/post processor 16 23 26 28 34 42
Algorithm 15 20 22 25 30 35
Data management 24 31 35 37 46 57
Time-critical 75 75 75 75 75 75

Software Engineering

MCET, SE Study Material Page 17

– system reuses knowledge from previous cases

– system suggests solution for new case

• Example: neural network

– cause-effect network ―trained‖ with data from past history

Machine learning techniques: Neural Network

Machine Learning Techniques: CBR

• Involves four steps

– the user identifies a new problem as a case

– the system retrieves similar case from a respository of historical information

– the system reuses knowledge from previous case

– the system suggests a solution for the new case

• Two big hurdles in creating successful CBR system

– characterizing cases

– determining similarity

Software Engineering

MCET, SE Study Material Page 18

FPA – Function Point Analysis

• Analyze the project documentation to obtain a list of logical files

• Identify the boundary between the application and its external environment, and

classify logical files into

– Internal logical files

– External interface files

• Count number of data element types, record element types, and file types

• Compute the function points of all logical files and add them to produce unadjusted

function points

Function Point Calculation

• Based on a combination of program size and technical complexity

– Internal logical files

– external interface files

– External inputs

– External outputs

– External inquiries

• A weight is associated with each characteristics

– Low (e.g., 7)

– Average (e.g., 10)

– High (e.g., 15)

• The unadjusted function point (UFP) is computed by multiplying each raw count with

the weight and summing all values

• The UFP is multiplied by a complexity adjustment factor

– The adjustment factor is between 0.65 and 1.35

Software Engineering

MCET, SE Study Material Page 19

– Computed from general system characteristics (GSC) to assess the

environment and processing complexity

• Function point is computed in two steps.

• The first step is to compute the unadjusted function point (UFP).

• UFP = (Number of inputs)*4 + (Number of outputs)*5 + (Number of inquiries)*4 +

(Number of files)*10 + (Number of interfaces)*10

Number of inputs: Each data item input by the user is counted.

Number of outputs: The outputs considered refer to reports printed, screen outputs,

 error messages produced, etc.

Number of inquiries: Number of inquiries is the number of distinct interactive queries

 which can be made by the users i.e User Commands

Number of files: Each logical file is counted. A logical file means groups of logically

 related data. Thus, logical files can be data structures or physical files.

Number of interfaces: Here the interfaces considered are the interfaces used to

 exchange information with other syste

Function Point Calculation

Usage of Function Point

Software Engineering

MCET, SE Study Material Page 20

• FPs can be used to estimate LOC (Lines of Code) or efforts (in man-month)

– Language dependent: different languages have different LOC or man-month

per FP

– LOC = AVC * number of function points

– AVC is a language-dependent factor varying from 200-300 for assemble

language to 2-40 for a 4GL

• FPs are very subjective and dependent on the estimator

– Difficult to have automatic function-point counting

• Work-effort = 0.2 * TDET + 2.71 * TGRE + 79

– Work-effort: person-days

– TDET: number of data elements

• Unique user identifiable field on an internal logical file or external

interface file (e.g., var or field in structure)

– TGRE: number of data element groups

• Unique user identifiable subgroup of data elements within an internal

logical file or external interface file (e.g., structure, union, or other record

type)

Object Point

• Object points are an alternative to function point when 4GLs or object-oriented

languages are used for development

• Object points are not number of object classes

• The number of object points in a program is a weighted estimate of

– The number of separate screens that are displayed

– The number of reports that are produced by the system

– The number of code modules that must be developed

• Object points are easier to estimate from a specification than function points as they

are simply concerned with screens, reports and code modules

Software Engineering

MCET, SE Study Material Page 21

• They can be estimated at an early point in the development process.

• Can be used for web-based development

Constructive Cost Model

• An empirical model based on database of different projects

• History

– COCOMO (original COCOMO model)

• Classify project into three classes

• Basic, intermediate and advanced stages

• Estimate project efforts, duration and staff from lines of code

– COCOMO 2

• Three levels: different development stage

• Takes into account on development approaches, component reuse, etc

• More complicated

Project Classes in COCOMO

• Organic mode:

– Small teams, in familiar environment, well-understood applications, no difficult

non-functional requirements

– Examples: most simple data processing

• Semi-detached mode

– Project team may have experience mixture, system may have more significant

non-functional constraints, organization may have less familiarity with

application

– Examples: transaction processing, distributed data collection and monitoring

• Embedded

Software Engineering

MCET, SE Study Material Page 22

– Hardware/software systems, tight constraints, highly distributed and networking

requirements

– Examples: real-time systems, embedded software

COCOMO Stages

• Basic

– Gives an estimate based on product

attributes

• Intermediate

– Modifies basic estimate using project and process attributes

• Advanced

– Estimates project phases and parts separately

COCOMO Estimates

• Primary parameter

– Lines of code

– KDSI (thousands of delivered source instructions)

• Estimates

– Project efforts: in terms of man-month

– Project duration

– Staffing requirements

Basic COCOMO Formula

• Organic mode

– Man-month (PM) = 2.4 (KDSI) 1.05

• Semi-detached mode

– Man-month (PM) = 3 (KDSI) 1.12

• Embedded mode

– Man-month (PM) = 3.6 (KDSI) 1.2

Software Engineering

MCET, SE Study Material Page 23

Project Duration and Staffing

• Organic

– Calendar time (TDEV) = 2.5 (PM) 0.38

• Semi-detached

– Calendar time (TDEV) = 2.5 (PM) 0.35

• Embedded mode

– Calendar time (TDEV) = 2.5 (PM) 0.32

• Personnel requirement: N = PM/TDEV

Example:

Organic mode project, 44 KLOC

– PM = 2.4 (44) 1.05 = 128 person months

– TDEV = 2.5 (128) 0.38 = 16 months

– N = 128/16 = 8 people

• Embedded mode project, 44 KLOC

– PM = 3.6 (44)1.2 = 338 person-months

– TDEV = 2.5 (338)0.32 = 16 months

– N = 338/16 = 21 people

COCOMO 2

• COCOMO 2 consists of three models that allow increasingly detailed estimates to be

made as development progresses

– Application composition (or early prototyping) model

• Used during the early stages of a project

• Estimates based on object points and a simple formula is used for effort

estimation

– Early design model

Software Engineering

MCET, SE Study Material Page 24

• Used when requirements are stabilized

• Estimates based on function points that are translated to LOC

– Post-architecture model

• Used during development stages

• Estimates based on lines of source code

Early Prototyping Model:

• Used during the early stages of a project

• To estimate the efforts for prototyping or for projects that is composed of components

• Based on weighted object points

• Formula

– PM = (NOP ´ (1 - % of reuse/100)) / PROD

• PM is the effort in person-months

• NOP is the number of object points

• PROD is the productivity

Software Engineering

MCET, SE Study Material Page 25

Early Design Model

• Estimates is made after the requirements have been stabilized

• Based on standard algorithmic models

– PM = A ´ SizeB ´ M + PMm

• M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ´ FCIL ´ SCED

• PMm = (ASLOC ´ (AT/100)) / ATPROD

• A = 2.5 in initial calibration

• Size in KLOC

• B ranges from 1.1 to 1.24 depending on novelty of the project,

development flexibility, risk management approaches and the process

maturity

Multipliers

• M represents the capability of the developers, the non-functional requirements, the

familiarity with the development platform, etc.

– RCPX - product reliability and complexity

– RUSE – required reusability

– PDIF - platform difficulty

– PREX - personnel experience

– PERS - personnel capability

– SCED – required development schedule

– FCIL - the team support facilities

• PMm reflects the amount of automatically generated code

– ASLOC: number of automatically generated lines of source code

– ASPROD: productivity level for this type of code production

– AT: percentage of total system code that is automatically generated

Software Engineering

MCET, SE Study Material Page 26

Risk Management

What is a Risk?

• Risk is an unwanted event that has negative consequences

• Distinguish risks from other project events

– Risk impact: the loss associated with the event

– Risk probability: the likelihood that the event will occur

• Quantify the effect of risks

– Risk exposure = (risk probability) x (risk impact)

• Risk sources: generic and project-specific

Risk Management Activities:

• Example of risk exposure calculation

PU: prob. of unwanted outcome

LU: lost assoc with unwanted outcome

Software Engineering

MCET, SE Study Material Page 27

• Three strategies for risk reduction

– Avoiding the risk: change requirements for performance or functionality

– Transferring the risk: transfer to other system, or buy insurance

– Assuming the risk: accept and control it

• Cost of reducing risk

– Risk leverage = (risk exposure before reduction – (risk exposure after

reduction) / (cost of risk reduction)

Boehm’s Top Ten Risk Items:

• Personnel shortfalls

• Unrealistic schedules and budgets

• Developing the wrong functions

• Developing the wrong user interfaces

• Gold-plating

• Continuing stream of requirements changes

• Shortfalls in externally-performed tasks

• Shortfalls in externally-furnished components

• Real-time performance shortfalls

• Straining computer science capabilities

Project Plan

Software Engineering

MCET, SE Study Material Page 28

Project Plan Contents:

• Project scope

• Project schedule

• Project team organization

• Technical description of system

• Project standards and procedures

• Quality assurance plan

• Configuration management plan

• Documentation plan

• Data management plan

• Resource management plan

• Test plan

• Training plan

• Security plan

• Risk management plan

• Maintenance plan

Project Plan Lists:

• List of the people in development team

• List of hardware and software

• Standards and methods, such as

– algorithms

– tools

– review or inspection techniques

Software Engineering

MCET, SE Study Material Page 29

– design language or representaions

– coding languages

– testing techniques

Process Models and Project Management

Enrollment Management Model: Digital Alpha AXP:

• Establish an appropriately large shared vision

• Delegate completely and elicit specific commitments from participants

• Inspect vigorously and provide supportive feedback

• Acknowledge every advance and learn as the program progresses

• Vision: to ―enroll‖ the related programs, so they all shared common goals

• An organization that allowed technical focus and project focus to contribute to the

overall program

Software Engineering

MCET, SE Study Material Page 30

Accountability modeling: Lockheed Martin:
• Matrix organization

– Each engineer belongs to a functional unit based on type of skill
• Integrated product development team

– Combines people from different functional units into interdisciplinary work unit
• Each activity tracked using cost estimation, critical path analysis, schedule tracking

– Earned value a common measure for progress
• Accountability model used in F-16 Project

Software Engineering

MCET, SE Study Material Page 31

• Teams had multiple, overlapping activities

• An activity map used to illustrate progress on each activity

• Each activitiy's progress was tracked using earned value chart

Software Engineering

MCET, SE Study Material Page 32

Anchoring (Common) Milestones:

• Life cycle objectives

• Objectives: Why is the system being developed?

• Milestones and schedules: What will be done by when?

• Responsibilities: Who is responsible for a function?

• Approach: How will the job be done, technically and managerially?

• Resources: How much of each resource is needed?

• Feasibility: Can this be done, and is there a good business reason for doing

it?

• Life-cycle architecture: define the system and software architectures and address

architectural choices and risks

• Initial operational capability: readiness of software, deployment site, user training

• The Win-Win spiral model suggested by Boehm is used as supplement to the

milestones

Information System Example

Piccadilly System:

• Using COCOMO II

Software Engineering

MCET, SE Study Material Page 33

• Three screens and one report

– Booking screen: complexity simple, weight 1

– Ratecard screen: complexity simple, weigth 1

– Availability screen: complexity medium, weight 2

– Sales report: complexity medium, weight 5

• Estimated effort = 182 person-month

Ariane-5 System:

• The Ariane-5 destruction might have been prevented had the project managers

developed a risk management plan

– Risk identification: possible problem with reuse of the Ariane-4)

– Risk exposure: prioritization would have identified if the inertial reference

system (SRI) did not work as planned

– Risk control: assesment of the risk using reuse software

– Risk avoidance: using SRI with two different designs

PART - II

The Problems with our Requirements Practices

• We have trouble understanding the requirements that we do acquire from the

customer

• We often record requirements in a disorganized manner

• We spend far too little time verifying what we do record

• We allow change to control us, rather than establishing mechanisms to control change

• Most importantly, we fail to establish a solid foundation for the system or software that

the user wants built

• Many software developers argue that

• Building software is so compelling that we want to jump right in (before having a

clear understanding of what is needed)

Software Engineering

MCET, SE Study Material Page 34

• Things will become clear as we build the software

• Project stakeholders will be able to better understand what they need only after

examining early iterations of the software

• Things change so rapidly that requirements engineering is a waste of time

• The bottom line is producing a working program and that all else is secondary

• All of these arguments contain some truth, especially for small projects that take less

than one month to complete

• However, as software grows in size and complexity, these arguments begin to break

down and can lead to a failed software project

A Solution: Requirements Engineering

• Begins during the communication activity and continues into the modeling activity

• Builds a bridge from the system requirements into software design and construction

• Allows the requirements engineer to examine

– the context of the software work to be performed

– the specific needs that design and construction must address

– the priorities that guide the order in which work is to be completed

– the information, function, and behavior that will have a profound impact on the

resultant design

Requirements engineering tasks

Seven distinct tasks

- Inception

- Elicitation

- Elaboration

- Negotiation

- Specification

- Validation

- Requirements management

• Some of these tasks may occur in parallel and all are adapted to the needs of the

project

Software Engineering

MCET, SE Study Material Page 35

• All strive to define what the customer wants

• All serve to establish a solid foundation for the design and construction of the software

1. Inception Task

 During inception, the requirements engineer asks a set of context free questions to

establish…

a. A basic understanding of the problem

b. The people who want a solution

c. The nature of the solution that is desired

d. The effectiveness of preliminary communication and collaboration between the

customer and the developer

 Through these questions, the requirements engineer needs to…

e. Identify the stakeholders

f. Recognize multiple viewpoints

g. Work toward collaboration

h. Break the ice and initiate the communication

 The First Set of Questions

• Who is behind the request for this work?

• Who will use the solution?

Software Engineering

MCET, SE Study Material Page 36

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

 The Next Set of Questions

• How would you characterize "good" output that would be generated by a successful

solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the business environment in which the solution will be

used?

• Will special performance issues or constraints affect the way the solution is

approached?

 The Final Set of Questions

• Are you the right person to answer these questions? Are your answers "official"?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

2. Elicitation Task

• Eliciting requirements is difficult because of

– Problems of scope in identifying the boundaries of the system or specifying too

much technical detail rather than overall system objectives

– Problems of understanding what is wanted, what the problem domain is, and

what the computing environment can handle (Information that is believed to be

"obvious" is often omitted)

– Problems of volatility because the requirements change over time

• Elicitation may be accomplished through two activities

Software Engineering

MCET, SE Study Material Page 37

– Collaborative requirements gathering

– Quality function deployment

 Basic Guidelines of Collaborative Requirements Gathering

A collaborative team-oriented approach to requirements gathering encourage a team of

stakeholders and developers work together to identify the problem, propose elements of

the solution, negotiate different approaches and specify set of solutions.

Different approaches to collaborative RG:

• Meetings are conducted and attended by both software engineers, customers, and

other interested stakeholders

• Rules for preparation and participation are established

• An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas

• A "facilitator" (customer, developer, or outsider) controls the meeting

• A "definition mechanism" is used such as work sheets, flip charts, wall stickers,

electronic bulletin board, chat room, or some other virtual forum

• The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements

 Quality Function Deployment

 This is a technique that translates the needs of the customer into technical

requirements for software

 It emphasizes an understanding of what is valuable to the customer and then deploys

these values throughout the engineering process through functions, information, and

tasks

 It identifies three types of requirements

o Normal requirements: These requirements are the objectives and goals stated

for a product or system during meetings with the customer

Software Engineering

MCET, SE Study Material Page 38

o Expected requirements: These requirements are implicit to the product or

system and may be so fundamental that the customer does not explicitly state

them

o Exciting requirements: These requirements are for features that go beyond the

customer's expectations and prove to be very satisfying when present

Elicitation Work Products

• A statement of need and feasibility

• A bounded statement of scope for the system or product

• A list of customers, users, and other stakeholders who participated in requirements

elicitation

• A description of the system's technical environment

• A list of requirements (organized by function) and the domain constraints that apply to

each

• A set of preliminary usage scenarios (in the form of use cases) that provide insight into

the use of the system or product under different operating conditions

• Any prototypes developed to better define requirements

3. Elaboration Task

 During elaboration, the software engineer takes the information obtained during

inception and elicitation and begins to expand and refine it

 Elaboration focuses on developing a refined technical model of software functions,

features, and constraints

 It is an analysis modeling task

o Use cases are developed

o Domain classes are identified along with their attributes and relationships

o State machine diagrams are used to capture the life on an object

 The end result is an analysis model that defines the functional, informational, and

behavioral domains of the problem

 Developing Use Cases

Software Engineering

MCET, SE Study Material Page 39

 Step One – Define the set of actors that will be involved in the story

o Actors are people, devices, or other systems that use the system or product

within the context of the function and behavior that is to be described

o Actors are anything that communicate with the system or product and that are

external to the system itself

 Step Two – Develop use cases, where each one answers a set of questions

Eg: Safehome Control Panel

Software Engineering

MCET, SE Study Material Page 40

Questions Commonly Answered by a Use Case

• Who is the primary actor(s), the secondary actor(s)?

• What are the actor’s goals?

• What preconditions should exist before the scenario begins?

Software Engineering

MCET, SE Study Material Page 41

• What main tasks or functions are performed by the actor?

• What exceptions might be considered as the scenario is described?

• What variations in the actor’s interaction are possible?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

Elements of the Analysis Model

 Scenario-based elements

o Functional—processing narratives for software functions

o Use-case—descriptions of the interaction between an ―actor‖ and the

 system

 Class-based elements

o Implied by scenarios

 Behavioral elements

o State diagram

 Flow-oriented elements

o Data flow diagram

Scenario-based elements

• Describe the system from the user's point of view using scenarios that are depicted in

use cases and Activity diagrams

Activity diagrams

• Supplements the use case by providing a graphical representation of the flow of

interaction within a specific scenario

• Uses flowchart-like symbols

– Rounded rectangle - represent a specific system function/action

– Arrow - represents the flow of control from one function/action to another

– Diamond - represents a branching decision

– Solid bar – represents the fork and join of parallel activities

Software Engineering

MCET, SE Study Material Page 42

Use-case

• Class-based elements

• Identify the domain classes for the objects manipulated by the actors, the attributes of

these classes, and how they interact with one another; they utilize class diagrams to

do this

Software Engineering

MCET, SE Study Material Page 43

Behavioral elements

– Use state diagrams to represent the state of the system, the events that cause

the system to change state, and the actions that are taken as a result of a

particular event; can also be applied to each class in the system

State Diagram:

• Flow-oriented elements

– Use data flow diagrams to show the input data that comes into a system, what

functions are applied to that data to do transformations, and what resulting

output data are produced

4. Negotiation Task

 During negotiation, the software engineer reconciles the conflicts between what the

customer wants and what can be achieved given limited business resources

 Requirements are ranked (i.e., prioritized) by the customers, users, and other

stakeholders

 Risks associated with each requirement are identified and analyzed

Software Engineering

MCET, SE Study Material Page 44

 Rough guesses of development effort are made and used to assess the impact of

each requirement on project cost and delivery time

 Using an iterative approach, requirements are eliminated, combined and/or modified

so that each party achieves some measure of satisfaction

The Art of Negotiation

• Recognize that it is not competition

• Map out a strategy

• Listen actively

• Focus on the other party’s interests

• Don’t let it get personal

• Be creative

• Be ready to commit

5. Specification Task

 A specification is the final work product produced by the requirements engineer

 It is normally in the form of a software requirements specification

 It serves as the foundation for subsequent software engineering activities

 It describes the function and performance of a computer-based system and the

constraints that will govern its development

 It formalizes the informational, functional, and behavioral requirements of the

proposed software in both a graphical and textual format

Typical Contents of a Software Requirements Specification

• Requirements

– Required states and modes

– Software requirements grouped by capabilities (i.e., functions, objects)

– Software external interface requirements

– Software internal interface requirements

– Software internal data requirements

– Other software requirements (safety, security, privacy, environment, hardware,

software, communications, quality, personnel, training, logistics, etc.)

Software Engineering

MCET, SE Study Material Page 45

– Design and implementation constraints

• Qualification provisions to ensure each requirement has been met

– Demonstration, test, analysis, inspection, etc.

• Requirements traceability

– Trace back to the system or subsystem where each requirement applies

6. Validation Task

 During validation, the work products produced as a result of requirements engineering

are assessed for quality

 The specification is examined to ensure that

o all software requirements have been stated unambiguously

o inconsistencies, omissions, and errors have been detected and corrected

o the work products conform to the standards established for the process, the

project, and the product

 The formal technical review serves as the primary requirements validation mechanism

o Members include software engineers, customers, users, and other stakeholders

7. Requirements management

 Requirements are likely to change for large software systems and as such

requirements management process is required to handle changes.

 Reasons for requirements changes

 (a) Diverse Users community where users have different requirements and priorities

 (b) System customers and end users are different

 (c) Change in the business and technical environment after installation

 Two classes of requirements

 (a) Enduring requirements: Relatively stable requirements

 (b) Volatile requirements: Likely to change during system development process or

during operation

Requirements evolution

Software Engineering

MCET, SE Study Material Page 46

Requirements management planning

An essential first stage in requirement management process

• Planning process consists of the following

 1.Requirements identification

 -- Each requirement must have unique tag for cross reference

 and traceability

 2.Change management process

 -- Set of activities that assess the impact and cost of changes

 3.Traceability policy

 -- A matrix showing links between requirements and other

 elements of software development

 4.CASE tool support

 --Automatic tool to improve efficiency of change management

 process. Automated tools are required for requirements

 storage, change management and traceability management

Requirements Management Task

• During requirements management, the project team performs a set of activities to

identify, control, and track requirements and changes to the requirements at any time

as the project proceeds

• Each requirement is assigned a unique identifier

• The requirements are then placed into one or more traceability tables

• These tables may be stored in a database that relate features, sources,

dependencies, subsystems, and interfaces to the requirements

Software Engineering

MCET, SE Study Material Page 47

• A requirements traceability table is also placed at the end of the software

requirements specification

Traceability

• Maintains three types of traceability information.

1.Source traceability

--Links the requirements to the stakeholders

2. Requirements traceability

--Links dependent requirements within the requirements document

3. Design traceability

-- Links from the requirements to the design module

The requirements engineering process

FUNCTIONAL REQUIREMENTS

"A requirement specifies a function that a system or component must be able to

perform." Should be both complete and consistent

• Completeness

 -- All services required by the user should be

 defined

Software Engineering

MCET, SE Study Material Page 48

• Consistent

 -- Requirements should not have contradictory

 definition

• Difficult to achieve completeness and consistency for large system

Typical functional requirements are:

• Business Rules

• Transaction corrections, adjustments, cancellations

• Administrative functions

• Authentication

• Authorization –functions user is delegated to perform

• Audit Tracking

• External Interfaces

• Certification Requirements

• Reporting Requirements

• Historical Data

• Legal or Regulatory Requirements

NON-FUNCTIONAL REQUIREMENTS

"A non-functional requirement is a statement of how a system must behave, it is a
constraint upon the systems behavior."

Types of Non-functional Requirements

1.Product Requirements

 -Specify product behavior

 -Include the following

• Usability

• Efficiency

• Reliability

• Portability

2.Organisational Requirements

--Derived from policies and procedures

--Include the following:

Software Engineering

MCET, SE Study Material Page 49

• Delivery

• Implementation

• Standard

3.External Requirements

 -- Derived from factors external to the system and

 its development process

 --Includes the following

 Interoperability

 Ethical

 Legislative

Software Engineering

MCET, SE Study Material Page 50

Software Engineering

MCET, SE Study Material Page 51

