
Software Engineering

MCET, SE Study Material Page 1

 UNIT-III

Building the Analysis Model: Requirements Analysis Modeling approaches, Data
modeling concepts, Object oriented analysis , Scenario based modeling, Flow oriented
modeling, Class-based modeling, Creating a Behavioral Modeling.

Design Engineering: Design with in the context of SE, Design Process and Design
quality, Design concepts, The Design Model, Pattern-based Software Design.

Building the Analysis Model

- Requirements analysis

- Flow-oriented modeling

- Scenario-based modeling

- Class-based modeling

- Behavioral modeling

Goals of Analysis Modeling

• Provides the first technical representation of a system

• Is easy to understand and maintain

• Deals with the problem of size by partitioning the system

• Uses graphics whenever possible

• Differentiates between essential information versus implementation information

• Helps in the tracking and evaluation of interfaces

• Provides tools other than narrative text to describe software logic and policy

A Set of Models

• Flow-oriented modeling – provides an indication of how data objects are

transformed by a set of processing functions

• Scenario-based modeling – represents the system from the user's point of view

• Class-based modeling – defines objects, attributes, and relationships

• Behavioral modeling – depicts the states of the classes and the impact of

events on these states

Software Engineering

MCET, SE Study Material Page 2

Requirements Analysis
Purpose

• Specifies the software's operational characteristics

• Indicates the software's interfaces with other system elements

• Establishes constraints that the software must meet

• Provides the software designer with a representation of information, function, and

behavior

– This is later translated into architectural, interface, class/data and

component-level designs

• Provides the developer and customer with the means to assess quality once the

software is built

Overall Objectives
• Three primary objectives

– To describe what the customer requires

– To establish a basis for the creation of a software design

– To define a set of requirements that can be validated once the software is

built

• All elements of an analysis model are directly traceable to parts of the design

model, and some parts overlap

Analysis Rules of Thumb
• The analysis model should focus on requirements that are visible within the

problem or business domain
– The level of abstraction should be relatively high

• Each element of the analysis model should add to an overall understanding of

software requirements and provide insight into the following

– Information domain, function, and behavior of the system

• The model should delay the consideration of infrastructure and other non-

functional models until the design phase

– First complete the analysis of the problem domain

• The model should minimize coupling throughout the system

– Reduce the level of interconnectedness among functions and classes

• The model should provide value to all stakeholders

• The model should be kept as simple as can be

Software Engineering

MCET, SE Study Material Page 3

Domain Analysis

• Definition

– The identification, analysis, and specification of common, reusable

capabilities within a specific application domain

– Do this in terms of common objects, classes, subassemblies, and

frameworks

• Sources of domain knowledge

– Technical literature

– Existing applications

– Customer surveys and expert advice

– Current/future requirements

• Outcome of domain analysis

– Class taxonomies

– Reuse standards

– Functional and behavioral models

– Domain languages

Analysis Modeling Approaches

• Structured analysis

– Considers data and the processes that transform the data as separate

entities

– Data is modeled in terms of only attributes and relationships (but no

operations)

– Processes are modeled to show the 1) input data, 2) the transformation

that occurs on that data, and 3) the resulting output data

• Object-oriented analysis

– Focuses on the definition of classes and the manner in which they

collaborate with one another to fulfill customer requirements

Software Engineering

MCET, SE Study Material Page 4

Elements of the Analysis Model

Software Engineering

MCET, SE Study Material Page 5

Flow-oriented Modeling

• Data Flow Diagram

– Depicts how input is transformed into output as data objects move through

a system

• Process Specification

– Describes data flow processing at the lowest level of refinement in the

data flow diagrams

• Control Flow Diagram

– Illustrates how events affect the behavior of a system through the use of

state diagrams

Data Flow Diagram

Software Engineering

MCET, SE Study Material Page 6

Software Engineering

MCET, SE Study Material Page 7

Context-level DFD for SafeHome security function

Grammatical Parse

• The SafeHome security function enables the homeowner to configure the

security system when it is installed, monitors all sensors connected to the

security system, and interacts with the homeowner through the Internet, a PC, or

a control panel.

• During installation, the SafeHome PC is used to program and configure the

system. Each sensor is assigned a number and type, a master password is

programmed for arming and disarming the system, and telephone number(s)

are input for dialing when a sensor event occurs.

• When a sensor event is recognized, the software invokes an audible alarm

attached to the system. After a delay time that is specified by the homeowner

during system configuration activities, the software dials a telephone number of a

monitoring service, provides information about the location, reporting the

nature of the event that has been detected. The telephone number will be

redialed every 20 seconds until a telephone connection is obtained.

• The homeowner receives security information via a control panel, the PC, or a

browser, collectively called an interface. The interface displays prompting

messages and system status information on the control panel, the PC, or the

browser window. Homeowner interaction takes the following form…

Software Engineering

MCET, SE Study Material Page 8

Level 2 DFD that refines the monitor sensors process

Software Engineering

MCET, SE Study Material Page 9

Control Flow Diagram

Software Engineering

MCET, SE Study Material Page 10

Diagram Layering and Process Refinement

Scenario-based Modeling

 Use case text

 Use case diagrams

 Activity diagrams

 Swim lane diagrams

Writing Use Cases

Software Engineering

MCET, SE Study Material Page 11

Use Case Diagram

Example Use Case Diagram:

Alternative Actions

• Can the actor take some other action at this point?

• Is it possible that the actor will encounter some error condition at this point?

• Is it possible that the actor will encounter behavior invoked by some event

outside the actor’s control?

Activity Diagrams

• The use case by providing a graphical representation of the flow of interaction

within a specific scenario

• Uses flowchart-like symbols

– Rounded rectangle - represent a specific system function/action

– Arrow - represents the flow of control from one function/action to another

– Diamond - represents a branching decision

– Solid bar – represents the fork and join of parallel activities

Software Engineering

MCET, SE Study Material Page 12

 Example Activity Diagram

Activity diagram

For Access camera surveillance—display camera views function

Software Engineering

MCET, SE Study Material Page 13

Swimlane diagram

Class-based Modeling

Identifying Analysis Classes

1) Perform a grammatical parse of the problem statement or use cases

2) Classes are determined by underlining each noun or noun clause

3) A class required to implement a solution is part of the solution space

4) A class necessary only to describe a solution is part of the problem space

5) A class should NOT have an imperative procedural name (i.e., a verb)

6) List the potential class names in a table and "classify" each class according to

some taxonomy and class selection characteristics

7) A potential class should satisfy nearly all (or all) of the selection characteristics to

be considered a legitimate problem domain class

Software Engineering

MCET, SE Study Material Page 14

Potential

classes

General classification Selection

Characteristics

• General classifications for a potential class

– External entity (e.g., another system, a device, a person)

– Thing (e.g., report, screen display)

– Occurrence or event (e.g., movement, completion)

– Role (e.g., manager, engineer, salesperson)

– Organizational unit (e.g., division, group, team)

– Place (e.g., manufacturing floor, loading dock)

– Structure (e.g., sensor, vehicle, computer)

Software Engineering

MCET, SE Study Material Page 15

• Six class selection characteristics

1) Retained information

– Information must be remembered about the system over time

2) Needed services

– Set of operations that can change the attributes of a class

3) Multiple attributes

– Whereas, a single attribute may denote an atomic variable rather

than a class

4) Common attributes

– A set of attributes apply to all instances of a class

5) Common operations

– A set of operations apply to all instances of a class

6) Essential requirements

– Entities that produce or consume information

Defining Attributes of a Class

• Attributes of a class are those nouns from the grammatical parse that reasonably

belong to a class

• Attributes hold the values that describe the current properties or state of a class

• An attribute may also appear initially as a potential class that is later rejected

because of the class selection criteria

• In identifying attributes, the following question should be answered

– What data items (composite and/or elementary) will fully define a specific

class in the context of the problem at hand?

• Usually an item is not an attribute if more than one of them is to be associated

with a class

Defining Operations of a Class

• Operations define the behavior of an object

• Four categories of operations

– Operations that manipulate data in some way to change the state of an

object (e.g., add, delete, modify)

– Operations that perform a computation

Software Engineering

MCET, SE Study Material Page 16

– Operations that inquire about the state of an object

– Operations that monitor an object for the occurrence of a controlling event

• An operation has knowledge about the state of a class and the nature of its

associations

• The action performed by an operation is based on the current values of the

attributes of a class

• Using a grammatical parse again, circle the verbs; then select the verbs that

relate to the problem domain classes that were previously identified

Example Class Box

Association, Generalization and Dependency

• Association

– Represented by a solid line between two classes directed from the source

class to the target class

– Used for representing (i.e., pointing to) object types for attributes

– May also be a part-of relationship (i.e., aggregation), which is represented

by a diamond-arrow

• Generalization

– Portrays inheritance between a super class and a subclass

– Is represented by a line with a triangle at the target end

Software Engineering

MCET, SE Study Material Page 17

• Dependency

– A dependency exists between two elements if changes to the definition of

one element (i.e., the source or supplier) may cause changes to the other

element (i.e., the client)

– Examples

• One class calls a method of another class

• One class utilizes another class as a parameter of a method

CRC Modeling: A CRC model index card for FloorPlan class

Software Engineering

MCET, SE Study Material Page 18

Class Responsibilities

• Distribute system intelligence across classes.

• State each responsibility as generally as possible.

• Put information and the behavior related to it in the same class.

• Localize information about one thing rather than distributing it across multiple

classes.

• Share responsibilities among related classes, when appropriate.

Class Collaborations

• Relationships between classes:

– is-part-of — used when classes are part of an aggregate class.

– has-knowledge-of — used when one class must acquire information from

another class.

– depends-on — used in all other cases.

Behavioral Modeling

Creating a Behavioral Model:

1) Identify events found within the use cases and implied by the attributes in the

class diagrams

2) Build a state diagram for each class, and if useful, for the whole software system

Identifying Events in Use Cases

• An event occurs whenever an actor and the system exchange information

• An event is NOT the information that is exchanged, but rather the fact that

information has been exchanged

• Some events have an explicit impact on the flow of control, while others do not

– An example is the reading of a data item from the user versus comparing

the data item to some possible value

Building a State Diagram

• A state is represented by a rounded rectangle

• A transition (i.e., event) is represented by a labeled arrow leading from one state

to another

– Syntax: trigger-signature [guard]/activity

Software Engineering

MCET, SE Study Material Page 19

• The active state of an object indicates the current overall status of the object as

is goes through transformation or processing

– A state name represents one of the possible active states of an object

• The passive state of an object is the current value of all of an object's attributes

– A guard in a transition may contain the checking of the passive state of an

object

Example State Diagram

Software Engineering

MCET, SE Study Material Page 20

Sequence Diagram

Design Engineering

The design model consists of the data design, architectural design, interface design,

and component-level design.

The goal of design engineering is to produce a model or representation that exhibits

firmness, commodity, and delight.

To accomplish this, a designer must practice diversification and then

Design within the Context of Software Engineering

Software design is the last software engineering action within the modeling activity and

sets the stage for construction (code generation and testing).

The flow of information during software design is illustrated in Figure below. The
analysis model, manifested by scenario-based, class-based, flow-oriented and

behavioral elements, feed the design task.

Software Engineering

MCET, SE Study Material Page 21

Analysis Model

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

data flow diagrams

control-flow diagrams
processing narratives

f l ow- or i e nt e d

e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d

e l e me nt s

sc e na r i o- ba se d

e l e me nt s

class diagrams
analysis packages

CRC models
collaboration diagrams

state diagrams

sequence diagrams
D a t a / Cla ss D e sig n

A rc h it e c t u ra l D e sign

In t e rf a c e D e sig n

Com pon e nt -

L e v e l D e sig n

Design Model

The architectural design defines the relationship between more structural elements of
the software, the architectural styles and design patterns that can be used to achieve
the requirements defined for the system, and the constraints that affect the way in which

the architectural design can be implemented.

The architectural design can be derived from the System Specs, the analysis model,

and interaction of subsystems defined within the analysis model.

The interface design describes how the software communicates with systems that
interpolate with it, and with humans who use it. An interface implies a flow of

information (data, and or control) and a specific type of behavior.

The component-level design transforms structural elements of the software architecture
into a procedural description of software components.

The importance of software design can be stated with a single word – quality. Design is
the place where quality is fostered in software engineering. Design provides us with
representations of software that can be assessed for quality. Design is the only way
that we can accurately translate a customer’s requirements into a finished software

product or system.

Software Engineering

MCET, SE Study Material Page 22

Design Process and Design Quality

Software design is an iterative process through which requirements are translated into a

―blueprint‖ for constructing the software.

Initially, the blueprint depicts a holistic view of software, i.e. the design is represented
at a high-level of abstraction.

Throughout the design process, the quality of the evolving design is assessed with a

series of formal technique reviews or design walkthroughs.

Three characteristics serve as a guide for the evaluation of a good design:

 The design must implement all of the explicit requirements contained in the analysis
model, and it must accommodate all of the implicit requirements desired by the
customer.

 The design must be a readable, understandable guide for those who generate code
and for those who test and subsequently support the software.

 The design should provide a complete picture of the software, addressing the data,
functional, and behavioral domains from an implementation perspective.

Quality Guidelines

In order to evaluate the quality of a design representation, we must establish technical

criteria for good design.

1. A design should exhibit an architecture that:
(1) Has been created using recognizable architectural styles or patterns,

(2) Is composed of components that exhibit good design characteristics, and

(3) Can be implemented in an evolutionary fashion

a. For smaller systems, design can sometimes be developed linearly.
2. A design should be modular; that is, the software should be logically partitioned into

elements or subsystems
3. A design should contain distinct representations of data, architecture, interfaces, and

components.
4. A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.
5. A design should lead to components that exhibit independent functional

characteristics.
6. A design should lead to interfaces that reduce the complexity of connections

between components and with the external environment.
7. A design should be derived using a repeatable method that is driven by information

obtained during software requirements analysis.
8. A design should be represented using a notation that effectively communicates its

meaning.

Software Engineering

MCET, SE Study Material Page 23

Quality Attributes

Hewlett-Packard developed a set of software quality attributes that has been given the

acronym FURPS. The FURPS quality attributes represent a target for all software

design:

 Functionality: is assessed by evaluating the features set and capabilities of the

program, the generality of the functions that are delivered, and the security of the

overall system.

 Usability: is assessed by considering human factors, overall aesthetics, consistency,

and documentation.

 Reliability: is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure, the ability to recover from

failure, and the predictability of the program.

 Performance: is measured by processing speed, response time, resource

consumption, throughput, and efficiency.

 Supportability: combines the ability to extend the program extensibility, adaptability,

serviceability  maintainability. In addition, testability, compatibility, configurability,

etc.

Design Concepts

The significant design concepts are abstraction, refinement, modularity, architecture,
patterns, refactoring, functional independence, information hiding, and OO design

concepts.

Abstraction

At the highest level of abstraction, a solution is stated in broad terms using the language
of the problem environment. At lower levels of abstraction, a more detailed description

of the solution is provided.

As we move through different levels of abstraction, we work to create procedural and
data abstractions. A procedural abstraction refers to a sequence of instructions that
have a specific and limited function. An example of a procedural abstraction would be
the word open for a door.

A data abstraction is a named collection of data that describes a data object. In the
context of the procedural abstraction open, we can define a data abstraction called

Software Engineering

MCET, SE Study Material Page 24

door. Like any data object, the data abstraction for door would encompass a set of

attributes that describe the door (e.g. door type, swing direction, weight).

Architecture

Software architecture alludes to the ―overall structure of the software and the ways in
which the structure provides conceptual integrity for a system.‖

In its simplest from, architecture is the structure of organization of program components
(modules), the manner in which these components interact, and the structure of data

that are used by the components.

Te goal of software design is to derive an architectural rendering of a system. This
rendering serves as a framework from which detailed design activities are constructed.

A set of architectural patterns enable a software engineer to reuse design-level

concepts.

The architectural design can be represented using one or more of a number of different

models.

Structural models represent architecture as an organized collection of program
components.

Framework models increase the level of design abstraction by attempting to identify
repeatable architectural design frameworks that are encountered in similar types of

applications.

Dynamic models address the behavioral aspects of the program architecture,
indicating how the structure or system configuration may change as a function of

external events.

Process models focus on the design of business or technical process that the system

must accommodate.

Functional models can be used to represent the functional hierarchy of a system.

Architectural design will be discussed in Chapter 10.

Patterns

A design pattern ―conveys the essence of a proven design solution to a recurring
problem within a certain context amidst computing concerns.‖

A design pattern describes a design structure that solves a particular design problem
within a specific context and amid ―forces‖ that may have an impact on the manner in

which the pattern is applied and used.

Software Engineering

MCET, SE Study Material Page 25

The intent of each design pattern is to provide a description that enables a designer to

determine:

1. whether the pattern is applicable to the current work,
2. whether the pattern can be reused, and
3. whether the pattern can serve as a guide for developing a similar, but functionally

or structurally different pattern.

Modularity

Software architecture and design patterns embody modularity; that is, software is
divided into separately named and addressable components, sometimes called

modules that are integrated to satisfy problem requirements.

Monolithic software (large program composed of a single module) cannot be easily
grasped by a software engineer. The number of control paths, span of reference,
number of variables, and overall complexity would make understanding close to

impossible.

It is the compartmentalization of data and function. It is easier to solve a complex
problem when you break it into manageable pieces. ―Divide-and-conquer‖

Don’t over-modularize. The simplicity of each small module will be overshadowed by the

complexity of integration ―Cost‖.

Information Hiding

It is about controlled interfaces. Modules should be specified and design so that
information (algorithm and data) contained within a module is inaccessible to other
modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining by a set of
independent modules that communicate with one another only that information

necessary to achieve software function.

The use of Information Hiding as a design criterion for modular systems provides the
greatest benefits when modifications are required during testing and later, during
software maintenance. Because most data and procedures are hidden from other parts

of the software, inadvertent errors introduced during modifications are less likely to
propagate to other location within the software.

Functional Independence

The concept of functional Independence is a direct outgrowth of modularity and the

concepts of abstraction and information hiding.

Software Engineering

MCET, SE Study Material Page 26

Design software so that each module addresses a specific sub-function of requirements

and has a simple interface when viewed from other parts of the program structure.

Functional independence is a key to good design, and design is the key to software
quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module.

Coupling is an indication of the relative interdependence among modules.

A cohesive module should do just one thing.

Coupling is a qualitative indication of the degree to which a module is connected to

other modules and to the outside world ―lowest possible‖.

Cohesion is the ―single-mindedness’ of a component

It implies that a component or class encapsulates only attributes and operations that are

closely related to one another and to the class or component itself. The objective is to

keep cohesion as high as possible The kinds of cohesion can be ranked in order from

highest (best) to lowest (worst)

Kinds of cohesion

The different classes of cohesion that a module may possess are:

Functional

Typically applies to operations. Occurs when a module performs one and only one

computation and then returns a result.

Software Engineering

MCET, SE Study Material Page 27

Layer

A higher layer component accesses the services of a lower layer component. Applies to

packages, components, and classes. Occurs when a higher layer can access a lower

layer, but lower layers do not access higher layers.

Communicational

All operations that access the same data are defined within one class. In general, such

classes focus solely on the data in question, accessing and storing it.

Example: A StudentRecord class that adds, removes, updates, and accesses various

fields of a student record for client components. ,

Sequential

Components or operations are grouped in a manner that allows the first to provide input

to the next and so on in order to implement a sequence of operations. A module is said

to possess sequential cohesion, if the elements of a module form the parts of sequence,

where the output from one element of the sequence is input to the next.

For example, in a TPS, the get-input, validate-input, sort-input functions are grouped

into one module.

Procedural

Components or operations are grouped in a manner that allows one to be invoked

immediately after the preceding one was invoked, even when no data passed between

them. A module is said to possess procedural cohesion, if the set of functions of the

module are all part of a procedure (algorithm) in which certain sequence of steps have

to be carried out for achieving an objective.

E.g. the algorithm for decoding a message.

Software Engineering

MCET, SE Study Material Page 28

Temporal

Operations are grouped to perform a specific behavior or establish a certain state such

as program start-up or when an error is detected.

E.g. The set of functions responsible for initialization, start-up, shutdown of some

process, etc. exhibit temporal cohesion.

Utility

Components, classes, or operations are grouped within the same category because of

similar general functions but are otherwise unrelated to each other

Coupling

As the amount of communication and collaboration increases between

operations and classes, the complexity of the computer-based system also

increases. As complexity rises, the difficulty of implementing, testing, and

maintaining software also increases. Coupling is a qualitative measure of the

degree to which operations and classes are connected to one another

The objective is to keep coupling as low as possible.

Five types of coupling can occur between any two modules

Data coupling: Two modules are data coupled, if they communicate through a
parameter. An example is an elementary data item passed as a parameter between two
modules,

E.g. an integer, a float, a character, etc.

This data item should be problem related and not used for the control purpose.

Stamp coupling: Two modules are stamp coupled, if they communicate using a
composite data item.

E.g: A record in PASCAL or a structure in C.

Software Engineering

MCET, SE Study Material Page 29

Control coupling: Control coupling exists between two modules, if data from one
module is used to direct the order of instructions execution in another.

An example of control coupling is a flag set in one module and tested in another
module.

Common coupling: Two modules are common coupled, if they share data through
some global data items. Content coupling: Content coupling exists between two
modules, if they share code.

E.g. a branch from one module into another module.

Refinement

It is the elaboration of detail for all abstractions. It is a top down strategy.

A program is developed by successfully refining levels of procedural detail.

A hierarchy is developed by decomposing a macroscopic statement of function (a

procedural abstraction) in a stepwise fashion until programming language statements

are reached.

We begin with a statement of function or data that is defined at a high level of

abstraction.

The statement describes function or information conceptually but provides no

information about the internal workings of the function or the internal structure of the

data.

Refinement causes the designer to elaborate on the original statement, providing more

and more detail as each successive refinement (elaboration) occurs.

Abstraction enables a designer to specify procedure and data and yet suppress low-

level details.

Refinement helps the designer to reveal low-level details as design progresses.

Refinement causes the designer to elaborate on the original statement, providing more

and more detail as each successive refinement ―elaboration‖ occurs.

Refactoring

It is a reorganization technique that simplifies the design of a component without

changing its function or behavior. When software is re-factored, the existing design is

examined for redundancy, unused design elements, inefficient or unnecessary

Software Engineering

MCET, SE Study Material Page 30

algorithms, poorly constructed data structures, or any other design failures that can be

corrected to yield a better design.

Data Abstraction

Procedural Abstraction

“The overall structure of the software and the ways in which that structure

provides conceptual integrity for a system.”

 Structural properties. This aspect of the architectural design representation defines

the components of a system (e.g., modules, objects, filters) and the manner in which

those components are packaged and interact with one another. For example,

objects are packaged to encapsulate both data and the processing that manipulates

the data and interact via the invocation of methods

Software Engineering

MCET, SE Study Material Page 31

 Extra-functional properties. The architectural design description should address how

the design architecture achieves requirements for performance, capacity, reliability,

security, adaptability, and other system characteristics.

 Families of related systems. The architectural design should draw upon repeatable

patterns that are commonly encountered in the design of families of similar systems.

In essence, the design should have the ability to reuse architectural building blocks.

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but expressive name

Intent—describes the pattern and what it does

Also-known-as—lists any synonyms for the pattern

Motivation—provides an example of the problem

Applicability—notes specific design situations in which the pattern is applicable

Structure—describes the classes that are required to implement the pattern

Participants—describes the responsibilities of the classes that are required to

implement the pattern

Collaborations—describes how the participants collaborate to carry out their

responsibilities

Consequences—describes the ―design forces‖ that affect the pattern and the potential

trade-offs that must be considered when the pattern is implemented

Related patterns—cross-references related design patterns

Modular Design

Software Engineering

MCET, SE Study Material Page 32

Modularity: Trade-offs

What is the "right" number of modules for a specific software design?

easier to build, easier to change, easier to fix ...

Software Engineering

MCET, SE Study Material Page 33

Information Hiding

Why Information Hiding?

 Reduces the likelihood of ―side effects‖

 Limits the global impact of local design decisions

 Emphasizes communication through controlled interfaces

 Discourages the use of global data

 Leads to encapsulation—an attribute of high quality design

 Results in higher quality software

Software Engineering

MCET, SE Study Material Page 34

Stepwise Refinement

Functional Independence

Sizing Modules: Two Views

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

MODULE

What's
inside??

How big
is it??

Software Engineering

MCET, SE Study Material Page 35

Refactoring

 Fowler [FOW99] defines refactoring in the following manner:

 "Refactoring is the process of changing a software system in such a way that

it does not alter the external behavior of the code [design] yet improves its

internal structure.‖

 When software is re-factored, the existing design is examined for

 redundancy

 unused design elements

 inefficient or unnecessary algorithms

 poorly constructed or inappropriate data structures,

 or any other design failure that can be corrected to yield a better design.

OO Design Concepts

 Entity classes

 Boundary classes

 Controller classes

 Inheritance—all responsibilities of a super-class is immediately inherited by all

subclasses

 Messages—stimulate some behavior to occur in the receiving object

 Polymorphism—a characteristic that greatly reduces the effort required to extend the

design

Design classes

As the design model evolves, the software team must define a set of design classes

that refines the analysis classes and creates a new set of design classes.

Five different classes’ types are shown below:

Software Engineering

MCET, SE Study Material Page 36

1. User Interface classes: define all abstractions that are necessary for HCI.

2. Business domain classes: are often refinements of the analysis classes defined

earlier. The classes identify the attributes and services that are required to

implement some element of the business domain.

3. Process classes: implement lower-level business abstractions required to fully

manage the business domain classes.

4. Persistent classes: represent data stores that will persist beyond the execution of

the software.

5. System classes: implement software management and control functions that

enable the system to operate and communicate within its computing environment

and with the outside world.

Inheritance (Example)

 Design options:

 The class can be designed and built from scratch. That is, inheritance is

not used.

 The class hierarchy can be searched to determine if a class higher in the

hierarchy (a super-class) contains most of the required attributes and

operations. The new class inherits from the super-class and additions may

then be added, as required.

 The class hierarchy can be restructured so that the required attributes and

operations can be inherited by the new class.

 Characteristics of an existing class can be overridden and different

versions of attributes or operations are implemented for the new class.

Software Engineering

MCET, SE Study Material Page 37

:SenderObject

:ReceiverObject

message (<parameters>)

Messages

Polymorphism

Conventional approach …

 case of graphtype:

 if graphtype = linegraph then DrawLineGraph (data);

 if graphtype = piechart then DrawPieChart (data);

 if graphtype = histogram then DrawHisto (data);

 if graphtype = kiviat then DrawKiviat (data);

end case;

 All of the graphs become subclasses of a general class called graph. Using a concept

called overloading , each subclass defines an operation called draw. An object can send

a draw message to any one of the objects instantiated from any one of the subclasses.

The object receiving the message will invoke its own draw operation to create the

appropriate graph.

Software Engineering

MCET, SE Study Material Page 38

The Design Model

 D

ata

elements

 D

ata

model --

> data

structure

s

 D

ata

model --

>

database

architect

ure

 Ar

chitectural elements ―similar to the floor plan of a house‖

 ―You can use an eraser on the drafting table or a sledge hammer on

the construction site.‖ Frank Lloyd Wright

 Application domain

 Analysis classes, their relationships, collaborations and behaviors are

transformed into design realizations

 Patterns and ―styles‖

 Interface elements ―The way in which utilities connections come into the house

and are distributed among the rooms‖

 the user interface (UI)

process dimension

archit ect ure

element s

int erface

element s

component -level

element s

deployment -level

element s

low

high

class diagrams

analysis packages

CRC models

collaborat ion diagrams

use-cases - t ext

use-case diagrams

act ivit y diagrams

sw im lane diagrams

collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

st at e diagrams

sequence diagrams

st at e diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

ref inement s t o:

deployment diagrams

class diagrams

analysis packages

CRC models

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

ref inement s t o:

component diagrams

design classes

act ivit y diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

a na ly sis mode l

de sign mode l

Requirement s:

 const raint s

 int eroperabilit y

 t arget s and

 conf igurat ion

t echnical int erf ace

 design

Navigat ion design

GUI design

Software Engineering

MCET, SE Study Material Page 39

 external interfaces to other systems, devices, networks or other producers

or consumers of information

 internal interfaces between various design components.

 Component elements

It is equivalent to a set of detailed drawings and specs for each room in a house.

The component-level design for software fully describes the internal detail of

each software component.

 Deployment elements

Indicates how software functionally and subsystem terms will be allocated within

the physical computing environment that will support the software.

Cont rolPanel

LCDdisplay

LEDindicat ors

keyPadCharact er ist ics

speaker

wirelessInt erf ace

readKeySt roke()

decodeKey ()

displaySt at us()

light LEDs()

sendCont rolMsg()

Figure 9 .6 UML int erface represent at ion for Con t ro lPa ne l

KeyPad

readKeyst roke()

decodeKey()

< < int erface> >

WirelessPDA

KeyPad

MobilePhone

Software Engineering

MCET, SE Study Material Page 40

Pattern-Based Software Design

Describing a Design Pattern

 The best designers in any field have an uncanny ability to see patterns that

characterize a problem and corresponding patterns that can be combined to

create a solution

 A description of a design pattern may also consider a set of design forces.

 Design forces describe non-functional requirements (e.g., ease of

maintainability, portability) associated the software for which the pattern is

to be applied.

 Forces define the constraints that may restrict the manner in which the

design is to be implemented.

 Design forces describe the environment and conditions that must exist to

make the design pattern applicable.

 The pattern characteristics (classes, responsibilities, and collaborations) indicate

the attributes of the design that may be adjusted to enable the pattern to

accommodate a variety of problems.

 These attributes represent characteristics of the design that can be searched (via

database) so that an appropriate pattern can be found.

 Finally, guidance associated with the use of a design pattern provides an

indication of the ramification of design decisions.

 The name of design patterns should be chosen with care.

 One of the key technical problems in software reuse is the inability to find existing

patterns when hundreds or thousands of candidate patterns exist.

 The search of the ―right‖ pattern is aided immeasurably by a meaningful pattern

name.

Using Patterns in Design

Design patterns can be used throughout software design.

Software Engineering

MCET, SE Study Material Page 41

Once the analysis model has been developed, the designer can examine a detailed

representation of the problem to be solved and the constraints that are imposed by the

problem.

The problem description is examined at various levels of abstraction to determine if it is

amenable to one or more of the following design patterns:

Architectural patterns: These patterns define the overall structure of the software,

indicate the relationships among subsystems and software components, and define the

rules for specifying relationships among the elements (classes, packages, components,

subsystems) of the architecture.

Design patterns: These patterns address a specific element of the design such as an

aggregation of components to solve some design problems, relationships among

components, or the mechanisms for effecting component-to-component communication.

Idioms: Sometimes called coding patterns, these language-specific patterns generally

implement an algorithmic element of a component, a specific interface protocol, or a

mechanism for communication among components.

Frameworks

 A framework is not an architectural pattern, but rather a skeleton with a collection

of ―plug points‖ (also called hooks and slots) that enable it to be adapted to a

specific problem domain.

 Gamma et al note that:

 Design patterns are more abstract than frameworks.

 Design patterns are smaller architectural elements than frameworks

 Design patterns are less specialized than frameworks

