CHAPTER 9: ASYNCHRONOUS SEQUENTIAL CIRCUITS

Chapter Objectives

- Sequential circuits that *are not synchronized by a clock* – Asynchronous circuits
 Analysis of Asynchronous circuits
- Synthesis of Asynchronous circuits
- Hazards that cause incorrect behavior of a circuit

Asynchronous sequential circuits

3

- Synchronous sequential circuits
 - state variables : F/Fs
 - controlled by a clock
 - operate in *pulse mode*
- Asynchronous sequential circuits
 - do not operate in *pulse mode*
 - do not use F/Fs to represent state variables
 - Changes in state are dependent on whether each of inputs to the circuit has the logic level 0 or 1 at any given time
- <u>To achieve reliable operation</u> (focus on the simplest case)
 - the inputs to the circuit must change one at a time
 - there must be sufficient time between the changes in input signals to allow the circuit to reach a stable state
 - A circuit that adheres to these constraints is said to operate in the fundamental mode

Asynchronous behavior

(b) State-assigned table

FSM model for the SR latch

(b) State diagram

Synthesis of an asynchronous circuit

Present	Nextstate	Output
state	SR = 00 01 10 11	Q
А	(A) (A) (B) (A)	0
В	B A B A	1

(a) State table

Present	Next	state		
state	SR = 00 ()1	10	11
у	Y	Y	Y	Y
0		$\hat{0}$	$\frac{1}{1}$	\bigcirc

(b) State-assigned table

$$Y = \overline{R} \bullet (S + y)$$
$$= \overline{\overline{R}} \bullet (S + y)$$
$$= \overline{(\overline{\overline{R}} \bullet (S + y))}$$
$$= \overline{(\overline{\overline{R}} + \overline{(S + y)})}$$
$$= \overline{(R + \overline{(S + y)})}$$
$$z = y$$

Mealy representation of the SR latch

7

Terminology

Asynchronous circuits

- state table -> flow table
- state-assigned table -> transition table or excitation table
- We will use the term *flow table and excitation table*

Analysis of Asynchronous Circuits

Analysis of Asynchronous circuits

Analysis of the circuit in example 9.3

Excitation and flow tables for the circuit in example 9.3

Present		Nextstate					
state	W2 W1 = 00	01	10	11	Output		
<i>y</i> 2 <i>y</i> 1	Y ₂ Y ₁	Y ₂ Y ₁	Y 2 Y 1	Y ₂ Y ₁	Ζ		
00	00	01	10	11	0		
01	11	(01)	11	11	0		
10	00	10	(10)	(10)	1		
11	(11)	10	10	10	0		

(a) Excitation table

Present	Nex	Nextstate				
state	$W_2 W_1 = 00$	01	10	11	Output z	
А	A	В	С	D	0	
В	D	B	D	D	0	
С	А	\bigcirc	\bigcirc	\bigcirc	1	
D	D	С	С	С	0	

(b) Flow table

Modified flow table for Example 9.3.

13

Presen	t		Output				
state	и	⁄2 1/11 =	00	01	10	11	Z
Α			(A)	В	С	Ι	0
В			D	B	-	D	0
C	Í		А	\bigcirc	\bigcirc	(C)	1
D			\bigcirc	С	С	С	0

State table for Example 9.3

14

 $\begin{array}{c} & & \frac{w_2w_1}{01} \\ 00 \\ & A/0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 00 \\ 11 \\ 00 \\ 11 \\ 00 \\ 11 \\ 00 \\ 11 \\ 00 \\ 11 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 00 \\ 00 \\ 00 \\ 11 \\ 00 \\ 0$

Flow table for a simple vending machine

Present	Nex	Output			
state	W2 W1 = 00	01	10	11	Z
А	A	В	С	Ι	0
В	D	B	-	-	0
С	А	(C)	\bigcirc	-	1
D	D	С	С	-	0

 $W_2 \equiv dime \quad W_1 \equiv nickel$

Steps in the Analysis Process

Each feedback path is cut

- A delay element is inserted at the point where the cut is made
- A cut can be made anywhere in a particular loop formed by feedback connection, as long as there is only one cut per (state variable) loop
- Next-state and output expressions are derived from the circuit
- The excitation table is derived
- A flow table is obtained
- A corresponding state diagram is derived from the flow table if desired

Synthesis of Asynchronous Circuits

Synthesis of Asynchronous Circuits

the same basic steps used to synthesize the synchronous circuits

- Devise a state diagram for an FSM
- Derive the flow table and reduce the number of states if possible
- Perform the state assignment and derive the excitation table
- Obtain the next-state and output expressions
- Construct a circuit that implements these expressions

Example: serial parity generator

- Serial parity generator
 - □ input w : pulses are applied to w
 - output z
 - z=1 if the number of previously applied pulses is odd

Parity-generating asynchronous FSM

20

(a)State diagram

Present	Next	Output	
State	w = 0	<i>w</i> = 1	Z I
А	(A)	В	0
В	C	B	1
C	\bigcirc	D	1
D	A	D	0

State assignment

Present	Next		
state	w = 0	<i>w</i> = 1	Output
y ₂ y ₁	Y	z	
00	(00)	01	0
01	10	$\bigcirc 1$	1
10	(10)	11	1
11	00		0

(a) Poor state assignment

Present	Next		
state	w = 0	Output	
<i>y</i> ₂ <i>y</i> ₁	Y	Z	
00	(00)	01	0
01	11	(01)	1
11	(11)	10	1
10	00	(10)	0

(b) Good state assignment

- State assignment (a) has a major flaw
 - state D =11 : w=0 -> state A
 - $y_2y_1 = 11 \rightarrow y_2y_1 = 00$
 - the values of the next-state variables determined by the networks of logic gates with varying delays
 - suppose y₁ changes first
 - y₂y₁=10 -> state C(10)
 - state C is stable when w=0
 - suppose y₂ changes first
 - y₂y₁=01-> state B (01)
 - try to change to y₂y₁=10 when w=0
 - if y₁ changes first, y₂y₁=00
 - race condition occurs

Circuit that implements the FSM

Circuit that implements a paritygenerating asynchronous FSM

The asynchronous implementation is *more complex* than the synchronous one?

It's a negative-edge-triggered master/slave F/F

With the complement of its output connected to its D input

Master-slave D F/F(example 9.2)

- Analyze synchronous circuit as if it were an asynchronous circuit.
 - Actually all circuits are asynchronous

Circuit for the master-slave D flip-flop.

Excitation table for example 9.2

Present	Next state	
state	<i>CD</i> = 00 01 10 11	Output
Ym Ys	Ym Ys	Q
00	00 00 00 10	0
01	00 00 01 11	1
10	11 11 00 (10)	0
11	(1) (1) (01 (1))	1

(a) Excitation table

Flow tables for Example 9.2

Present		Next state				
state	CD	= 00	01	10	11	Output Q
S1		\$1	S1	\$1	S3	0
S2		S1	S1	\$2	S4	1
S3		S4	S4	S1	\$3	0
S4		\$4	\$4	S2	\$4	1

(b) Flow table

Present		Next state				
state	CD	= 00	01	10	11	Output Q
S1		S1	S1	\$1	S3	0
S2		S1	-	\$2	S4	1
S3		-	S4	S1	\$3	0
S4		\$4	<u>\$4</u>	S2	\$4	1

(c) Flow Table with unspecified entries

State diagram for the master-slave D Flip/Flop

Parity generating FSM and Masterslave D F/F

28

$$Y_{1} = w\overline{y}_{2} + \overline{w}y_{1} + y_{1}\overline{y}_{2}$$
$$Y_{2} = wy_{2} + \overline{w}y_{1} + y_{1}y_{2}$$
$$z = y_{1}$$

 $Y = CD + \overline{C}y + Dy$

in the previous example

of gated D-Latch

$$Y_m = CD + \overline{C}y_m + Dy_m$$
$$Y_s = \overline{C}y_m + Cy_s + y_m y_s$$

$$y_1 = y_m, y_2 = y_s$$
$$w = C, \overline{y}_2 = D,$$
$$z = y_1 = y_m$$

Hazard and Glitches

Hazards and glitches

30

- In asynchronous circuits
 - undesirable glitches on signals should not occur
 - hazards
 - the glitches cause by the structure of a given circuit and propagation delays in the circuit
 - two types of hazards
 - static
 - the signal undergoes a momentary change in its required value
 - dynamic
 - when a signal is supposed to change from 1 to 0 or from 0 to 1
 - a change involves a short oscillation before the signal settles into its new level

Definition of hazards

31

Hazards and glitches

Usual solutions

- wait until signals are stable by using a clock
 - preferable
 - easiest to design when there is a clock
 - synchronous circuits
- design hazard-free circuits
 - sometimes necessary
 - asynchronous design

Static hazards

33 $f = x_1 x_2 + \overline{x}_1 x_3$ $f = x_1 x_2 + \overline{x}_1 x_3 + x_2 x_3$ *x*₂ р *X*₁ f q X_2 X3 *X*1 (a) Circuit with a hazard X3 x3 00 01 11 10 0 1 (c) Hazard-free circuit (b) Karnaugh map hazard-free if more than one bit

of inputs change simultaneously?

Two-level implementation of master-slave D flip-flop

34

Present	Next state	
state	<i>CD</i> = 00 01 10 11	Output
Ym Ys	Ym Ys	Q
00	00 00 00 10	0
01	00 00 01 11	1
10	11 11 00 (10)	0
11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1

(a) Excitation table

$$Y_m = CD + \overline{C}y_m + Dy_m$$
$$Y_s = \overline{C}y_m + Cy_s + y_m y_s$$

(b) Karnaugh maps for Y_m and Y_s in Figure 9.6a

Two-level implementation of master-slave D flip-flop (2)

(a) Minimum-cost circuit

(c) Hazard-free circuit

$$Y_m = CD + \overline{C}y_m + Dy_m$$
$$Y_s = \overline{C}y_m + Cy_s + y_m y_s$$

Static hazard in a POS circuit (0hazard)

dynamic hazards

37

- there exist multiple paths for a given signal change to propagate along
- neither easy to detect nor easy to deal with
- using two-level hazard-free circuits

(a) Circuit

(b) Timing diagram

CLOCK SYNCHRONIZATION (CHAPTER 10.3)

Clock skew

39

the clock signal arrives at different times at different F/Fs

- with or without clock enable circuits
- wires whose lengths vary appreciably

An H-tree clock distribution network

F/F timing parameters

- \Box setup time t_{su}
- hold time t_h
- **register delay or propagation delay** t_{rd}
- output delay time t_{od}
 - required for the change in Q to propagate to an output pin on the chip

A flip-flop in an integrated circuit

F/F timing parameters, cont'd

- 42
 - t_{co} delay : active clock edge -> output change at an output pin
 - $\bullet \quad t_{Clock} + t_{rd} + t_{od}$
 - Example
 - $t_{Clock} = 1.5ns, t_{rd} = 1ns, t_{od} = 2ns \rightarrow t_{co} = 4.5 ns$
 - F/F timing in a chip
 - t_{Clock}=1.5 ns, t_{Data}=4.5 ns, t_{su}=3 ns

Asynchronous Inputs Are Dangerous!

Since they take effect immediately, glitches can be disastrous

Synchronous inputs are greatly preferred!

But sometimes, asynchronous inputs cannot be avoided e.g., reset signal, memory wait signal

Handling Asynchronous Inputs

Never allow asynchronous inputs to be fanned out to more than one FF within the synchronous system

45

What Can Go Wrong

Single FF that receives the asynchronous signal is a synchronizer

46

Synchronizer Failure

 When FF input changes close to clock edge, the FF may enter the *metastable* state: neither a logic 0 nor a logic 1

It may stay in this state an indefinite amount of time, although this is not likely in real circuits

Small, but non-zero probability that the FF output will get stuck in an in-between state Oscilloscope Traces Demonstrating Synchronizer Failure and Eventual Decay to Steady State

Solutions to Synchronizer Failure

- the probability of failure can never be reduced to 0, but it can be reduced
- slow down the system clock this gives the synchronizer more time to decay into a steady state synchronizer failure becomes a big problem for very high speed systems
- use fastest possible logic in the synchronizer this makes for a very sharp "peak" upon which to balance S or AS TTL D-FFs are recommended

47