CHAPTER 9: ASYNCHRONOUS SEQUENTIAL CIRCUITS

Chapter Objectives

\square Sequential circuits that are not synchronized by a clock - Asynchronous circuits

- Analysis of Asynchronous circuits
- Synthesis of Asynchronous circuits
- Hazards that cause incorrect behavior of a circuit

Asynchronous sequential circuits

\square Synchronous sequential circuits

- state variables: F/Fs
- controlled by a clock
- operate in pulse mode
\square Asynchronous sequential circuits
- do not operate in pulse mode
- do not use F/Fs to represent state variables
- Changes in state are dependent on whether each of inputs to the circuit has the logic level 0 or 1 at any given time
- To achieve reliable operation (focus on the simplest case)
- the inputs to the circuit must change one at a time
- there must be sufficient time between the changes in input signals to allow the circuit to reach a stable state
- A circuit that adheres to these constraints is said to operate in the fundamental mode

Asynchronous behavior

(b) State-assigned table

FSM model for the SR latch

$\begin{array}{c}\text { Present } \\ \text { state }\end{array}$	Next state				Output		
	$S R=$	00	01	10		$]$	Q
:---:							
A							
B							

(a) State table

(b) State diagram

Synthesis of an asynchronous circuit

Present state	Nextstate				Output
	$S R=00$	01	10	11	
A	A	A	B	A	0
B	B	A	B	A	1

(a) State table

Present state y	Nextstate
	$S R=00 \times 11011$
	$\begin{array}{lllll}Y & Y & Y & Y\end{array}$
0	(0)

$$
\begin{aligned}
Y & =\bar{R} \bullet(S+y) \\
& =\overline{\overline{\bar{R}} \bullet(S+y)} \\
& =\overline{(\overline{\bar{R}}+\overline{(S+y)})} \\
& =\overline{(R+\overline{(S+y))}} \\
z & =y
\end{aligned}
$$

(b) State-assigned table

Mealy representation of the SR latch

Terminology

\square Asynchronous circuits

- state table -> flow table
- state-assigned table -> transition table or
excitation table
\square We will use the term flow table and excitation table

Analysis of Asynchronous Circuits

Analysis of Asynchronous circuits

(a)gated D latch

$$
\begin{aligned}
& Y=(\overline{\overline{C \bullet D}}) \bullet(\overline{(\overline{C \cdot \bar{D}}) \bullet y}) \\
& =(\overline{\overline{C \bullet D}})+((\overline{\overline{(C \bullet \bar{D}}) \bullet y)} \\
& =C D+((\overline{\bar{C}}+D) \bullet y) \\
& =C D+\bar{C} y+(D y) \\
& =C D+\bar{C} y
\end{aligned}
$$

Present state y	Next state				
	$C D=$	00	01	10	11
	Y	Y	Y	Y	Q
0	(0)	0	0	1	0
1	(1)	1	0	1	1

(b) Excitation table

Present state	Next state				
	$C D=00$	01	10	11	Q
A	A	A	A	B	0
B	B	B	A	(B)	1

(c) Flow table

(d) State diagram

Analysis of the circuit in example 9.3

Excitation and flow tables for the circuit in example 9.3

Present state $\mathrm{y}_{2} \mathrm{y} 1$	Nextstate				Output z
	$\mathrm{W}_{2} \mathrm{~W}_{1}=00$	01	10	11	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	(0)	01	10	11	0
01	11	(01)	11	11	0
10	00	(10)	(10)	(10)	1
11	(11)	10	10	10	0

(a) Excitation table

Present state	Nextstate				Output z
	$w_{2} \mathrm{w}_{1}=00$	01	10	11	
B	A	B	C	D	0
C	D	B	D	D	0
D	A	C	C	C	1
	D	C	C	C	0

(b) Flow table

Modified flow table for Example 9.3.

Present state	Next state				Output
	$W_{2} W_{1}=00$	01	10	11	
A	A	B	C	-	0
B	D	B	-	D	0
C	A	C	C	C	1
D	D	C	C	C	0

State table for Example 9.3

Flow table for a simple vending machine

Present state	Next state				Output z
	$\mathrm{W}_{2} \mathrm{~W}_{1}=00$	01	10	11	
A	(A)	B	C	-	0
B	D	(B)	-	-	0
C	A		(C)	-	1
D	(D)	C	C	-	0

Steps in the Analysis Process

\square Each feedback path is cut

- A delay element is inserted at the point where the cut is made
- A cut can be made anywhere in a particular loop formed by feedback connection, as long as there is only one cut per (state variable) loop
\square Next-state and output expressions are derived from the circuit
\square The excitation table is derived
\square A flow table is obtained
\square A corresponding state diagram is derived from the flow table if desired

Synthesis of Asynchronous Circuits

Synthesis of Asynchronous Circuits

\square the same basic steps used to synthesize the synchronous circuits

- Devise a state diagram for an FSM
- Derive the flow table and reduce the number of states if possible
- Perform the state assignment and derive the excitation table
- Obtain the next-state and output expressions
- Construct a circuit that implements these expressions

Example: serial parity generator

\square Serial parity generator

- input w: pulses are applied to w
- output z
- $z=1$ if the number of previously applied pulses is odd

(a) State diagram

Parity-generating asynchronous FSM

(a)State diagram

Present State	Nextstate		Output
	$w=0$	$w=1$	
A	A	B	0
B	C	B	1
C	C	D	1
D	A	D	0

(b) Flow table

State assignment

Present state $y_{2} y_{1}$	Next state		Output			
	$w=0$	$w=1$		$Y_{2} Y_{1}$		z
00	00	01	0			
01	10	01	1			
10	10	11	1			
11	00	$(11$	0			

(a) Poor state assignment

Present state $y_{2} y_{1}$	Next state		Output			
	$w=0$	$w=1$		$Y_{2} Y_{1}$		z
00	00	01	0			
01	11	01	1			
11	(11)	10	1			
10	00	$(10$	0			

- State assignment (a) has a major flaw
- state $D=11$: w=0 -> state A
- $y_{2} y_{1}=11->y_{2} y_{1}=00$
- the values of the next-state variables determined by the networks of logic gates with varying delays
- suppose y_{1} changes first
- $y_{2} y_{1}=10$-> state $C(10)$
- state C is stable when $w=0$
- suppose y_{2} changes first
- $y_{2} y_{1}=01$-> state B (01)
- try to change to $y_{2} y_{1}=10$ when $w=0$
- if y_{1} changes first, $y_{2} y_{1}=00$
- race condition occurs

[^0]
Circuit that implements the FSM

22

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{2}+\bar{w} y_{1}+y_{1} \bar{y}_{2} \\
& Y_{2}=w y_{2}+\bar{w} y_{1}+y_{1} y_{2} \\
& z=y_{1}
\end{aligned}
$$

Synchronous solution
Asynchronous solution

Circuit that implements a paritygenerating asynchronous FSM

\square The asynchronous implementation is more complex than the synchronous one?

- It's a negative-edge-triggered master/slave F/F
\square With the complement of its output connected to its D input

Master-slave D F/F(example 9.2)

\square Analyze synchronous circuit as if it were an asynchronous circuit.

- Actually all circuits are asynchronous

Circuit for the master-slave D flip-flop.

Excitation table for example 9.2

Present state ym ys	Next state					Output Q
	CD	$=00$	01	10	11	
	$\mathrm{Y}_{\mathrm{m}} \mathrm{Y}_{\text {s }}$					
00		00	(00)	(00)	10	0
01		00	00	(01)	11	1
10		11	11	00	(10)	0
11		(11)	(11)	01	(11)	1

(a) Excitation table

Flow tables for Example 9.2

Present state	Next					state
	CD	$=00$	01	10	11	Q
S1		S1	S1	S1	S3	0
S2		S1	S1	S2	S4	1
S3		S4	S4	S1	S3	0
S4		S4	S4	S2	S4	1

(b) Flow table

Present state	Next					state
	CD	Output				
S1	00	01	10	11	Q	
S2	S1	S1	S1	S3	0	
S3	S1	-	S2	S4	1	
S4	-	S4	S1	S3	0	
		S4	S4	S2	S4	1

(c) Flow Table with unspecified entries

State diagram for the master-slave D Flip/Flop

Parity generating FSM and Masterslave D F/F

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
Y_{1}=w \bar{y}_{2}+\bar{w} y_{1}+y_{1} \bar{y}_{2} \\
Y_{2}=w y_{2}+\bar{w} y_{1}+y_{1} y_{2} \\
z=y_{1}
\end{array}
\end{array} \\
& \begin{array}{l}
y_{1}=y_{m}, y_{2}=y_{s} \\
w=C, \bar{y}_{2}=D, \\
z=y_{1}=y_{m}
\end{array} \\
& \begin{array}{ll}
Y=C D+\bar{C} y+D y \\
\text { in the previous example } \\
\text { of gated } \mathrm{D} \text { - Latch }
\end{array} \\
& Y_{m}=C D+\bar{C} y_{m}+D y_{m} \\
& Y_{s}=\bar{C} y_{m}+C y_{s}+y_{m} y_{s}
\end{aligned}
$$

Hazard and Glitches

Hazards and glitches

\square In asynchronous circuits

- undesirable glitches on signals should not occur
- hazards
- the glitches cause by the structure of a given circuit and propagation delays in the circuit
- two types of hazards
- static
- the signal undergoes a momentary change in its required value
- dynamic
- when a signal is supposed to change from 1 to 0 or from 0 to 1
- a change involves a short oscillation before the signal settles into its new level

Definition of hazards

(b) Dynamic hazard

Hazards and glitches

\square Usual solutions

- wait until signals are stable by using a clock
- preferable
- easiest to design when there is a clock
- synchronous circuits
- design hazard-free circuits
- sometimes necessary
- asynchronous design

Static hazards

Two-level implementation of master-slave D flip-flop

Present state ym ys	Next state					Output Q
	CD	$=00$	01	10	11	
	Y m Y ${ }^{\text {d }}$					
00		00	00	00	10	0
01		00	00	(01)	11	1
10		11	11	00	10	0
11		(11)	(11)	01	(11)	1

(a) Excitation table

$$
\begin{aligned}
& Y_{m}=C D+\bar{C} y_{m}+D y_{m} \\
& Y_{s}=\bar{C} y_{m}+C y_{s}+y_{m} y_{s}
\end{aligned}
$$

(b) Karnaugh maps for Y_{m} and Y_{S} in Figure 9.6a

Two-level implementation of master-slave D flip-flop (2)

(a) Minimum-cost circuit

(c) Hazard-free circuit

$$
\begin{aligned}
& Y_{m}=C D+\bar{C} y_{m}+D y_{m} \\
& Y_{s}=\bar{C} y_{m}+C y_{s}+y_{m} y_{s}
\end{aligned}
$$

Static hazard in a POS circuit (0hazard)

(a) Circuit with a hazard

(b) Karnaugh map

(c) Hazard-free circuit

dynamic hazards

- there exist multiple paths for a given signal change to propagate along
\square neither easy to detect nor easy to deal with
- using two-level hazard-free circuits

(a) Circuit

(b) Timing diagram

CLOCK SYNCHRONIZATION (CHAPTER 10.3)

Clock skew

\square the clock signal arrives at different times at different F/Fs

- with or without clock enable circuits
- wires whose lengths vary appreciably

An H-tree clock distribution network

40

F/F timing parameters

\square setup time $t_{\text {su }}$
\square hold time t_{h}
\square register delay or propagation delay $t_{r d}$
\square output delay time $t_{o d}$

- required for the change in Q to propagate to an output pin on the chip

A flip-flop in an integrated circuit

F/F timing parameters, cont'd

$\square t_{c o}$ delay: active clock edge -> output change at an output pin

- $t_{\text {Clock }}+t_{\text {rd }}+t_{\text {od }}$
- Example
- $t_{\text {clock }}=1.5 \mathrm{~ns}, t_{r d}=1 \mathrm{~ns}, t_{o d}=2 \mathrm{~ns} \rightarrow t_{c o}=4.5 \mathrm{~ns}$
$\square F / F$ timing in a chip
- $t_{\text {Clock }}=1.5 \mathrm{~ns}, t_{\text {Data }}=4.5 \mathrm{~ns}, t_{\text {su }}=3 \mathrm{~ns}$

Metastability and Asynchronous Inputs

Asynchronous Inputs Are Dangerous!

Since they take effect immediately, glitches can be disastrous

Synchronous inputs are greatly preferred!

But sometimes, asynchronous inputs cannot be avoided
e.g., reset signal, memory wait signal

Metastability and Asynchronous Inputs

Handling Asynchronous Inputs

Never allow asynchronous inputs to be fanned out to more than one FF within the synchronous system

Metastability and Asynchronous Inputs

What Can Go Wrong

In is asynchronous Fans out to D0 and D1 One FF catches the signal, one does not
impossible state might be reached!

Single FF that receives the asynchronous signal is a synchronizer

Metastability and Asynchronous Inputs

Synchronizer Failure
When FF input changes close to clock edge, the FF may
 enter the metastable state: neither a logic 0 nor a logic 1

It may stay in this state an indefinite amount of time, although this is not likely in real circuits

Small, but non-zero probability that the FF output will get stuck in an in-between state

Oscilloscope Traces Demonstrating Synchronizer Failure and Eventual Decay to Steady State

Metastability and Asynchronous Inputs

Solutions to Synchronizer Failure

- the probability of failure can never be reduced to 0 , but it can be reduced
- slow down the system clock
this gives the synchronizer more time to decay into a steady state synchronizer failure becomes a big problem for very high speed systems
- use fastest possible logic in the synchronizer this makes for a very sharp "peak" upon which to balance S or AS TTL D-FFs are recommended
- cascade two synchronizers

[^0]: (b) Good state assignment

