Unit 1 ’

Solutions of Complex Variable

1.1 INTRODUCTION

A complex number z is an ordered pair (X, y) of real numbers and is written as

z=x+iy, wherei= /1.
The real numbers x and y are called the real and imaginary parts
of z. In the Argand’s diagram, the complex number z is represented by P (x,y)

the point P(x, y). If (r, q) are the polar coordinates of P, then r =
N, x? y? iscalled the modulus of z and is denoted by | z |. Also g = /

YA

r
y
tan-? % is called the argument of z and is denoted by arg. z. Every non- /

zero complex number z can be expressed as ‘\e
z=r(cosq+ising)=re“ o X M
If z=x + iy, then the complex number x — iy is called the conjugate of the complex number z and is
denoted by Z.
Clearly, |z |=|z||zP=27Z,
z

z z Z
Re(z)=T, Im(z)=T.

<V

1.2 DEFINITIONS

Let S be a non-empty set of complex numbers and d be a positive real number.

1. Circle. |z—a| = r represents a circle C with centre at the point a and radius r.

2. Open disk. The set of points which satisfies the equation |z - z | < d defines an open disk of radius
d with centre at z, = (X, y,). This set consists of all points which lie inside circle C.

3. Closed disk. The set of points which satisfies the equation |z — z | £ d defines a closed disk of
radius d with centre at z, = (x,, y,). This set consists of all points which lie inside and on the boundary of
circle C.

4. Annulus. The set of points which lie between two concentric circles C, : [z—a|=r,and C, : |z—a|
=r, defines an open annulus i.e., the set of points which satisfies the inequality r, <|z-a| <.,

The set of points which satisfies the inequality r, £ |z - a| £ r, defines a closed annulus.

It is to be noted that r, £ |z —a| <, is neither open nor closed.

5. Neighbourhood. d-Neighbourhood of a point z, is the set of all points z for which
|z -z,| < d where d is a positive constant. If we exclude the point z, from the open disk [z -z | < d then it is
called the deleted neighbourhood of the point z  and is written as 0 < |z -z | < d.

6. Interior and exterior points. A point z is an interior point of S if all the points in some d-neigh-
bourhood of z are in S and an exterior point of S if they are outside S.
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7. Boundary point. A point z is a boundary point of S if every d-neighbourhood of z contains at least
one point of S and at least one point not in S. For example, the points on the circle [z—z | = r are the
boundary points for the disk [z—z | £T.

8. Open and closed sets. A set S is open if every point of S is an interior point while a set S is closed
if every boundary point of Sbelongsto S. e.9. S={z:|z-z|<r}isopensetwhileS={z:|z-z|£r}is
closed set.

9. Bounded set. An open set S is bounded if $ a positive real number M such that | z |
£ M for all zTS otherwise unbounded.

For example : the set S={z: |z-z| < r} is a bounded set while the set S={z : |z -z,
> r}is an unbounded set.

10. Connected set. An open set S is connected if any two points z, and z, belonging to S can be joined
by a polygonal line which is totally contained in S.

11. Domain. An open connected set is called a domain denoted by D.

12. Region. Aregion is a domain together with all, some or none of its boundary points. Thus a
domain is always a region but a region may or may not be a domain.

13. Finite complex plane. The complex plane without the point z = ¥ is called the finite complex
plane.

14. Extended complex plane. The complex plane to which the point z = ¥ has been added is called
the extended complex plane.

1.3 FUNCTION OF ACOMPLEX VARIABLE

If xand y are real variables, then z = x + iy is called a complex variable. If corresponding to each value of a
complex variable z(= x + iy) in a given region R, there correspond one or more values of another complex
variable w (= u + iv), then wis called a function of the complex variable z and is denoted by

w=f(z) =u+iv

For example, if w = 72 wherez=x+iyandw=f(z) =u+iv
then u+iv=(x+iy)2= (x2-y?) +i(2xy)
p u=x2—-y?2 and v=2xy

Thus u and v, the real and imaginary parts of w, are functions of the real variables x and y.

\ w=1(z) = u(x, y) +iv(x, y)

If to each value of z, there corresponds one and only one value of w, then wis called a single-
valued function of z. If to each value of z, there correspond more than one values of w, then w is called a
multi-valued function of z. For example, w= /7 is a multi-valued function.

To represent w = f(z) graphically, we take two Argand diagrams : one to represent the point z and the

other to represent w. The former diagram is called the XOY-plane or the z-plane and the latter UOV-
plane or the w-plane.

1.4 LIMIT OF f(2)

A function f(z) tends to the limit | as z tends to z, along any path, if to each positive arbitrary number e,
however small, there corresponds a positive number d, such that

[f(z)-1|<e whenever 0<|z-z |<d



and we write Lt f(z) = I, where |l is finite
zZ 2z

Note. In real variables, x ® x, implies that x approaches x, along the number line, either from left or
from right. In complex variables, z® z, implies that z approaches z, along any path, straight or curved,

since the two points representing z and z, in a complex plane can be joined by an infinite number of curves.

Solved Problems

Example 1. Find the limit of f(z)=z%+4atz=3.

Sol. Ltf(z)thzz+4

z—>3 z—>3

=(32)+4=9+4=13

zZ
Example 2. Find limit of the function f(z) = atz=0
zZ
Sol. Uren F(2) =;
= f(g) =2V
X+iy

i) Suppose z ® 0 along x -axis. Then y=0, z=x and z = x and

NI
I
b

Lt 2ot X
z—0 Z z—0 X

i) Suppose z ® 0 along y -axis. Then x=0, z=iy and Z=—iy
Lt £= Lt (__—ijz—l
z-0 Z  iy—>0\ 1y

z
Lt 3 does not exist.

z—0
R 2% +3iz-2 _
Example 3 Find limitoff (z) = T atz=-i
: 2% +3iz-2 .
Sol. Given f(z) =T,we have z = x+iy.

Z>-i=>x=0y=-1

(Nowalong x —» 0 andthen y —» -1)

Y 4

SOLUTIONS OF COMPLEX VARIABLE 3

K/
\//

93 4
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(x+iy)® +3i(3+iy) -2

Lt =f(z)= Lt —
2> X0 (x+iy)+i
_ g (y)f +3iGy) -2
y—>—1 iy+i
= Lt ——yZ—Sy—Z
y>-1  i(y+i)
| Dl
y—>-1  (y+Di
= Lt ﬂ:__l:i
y—>-1 i i

alsoalongy ® -1 and then x — 0.

- 2 - -
Lt f(2)= Lt (X+iy) +3i(x+iy)-2
z—>—i y—-1

- X4y +i
_- 2 1 _- J—
_ g =) +3’_|(x_ i) Zz(gforn )
x—0 X—1+I 0
_opg 2XEDHS o s
x—0 1
Lt f(z)=i.

Z—>—1

1.5 CONTINUITY OF f(z)

A single-valued function f(z) is said to be continuous at a point z = z if f (z) exists,
lim f(z)existsand Lt f(z) =f(z).
z Zy Z Zy

A function f (z) is said to be continuous in a region R of the z-plane if it is continuous at every point of
the region. A function f(z) which is not continuous at z, is said to be discontinuous at z,.

If the function f (z) = u + iv is continuous at z, = X, + iy, then the real functions u and v are also
continuous at the point (x,, y,). Therefore, we can discuss the continuity of a complex valued function by
studying the continuity of its real and imaginary parts.

f(2)

If f (z) and g(z) are continuous at a point z, then the functions f (z) + g(2), f (z) 9(z) and T where
a(z

g(z,) 0 are also continuous at z,.
If f (z) is continuous in a closed region S then it isbounded in Si.e., [f(z)| EM "zTS.

Also, the function f(z) is continuous at z = ¥ if the function fﬁlk is continuous at x =0
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Solved Problems

Example 1. f (z) = xy3+i(3x-2y) is continous for all z.
Sol. Given f(z)=xy 2+ i (3x-2y), we have f (z)=u+iv comparing on G.S. u(x,y)=xy3, v ex,y) = 3x-2y.
Since u(x,y) and v (x,y) both are continuous

.. T(2) is also continuous every where.

2 "
E_ & Z#1+i
722242
Example 2. Verify the continty of 6 714
2 -
7 -2
Sol. f(2)=—5——
22 427+2
2_ - - _ _.
Now Lt 2z 2 _ I_t_(z+1+_|)(z 1 |)
751+i (Z +22+2) -1+ (2 =1+10)(z-1-1)
_ U (z+1-i)
21+ (2 —1+1)
_(i)v1-i_2+2i
@+i)—1+i 2i
butf (1+i)« 1-i . f(z)is not coninous at 1+i

zZ
Example 3. Verify f(z) = - is continuous at z=0

is does not existatz=0

NN

Sol. Limit f(z)=

.. f(z) is not continous at z = 0.
Example 4. f(z) =7 iscontinous at z,
Sol. Given f(2)=7Z
Now | f(2)— f(29)|=]7- 7|
For given > 0 choose > 5 , we get
|f(2)f(z9)|<e for |z-2o|<e=6.
i.e., whenever |2-27o| <3 thereexist |f(z) - f(z)| <e

f(z) is continuous at z = z,

2
Example 5 Discuss the continuty of f (7) = Z_ﬂat 7=72i

z-2i
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Sol. By defination we have to prove for <> ( there exists a d>0

Such that | f (z) - f (zi)| < for all|z-zi| <

2 - -
Now Lt f(2)= Lt 2 4, (z—2i)z+2i)

_ " — = Lt (z+2i)= f(2i) =4i
7>2i 720 2—-21 72 (z-2i) z2i

Let |f(z)— f(2i)|

(z+2i)(z—-2i)

—— —4i =|z-2i|
(z-2i)

z-2i

2
Z_+4_4i|:

Choose e= 68 = |z—2i[ < & for | f(2)-f (2i)| <&

. f(z)is continous at z = 2i

1.6. DERIVATIVE OF 1(z)

Let w=f (z) be a single-valued function of the variable z (= x + iy), then the derivative or differential co-
efficient of w = f () is defined as

T (I 1)
dz z O Z

provided the limit exists, independent of the manner in which dz® 0.

Solved Problems

Example 1. Find derivative of f (z) = z ? by using defination of derivative.
Sol. Then f (z) = 22

f(2)= Lt f(z+oz)- f(2)
520 oz

2 _ 2
_ Lt (z+62) -2
820 oz

22 +22(82) + (8 2)* - 2°

= Lt
50 oL
= Lt 2z+6z =2z.
52—0

Example 2. If f () is differentiable at z,then show that f (z) is continous at z,,.
Sol. To show f (z) is continous at z, we need to prove

Lt £(2)=1(z0) (o) Ut f(2)=F(2z)=0

-7,

Let f (z) is differentiable at z,
Lt f(z)=f(zp)

—Zy

Now conside ,
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L f@-tE)

11, Z—1
f '(Zo)zl_—}z (z-2o)
f'(zy)-0=0

z-179)

sl f(2)-1(z9)=0
717,
Lt f(z)=f(zp)
77,
Hence proved.

1.7. ANALYTIC FUNCTION AT APOINT

7

A function f(z) is said to be analytic at a point z, if it is one-valued and differentiable not only at z, but at
every point of some neighbourhood of z,. e.g. € (cos y + i sin y).

1.7.1. Analytical Function

A function f(z) is said to be analytic in a certain domain D if it is analytic at every point of D.

1.8. ENTIRE FUNCTION

A function f (z) which is analytic at every point of the finite complex plane is called an entire function.
Since the derivative of a polynomial exists at every point, a polynomial of any degree is an entire
function. Rational functions are also entire functions.

1.9. NECESSARY AND SUFFICIENT CONDITIONS FOR f(z) TO BE ANALYTIC

The necessary and sufficient conditions for the function
w=f(z) = u(x, y) +iv(x, y)
to be analytic in a region R, are

(i) _u' _u' —V, —V are continuous functions of x and y in the region R.
X'y Xy

. u Vv u \Y

@ii) — —— —.
X Yy y X

The conditions in (ii) are known as Cauchy-Riemann equations or briefly C-R equations.

dw
Proof. (a) Necessary Condition. Let w = f(z) = u(x, y) + iv(x, y) be analytic in a region R, then a2 =

f ¢(z) exists uniquely at every point of that region.
Let dx and dy be the increments in x and y respectively. Let du, dv and dz be the corresponding
increments in u, vand z respectively. Then,

fe)= Lt f(z z) (2
z 0 zZ

u uw v Vv) (U iv)
z

Lt
z O



8 A TEXTBOOK OF ENGINEERING MATHEMATICS

= '—toﬁ_u i_"k (1)

z V4 z
Since the function w = f(z) is analytic in the region R, the limit (1) must exist independent of the
manner in which dz®0, i.e., along whichever path dx and dy ® 0.
First, let dz ® 0 along a line parallel to x-axis so that dy = 0 and dz = dx.
[sincez=x+1iy,z+dz=(x+dx) +i(y + dy) and dz = dx + idy]

u .V u .V
\" From (1), fo(2) = XLtOF—X '712 — i Q)

Now, let dz ® 0 along a line parallel to y-axis so that dx =0 and dz =i dy.
u . v k lu v

\' From (1), fe)= Lt jI— 1— - —
y ofity 1 yh 1y oy
Y u 1
=— I— (3 = i
y y ®) i
u . v VvV .u
From (2) and (3), wehave — 11— — I—
X X Yy y
. . . u \'% u \'%
Equating the real and imaginary parts, = _y and — Y

Hence the necessary condition for f(z) to be analytic is that the C-R equations must be satisfied.
(b) Sufficient Condition. Let f(z) = u + iv be a single-valued function possessing partial derivatives

_u' _u' —V, Y ateach point of a region R and satisfying C-R equations.
X'y Xy
ie., L. and _— —V.
X Yy y X
We shall show that f (z) is analytic, i.e., f ¢(z) exists at every point of the region R.
By Taylor’s theorem for functions of two variables, we have, on omitting second and higher degree
terms of dx and dy.

f(z+dz) = u(x + dx, y + dy) + iv(x + dx, y + dy)
M F u u B M F v v ykg
=fu(x,y) §j— x — ijvix,y) §— x —
X y X y

= [U(X’ y) + iV(X, Y)] + F_u i _Vk X E—u i _Vk dy
X X y y

u . V u .V
= f(z) + _X | _X X —y | —y dy
or f(z + dz) - f(2) = F_u i —Vk X E_u i —Vk dy
X X Yy Yy

.ou
i —Xk dy | Using C-R equations

TR
SRR o oo
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—ﬁ—u i—Vk dx + id —ﬁ—u i—dez dx + idy = dz
=1 X( y) = " ” |Q y =

f(z 29 f(z u i_v
z

\ fo@)= Lt fz 29 @ u ;v

. u v .
Thus f ¢(z) exists, because —, — exist.
X X

Hence f(2) is analytic.

Note 1. The real and imaginary parts of an analytic function are called conjugate functions. Thus, if
f(z) = u(x, y) +iv (x, y) is an analytic function, then u(x, y) and v(x, y) are conjugate functions. The relation
between two conjugate functions is given by C-R equations.

Note 2. When a function f(z) is known to be analytic, it can be differentiated in the ordinary way as if
zis areal variable.

Thus, f(z) = 22 P fet(z)=2z

f(z) =sinz P f¢(z) =coszetc.

1.10. CAUCHY-RIEMANN EQUATIONS IN POLAR COORDINATES

Let (r, q) be the polar coordinates of the point whose cartesian coordinates are (x, y), then
X=rcosq,y=rsinq,
z=x+iy=r(cosq+ising)=re"

\ u+ iv =f(z) = f(re') (1)
Differentiating (1) partially w.r.t. r, we have
Y o
— I—r=f¢(re'q).e'q .(2)
Differentiating (1) partially w.r.t. g, we have
u . v R (I UV .
— |—=f¢(re"*).|re"4=|rﬁ—r l—rk | Using (2)
vV . u
=—r— Ir—
) I r
Equating real and imaginary parts, we get
U r_v and r—u
r r
u 1 v % 1 u L .
or — —— and —  —— whichisthe polar form of C-R equations.
r r r r

Soved Problems
Example 1. Find the values of ¢, and c, such that the function
f(z) = x>+ c,y? = 2xy + i (C,x* — y* + 2xy)
is analytic. Also find f ¢(z).
Sol. Here f(z) = (x* + ¢y = 2xy) + i (C,x* = y* + 2xy) ..(1)
Comparing (1) with f(z) = u(x, y) +iv(x, y), we get

u(x, y) = x*+cy? - 2xy (2
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and V(X, y) = C,X* =y + 2xy ..(3)
For the function f(z) to be analytic, it should satisfy Cauchy-Riemann equations.
u u
Now, from (2), ~ =2x-2y and _y =2cy-2X
Y \Y
Also, from (3), —X =2cx+2y and _y =2y +2x
Cauchy-Riemann equations are
Uy
Xy
p 2x—2y =—2y +2x which istrue.
u \Y
and - O
y X
p 2cy-2x=-2cx-2y ..(4)
Comparing the coefficients of x and y in equation (4), we get
2c,=-2 P ¢ =-1
and -2=-2c, P ¢c=1
Hence ¢c,=-1 and c,=1
u . v .
Now, fe(z) = = I —X =2X =2y +i(2c,x + 2y)
=2X =2y +i(2x + 2y) |Q ¢,=1

=2(x +iy) + 2i(x + iy)
=2z+2iz=2(1+1i)z
Example 2. Find p such that the function f(z) expressed in polar coordinates as f(z) = r?cos
2q + ir?sin pq is analytic.
Sol. Let f(z) = u + iv, then u = r? cos 2q, v = r2sin pq

u \Y .
- = 2r cos 2dq, o =2rsin pq

u . \Y
— =-2r?sin 29, — =pr?cos pq
For f(2) to be analytic, —— v g v 1u
r r r r
\ 2rcos2q=prcospgq and 2rsinpq=2rsin2q

Both these equations are satisfied if p = 2.

Example 3. (i) Prove that the function sinh z is analytic and find its derivative.
(ii) Show that f(z) = log z is analytic everywhere in the complex plane except at the origin and that

its derivative is ﬁik .
z
Sol. (i) Here f(z) = u+ iv=sinh z=sinh (x + iy) = sinh x cos y + i cosh x sin y
\ u=sinhxcosy and v=coshxsiny
U _ osh Y dinhxs
” = cosh x cos Y, y——sm xsiny
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\Vj i i \"
— =sinh xsiny, —— =cosh x cosy
X y

u v u

\ — — and —
Xy y

Thus C-R equations are satisfied.

v
X

Since sinh x, cosh x, sin 'y and cos y are continuous functions,

x| e
x| <

u \ .
—y, and _y are also continu-
ous functions satisfying C-R equations.

Hence f(2) is analytic everywhere.
Now fe@) =2 Y
X X

=cosh x cos y + i sinh x sin y = cosh (x + iy) = cosh z.
(i) Here f(z)=u+iv=1logz=Ilog (x + iy)
Let x=rcosq and y=rsinqso that
X+iy=r(cosq+isinq)=red
log(x +iy)=log (re)=logr+iq

= % log (x* +y?) +itan™ ﬁ%k
Separating real and imaginary parts, we get

- — 2 2 o -1 1=
u—zlog(x +y?) and v=tan "

N u__x u _y
v -y o X

and — = oo
X xX2+y? oy x*+y?
We observe that the Cauchy-Riemann equations

u \ u Vv
—="——_and —_ =-—
X y y X

are satisfied except when x>+ y2=01i.e.,when x=0,y=0

Hence the function f(z) = log z is analytic everywhere in the complex plane except at the origin.

Also fog) =S4 vo X W
, (2= X | X %2 y2
X iy 1 1

B x iy iy) x iy z
Example 4. Show that the function e* (cos y + i sin y) is holomorphic and find its derivative.
Sol. f(z) =e*cosy+ie*siny=u+iv
Here, u=e*cosy, v=e*siny

_u X _V X Q1
= e cos = e*sin
X y X y



12 A TEXTBOOK OF ENGINEERING MATHEMATICS

u ] \%
— =—g*sin — =eXcos
y y y y
u \%
Since, uv and — -
X Yy y X

hence, C-R equations are satisfied. Also first order partial derivatives of u and v are continuous everywhere.
Therefore f(z) is analytic.

u . v R
Now, f¢(z)=—X I—X=excosy+|exsmy

=e*(cosy +isiny)=ex.ev=e*y =g
Example 5. If nis real, show that r" (cos nq + i sin nq) is analytic except possibly when r = 0 and
that its derivative is

nrtcos(n—-1)q+isin(n-1)q].

Sol. Let w=1(z) =u+iv=r"(cosng +isin nq)
Here, u=r"cos nq, v=r"sinnq
u \ .
then, = nr-t cos nq = nr-tsin ng
u . Y
— =—nr'sinnq — =nr"cos nq
u 1 v v 1 u
Thus, we seethat, — —— and — ——
r r r r

\ Cauchy-Riemann equations are satisfied. Also first order partial derivatives of u and v are continu-
ous everywhere.

dw
Hence f(z) is analytic if f ¢(z) or dz exists for all finite values of z.

dw . w
We have, — =(cos q—isin Q) s

dz
=(cos q—isinq).nr-t(cosng +isin nq)
=nrtcos (n—-1)g+isin(n-1)q]
This exists for all finite values of r including zero, except whenr=0and n £ 1.
Example 6. Show that if f(z) is analytic and

(i) Re f(z) = constant
(i) Im f(z) = constant then f(z) is a constant. (Anna 2007, 2009)
Sol. Since the function f(z) = u (x, y) + iv (X, y) is analytic, it satisfies the Cauchy-Riemann equations

u \'% u v
-~ - and — —
X Yy y X
(i) Re f(z) = constant, therefore u(x, y) = c,

u u

=0=
X
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Using C-R equations, N 0 Vv
X y
Hence v(x, y) = ¢, = a real constant
Therefore f(z) = u(x, y) + iv(x, y) = ¢, + ic, = a complex constant.

(ii) Im f(z) = constant. Therefore v(x, y) =c,

\ _V 0 _V
X y
Using C-R equations, M M
y X

Hence u(x, y) = ¢, = a real constant.
Therefore f(z) = u(x, y) + iv(x, y) = ¢, + ic, = a complex constant.

Example 7. Given that u(x,y) =x2—y?and v(x, y) = - Exz—yyzk .

Prove that both u and v are harmonic functions but u + iv is not an analytic function of z.

Sol. u=x2-y?
2
u
—=2x b —=2
X X
— 2 p u 2
y y v =-
_ 2y Pu . .
Since Z +— =0 Hence u(x, y) is harmonic.
Also, V= — Y 5
Xy
Vo 2y v 2y Xy
X - (X2 y2)2 X2 - (X2 y2)3
v_ Yy X o Av_exPy 2y°
y ¢y’ y: ¢ y)°
2V 2V
Since —5 + —5 =0. Hence v(x, y) is also harmonic.
X y
Butl _U 1 _V and _V 1_ _U
X Yy X y

Therefore u + iv is not an analytic function of z.

Example 8. If f and y are functions of x and y satisfying Laplace’s equation, show that s + it is
analytic, where
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S=— ~ and t= ~ v
Sol. Since fand y are functions of x and y satisfying Laplace’s equations,
2 2
\ — — =0 (1
vl @
2 2
and 7 — =Uu. (2)
For the function s + it to be analytic,
st 5
X ..(3)
st
and y " ..(4)
must satisfy.
S F k 2 2
Now, ~ x _y K= Xy 7 ..(5)
t F k 2 2
— —= —-= — ..(6
y yliix yb yx y? ©)
T B D o
y yly xb y* yx
t F k 2 2
and > xfx —y = 7 Xy’ ...(8)
From (3), (5) and (6), we have
2 2 2 2 2 2
p — —5=0
Xy X2 y X y2 X2 y2
which is true by (2).
Again from (4), (7) and (8), we have,
2 2 2 2 2 2
— — — p — —=0
y2 y X X2 Xy X2 y2

which is also true by (1).
Hence the function s + it is analytic.

Exampl tyiti =YW 1010 =0 is analyt ?
xample 9. Verify if f(z) = <y ,210; f(0) =0 is analytic or not~
2 -

Sol. u+iv=w;zlo
Xy
\ _ 2y2 xy3
u=—>2— V=2 2
y Xy
Atthe origin, U im u(x 0) u(O'o)zlimo 0=0
X x 0 X x 0 X
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u@,y) u(@©0 _ Iimu

' im =0
y vo y y oy
v lim v(x,0) v(0,0) =IimO O=0
X 0 X x 0 X
NV im0y V0.0 0 0y
y vo y y oy
Hence Cauchy-Riemann equations are satisfied at the origin.
_ 2 ; 2
But f¢(0)=|irgw=|ir2hxy2(x+;y)—O. Loim
> z 630 X" +y X 1y >)</8x \
Let z® 0 along the real axisy = 0, then
f¢(0)=0
Again let z® 0 along the curve x = y?, then
fe0) = lim—— %
( )_ x 0 x2 x2 2

which shows that f ¢(0) does not exist. Hence f(z) is not analytic at origin although Cauchy-Riemann
equations are satisfied there.

Example 10. Show that the function defined by f(z) = I xy| is not regular at the origin, although
Cauchy-Riemann equations are satisfied.
Sol. Let f(2) = u(x,y) +iv(x,y) = JI xyl then u(x,y)= JIxyl,v(x,y)=0

At the origin (0, 0), we have
lim u(x,0) u@©,00 . 0 O

U lim ——=0
X x 0 X x 0 X
Ui YOy w00 0 0
y v o y y 0y
V' im v(x,0) v(0,0) lim 0 O=0
X x 0 X x 0 X
Vi YO VOO 0 0
y v o y y 0y
u v u \Y
Clearly, — —
X Yy y X
Hence C-R equations are satisfied at the origin.
N 0
Now fe(0) = lim 1@ _fO o Pyl 0
z 0 z z 0 X 1y

If z® 0 along the line y = mx, we get

2
VI mx JIm
f¢(0) = lim g lim L
x 0X(1 im) x ol im
Now this limit is not unique since it depends on m. Therefore, f ¢(0) does not exist.
Hence the function f(z) is not regular at the origin.
Example 11. Prove that the function f(z) defined by
(1 i) y @ i)
2 y2

f(z) = ,z10and f(0) =0

15
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is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f ¢(0) does not exist.

3 3 3 3
X i(x
Sol. Here, f(z) = ( y Z (2 y) , 210
Xy
3 3 3 3
Lo X Yy y
=u+ = |
Let f(z)=u+iv NN 2 2
3 3 3 3
X X
then u=— y2 WV=— y2
y Xy
Since z10 b x!0,yt0

\ uandv are rational functions of x and y with non-zero denominators. Thus, u, v and hence f(z) are

continuous functions when z 0. To test them for continuity at z = 0, on changing u, v to polar co-ordinates
by putting x =r cos g, y = r sin g, we get

u=r(cos® q-sin®qg) and v =r (cos® q + sin®q)
Whenz®0,r ® 0

\ limu lim r(cos®q-sin®q)=0
z 0 r 0

Similarly, Iimov =0
z
\ lim f(z) =0=1(0)
r 0
p f(z) is continuous at z = 0.

Hence f(2) is continuous for all values of z.
At the origin (0, 0), we have

u lim u(x,0) u(o,0) lim X O=1
X x 0 X x 0 X
Ui YOy u0O) Y 0y
y v O y y 0y
Q:“m v(x,O)—v(O,O):Iim x—O=1
OX x—0 X x=>0 X
Y lim v0.y) V(0.0 lim Y~ O=1
y v o y y 0y
u v u \Y
\ — — and — —
X Yy y X
Hence C-R equations are satisfied at the origin.
3 3 3 3
Now te(0) = lim ~2_fO o, X 32) '2(X y) 0
z 0 z 2 0 (x* y)x iy
Let z® 0 along the liney = x, then
- 3 - - - -
fe) = tim 2 2x 1 1 D 11 ()
x 02x3(1 i) 1 i 2 2
Also, let z® 0 along the x-axis (i.e., y = 0), then
3 -3

f¢(0)=)!im0%=l+i

Since the limits (1) and (2) are different, f ¢(0) does not exist.
Example 12. (i) Examine the nature of the function

Q)
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i) = M;Zlo

X le
f0)=0
in the region including the origin.
3 -
XYy — %)
(i) If fx)= o6 +y2 » 220 prove that ———= ) f(O) ® 0 as z ® 0 along any radius vector but
0, z=0
not as z ® 0 in any manner and also that f(z) is not analytic at z = 0.
X X i
Sol. () Here,  u+iv= 22X W .0
Xy
\ . X3y5 e X2y6
- X4 le’ - X4 y10
u . u(x0) u(,o0 .00
Atthe origin, — lim ux.0) u(.0) lim —— =0
X x 0 X x 0 X
Y fim YOy 0.0, 0 0
y 0 y y 0y
Similarl Vog=—Y
Y, " y
Hence Cauchy-Riemann eqgns. are satisfied at the origin.
2.,5 H
But f¢(0) = lim f(z) f(o) lim by (X ) of 1
Z X N X X iy
y
| X2y5
N 0 NG le
y
Let z® 0 along the radius vector y = mx, then
f6(0) = lim — ™% lim —MX
()_x 0X4 mlOXlO x 01 mlOX6 -

Again let z® 0 along the curve y> = x2

li X
o =1im % 5

which shows that f ¢(0) does not exist. Hence f(z) is not analytic at origin although Cauchy-Riemann
equations are satisfied there.

) () f0) hx vy |x) 1
(i) Of. ——
z N x° X iy
_ ix3y(x iy) 1 . 3y
¢y x iy Xy
Let z® 0 along radius vector y = mx then,
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imf@_fO o pOmM) _ imx

z 0 z X 0)(6 mz)(2 X 0X4 m
f(z) (0
Z

Hence ® 0 as z ® 0 along any radius vector.

Now let z® 0 along a curve y = x® then,

- 3 3 -
lim f(z) f(0) lim ixX>.x* i
z 0 Z x 0 X6 x6 2

f(2)
z

Hence

We observe that f ¢(0) does not exist hence f(z) is not analytic at z = 0.

1O does not tend to zero as z ® 0 along the curve y = x5,

Example 13. Show that the following functions are harmonic and find their harmonic conjugate

functions.

. 1 . .
(Hu= > log(x? + y?) (i) v = sinh x cos y.

(ili) u=e*cosy.

1
Sol. (i) u=> log (X2 +y?)
u 1 1 X
— —. .2X
X 2 X2 y2 X2 y2
u (Y1 x2x yE X
X2 (X2 y2)2 (X2 y2)2
u 1 1 y
— = .2
Also, y 22 y? y X2 2
u (¢ YD1 y2y XY
y’ o y?)? x* y?)?
Cu Pu
X2 y2 -
Since u satisfies Laplace’s equation hence u is a harmonic function.
Let dv = Yax Y dy
X y

§ e Bl

(Tirunelveli 2010)

Q)

Q)

.(3)

[From (2) and (3)]

[Using C-R equations]
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_Xxdy ydx_ than 1’%45
(< X

y?)
Integration yields, v=tan F%’Q +C
which is the required harmonic conjugate function of u.
(i) v =sinh x cos y
2
—V=coshxcosy =} —\2/=sinhxcosy
X X
v _ _ 2y )
_y =-sinhxsiny b —5 =-sinhxcosy
Since i i =0
! X2 y2 -
Hence v is harmonic.
u u Y Y
Now, du=z —dx —dy=—dx —dy
X y y X

=—sinh x sin y dx — cosh x cos y dy
= — [sinh x sin y dx + cosh x cos y dy]
=—d(cosh x siny).

Integration yields, u=-coshxsiny+c
which is the required harmonic conjugate function of v.
(iii) u=e*cosy
ou 0%u
- cosy b a7=excosy
u « o%u «
— e”siny b yz—e cos y
2 2
Since a_u+a_u=0 \ uisharmonic.
ox?  oy?
Let v=v(X,Y)
dv = N dx + N dy
X oy
= E_a_uk dx + F@k dy
oy oX
=e*siny dx +e*cosydy
=d(e*siny)
Integration yields, v=e*siny+c.
Example 14. Determine the analytic function w=u + iv if
X
() u=x3-3xy2+3x2-3y? + 1. (iu=———=
X +y

Sol. (i) U=x3—3xy?+3x2-3y?+1

| ¢ is a constant

Q)
Q)

.(3)

| ¢ is a constant

(Tirunelveli 2010)

Q)
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—)l: =3x2-3y*+6x =1 (x,y) |say
\ f (z,0) =32+ 6z (2
Again, _y =-6xy-6y="1, (x,y) |say
\ f,(z.0)=0

By Milne’s Thomson method,
(@)= .20 i ,(z0]dz ¢

= Z(3z2 6z)dz c=2+322+c. | ¢ is a constant
Hence, w=2+32+¢C
B X
(i) u=-2., y2
u (< +y?).1-x.2x  y*-x?
ox (x® +y?)? T+ yA)? ~hlxy) |2y
1
\ f(z,0)=- -z
ou —2xy
. J . AN — X,
Again, oy 2 1y)? 92(%,Y) | say
\ f (2,00=0

By Milne-Thomson method,

f(z) = Z [01(2,0)—i¢,(z,0)]dz+cC = %+ C where c is a constant.

Example 15. (i) In a two-dimensional fluid flow, the stream functionisy = - — y 5 find the
Xy

velocity potential f.
(i) An electrostatic field in the xy-plane is given by the potential function f = 3x?y — y&, find the
stream function.

sol. (i) y=-— y v (D)
oy __ 2xy =X
ax (X2 y2)2 ! y (X2 y2)2
We know that, df=—dx —dy=—dx——dy
X y y X
2 2
= (); Xz)z 22Xy2 7 dy
(x*y9) (x*y9)
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2

_(x* yA)dx 2x*dx 2xydy

i (< y?)?

_ (¢ y)d(x) x@xdx 2ydy)

i < y)

¢y d) xd (< y2>_d§ X k

i <y A
Integration yields, f= 2 Xy2 +C wherec isaconstant.

(ii) Lety (x, y) be a stream function.

dy=—dx —dy:ﬁ —kdx F%dy
X y y X

{- (3x2-3y?)} dx + 6xy dy
—3x2 dx + (3y? dx + 6xy dy)

=—d () +3d (xy?)
Integrating, we get
y=-x3+3xy?+¢ c is a constant
Example 16. (i) If u =e*(x cos y —y sin y) is a harmonic function, find an analytic function f (z) = u
+ivsuch that f (1) =e. (Anna 2011, 2009)
(ii) Determine an analytic function f(z) in terms of z whose real part is e*(x siny —y cos y).
Sol. (i) We have, u=e*(xcosy-ysiny)
u .
= =e(xcosy-ysiny)+e*cosy="f (x,y) |say
u
—y=ex[—xsiny—ycosy—siny]=f2(x,y) |say
\ f(z0)=ez+e=(z+1)€
f,(z.0)=0
By Milne’s Thomson method,
f(2) = Z{ 1(z,0) i ,(z,0)}dz c | ¢ is a constant
=Z(z De’dz c=(z-1)e*+er+c=ze*+c (1)
f(1)=e+c |From (1)
e=e+c [f(1) = e (given)
P c=0
\" From (1), f(z) = ze.
(i) u=e*xsiny-ycosy)
—u=e-xsiny—e-x(xsiny—ycosy)=f1(x,y) | say
X
u
— =e*(xcosy—cosy+ysiny)=f(x,Yy) | say

\ f(z,0)=0
f,(z,0)=e*(z-1)
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By Milne’s Thomson method,
f(z)=Z | 1 (z0) i ,z0]dz ¢
=—iZ e’(z 1dz c

= ik](z 1)( e?) Z( ez)dzg c

=—i[(1-2)e?-e?]+cC
p f(z) =ize*+c | where c is a constant
Example 17. (i) Determine the analytic function whose real part is
€% (X cos 2y —y sin 2y).
(ii) Find an analytic function whose imaginary part is e*(x cosy + y siny).
Sol. (i) Let f(z) = u + iv be the required analytic function.

Here, u = e (x cos 2y —y sin 2y)
\ —)li = e? (2x cos 2y — 2y sin 2y + cos 2y) = f (X, Y) | say
u
and _y =—e?(2xsin 2y +sin 2y + 2y cos 2y) = f, (x, y) | say
Now, f (z,0)=e”(22+1)

f,(z,0)=-e*(0)=0
By Milne’s Thomson method,

f(z)=Z{ 1(z,0) i ,(z0)}dz c:ZeZZ(Zz dz c

27 27
=(z+1) S Zz.e dz ¢
2 2
2z
=(22+1)e— 1e?Z+c
2 2

=ze*+¢
where c is an arbitrary constant.
(ii) Let f(z) = u + iv be the required analytic function.

Here v=eXxcosy+ysiny)
v ) .
—y=e-X(—xsmy+ycosy+smy)=y1(x,y) | say
v .
— =e*cosy—e*(xcosy+ysiny)=y, (X Y) | say
X
\ y, (z,0)=0

Y,(z,0)=e?-e?(2)=(1-2)e?
By Milne’s Thomson method,

)= [
|Z 1 c
ifa 2 e? Z(l)(eZ)dzﬁ c

Zi[z-1)e?+e+c

1(z0) i ,(z0)]dz c
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=} f(z) =ize*+c
Example 18. Show that the function u = e¥ sin (x2 — y?) is harmonic. Find the conjugate function v
and express u + iv as an analytic function of z.

Sol. Here, u=e2sin (x2-y?
\ BV 2y e29sin (x2—y?) + 2xe"2Y cos (x2 - y?)
2y
— =4y?e?sin (X2 - y?) — 4xy e 2V cos (x> - y?) + 2e72Y cos (X* - Y?)
X
—4xy €29 cos (x2—y?) — 4x2 e 29 sin (X2 - y?) ..(2)
u
_y = —2x e sin (X2 —y?) — 2y e 29 ¢cos (X2 - y?)
2u
7 = 4x? e 29 sin (X* - y?) + 4xy €29 ¢os (X* — y?) — 2e29 cos (X* - y?)
+ 4xy e cos (X2 —y?) — dy? e sin (X2 - y?) ..(2)
Adding (1) and (2), we get
2u 2

X
Now, f(z,0)=2zcos 2%, f(z,0)=~-2zsinz?
By Milne’s Thomson method,

@=[[ 120 i,z01d c

=2Z(zcosz2 izsinz%)dz ¢

— 7 =0 which proves that u is harmonic.

_ iz2 o
=2[ze” dz ¢ Put 2=t
1 . dt
=Tzetdt c=—ie” +c \2zdz=—
Since, U+iv=—ie? +c=—ie™® W 4o
- _ iei(x2 y2 2ixy) +C=—je2v. ei(x2 y2) +c

=—ie? [cos (x*—y?) +isin (x*-y?)] +¢c
= e sin (x*-y?) +i[-e > cos (X’ —y?)] + ¢
\ v=—e2Ycos (xX2—y2) +b lif c = a+ ib is complex constant

Example 19. Construct the analytic function f(z)=u+iv if u(x,y)=y*-3x2y

Sol. Given u=y®-3x%y

u_ —6xy, u_ 3y? -3x2
oX oy

Now Q,(z,00=0 Q,(z,0)=-32"
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By Milne's Thomson Method

1(2)= (20 -igy(2.0) iz +c
=[0-i(-3z%)dz +c
i32°

=——+¢C
3

f(z) = 2%

f(z) =u+iv=i(x+iy)®
=i(x+iy> +3x%yi—3xy?)
=(y> -3x%y) +i(x* -3x%y)

Sv(xy) = x3=3x%y

Solved Example

2
) oz where c is the straight line path joining O(0,0) to A(2,1).

1. Evaluate ,[ (Z

f(z)=(2)°

= (x~iy)® = (x* ~y*) - 2ixy
Now along the straight line OA The equation OA is

Sol

1-0
-0)=—-—(x-0
(y=0)= =5 (x~0)
X
y 2:> y
dx = 2dy

= dz = (dx+idy) = (2+i)dy

alsoy varies from0to 1

= [@)?dz= j[(x2 — y?) - 2ixyfdx + idy)
1
= [leyy? - y2 - 2i@y)yke+iday
0

_ j(4y2 —y2—aytif2+i)dy
0



(3y? - ayZi)2+i)dy

(3-4i)2+i)y2dy

Ot 2 O e

h v 10-5i
=£(3—4|)(2+|)[?]0 e

1
————— intheregions
2°-T72+6 g

() lz2l<1 (i)1<|z|<6 (iii)|z|>6

1. Expand f(2)=—;

1 1
M= 6~ onis)

Sol. _1 1 1
" 5/z-6 z-1

i)z <1

z
lzl<1 = |z|<6:‘€ <1

S -1, 2T 4
(Z)—g[?{l—g} +(1—Z) ]
1| -1 (2 .
=§[€Z[€] % ]
(iYl<|z|<6

<1

‘1
=|—{<1 and
z

Z
6
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it is a Laurent's series within the assuming 1< |z| <6.
(iii) 2| > 6

|z|>6:>‘E <1
z

1
also |z|>6:|z|>1:[—]<1
z

1 1 1
2l a-9 z2a-h
VA VA

- Y
=)=

it is a Laurent's series within the assuming 1< |z| <6.

(iii) [z] > 6

|z|>6:>‘E <1
z

1
also |z|>6:>|z|>1:>[—j<1
z

1 1 1
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Q. 1. Determine a, b, ¢, d such that
f(z) = (¢ + axy + by?) + i(cx® + dxy + y?)
isanalytic.
Sol. Here u = x2+ axy + by?, v=cx2 + dxy + y?, given f(z) is analytic.
Therefore C.R. equations must be satisfied.

u v
Now -
Xy
=} 2x+ay=dx + 2y
p 2-dx+((@-2)y=0 (1)
. u %
Again, — —
y X
=} ax +2by =—-2cx—dy
p (@a+2c)x+((2b+dy=0 (2
Solving (1) and (2) for a, b, c, d, we get
2-d=0,a-2=0 | On equating the co-efficient of x, y in (1)
b d=2,a=2

Similarly from (2),
a+2c=0 b c=-1,2b+d=0 P b=-1

1 X
Q. 2. Determine p such that the function f(z) = > log (x2+y?) +itan’? p7 be an analytic function.
Sol. Takex=rcosq,y =rsing. Then

1
f(z) = > logrz+itan= (pcotq) =u+iv, say,

1

Here u=> logrz=logr and v=tan(pcotq).
Now given f(z) is analytic therefore it must satisfy C.R. equations.

u 1 wu
Here — —— =0

r r

% v 1

— =0, — ———————— (- pcosec?
r 1 p? cot? =P 9

1v
;
1 1( pcosec’® )

Now u | From C.R. equations
r

p P 1+ p?cot?q=-p cosec?
F T 1 p?oot? p q=-p aq
p —1 =p(p cot? g + cosec? q). This equation is true if p=— 1.
dx
Q. 3. Evaluate Z .
1

Sol. Consider f(z) = ~————->——>.
(z a“)(z b“)

The poles are given by z = £ ai, £ bi. Only z = ai, bi lie in the upper half of the plane.
We now find the residues of f(z) at z = ai, bi

Now residue of f(z) at z (= ai) = Res. (f(2), ai)
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Lt (z-a)f@)

1
= @A) N Zaiz bz - bi)
1
=M @ ai)z bi)z-Dbi)
_ 1
~ 2ai(ai bi)ai bi)
i
T 2ai(-a? b?) i
i
~ 2a(a® - b?)
i
Similarly residue of f(z) at z( = bi) = 2b(b? — a?)
Therefore by Cauchy Residue Theorem,
Z dx . . .
= 2pi [sum of residues in the upper half of the plane
X a)(e bd) pi[ pp plane]
i 1 1
S
P Mz(a2 b>)Ma b E
_ b a
“a? b2 ab (a bab’
2
Xc x 2
. 4. Evaluate Z ————dx.
Q x* 10x* 9
2
z2 z 2
Sol. Here f(z) = ————.
@) ' 1022 9
The poles are given by ¢ + 1022+ 9=0
p *+922+22+9=0
p (Z2+9)(2+1)=0 b z=%3i,z=#i

Only z = 3i, i lie in the upper half of the plane.
We now find the residues of f(z) at z = 3i, i
Now residue of f(z) at z( = 3i) = Res.(f(2), 3i)

= Lt (2-3)f@)

_ Lt ;3 -z 2
= w730 T e 1)
_g Pz 2
z 3i(z 3i)(z% )
~9 3i 2

T @39 1)
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_—7-3i 7 3i
"~ 6i(—8)  48i
Also residue of f (z) at z( = i) = Res.(f(2), i)

= Lt 2-)f()

_ Lt ) 22—z 2
LN 9w e
22—z 2 -1-i 2
= Lt > — = —
2z i (22 9@z i) 1 9a i)
C1-i_1-i
8(2i)  16i
Hence by using Cauchy Residue Theorem,
Z X2 x 2 _ o
—————5—— UX =2pi [sum of residues in the upper half of the plane]
x* 10x° 9

.M? 3i 1 i (7 3 3 3i) _5
=2pi f—— —— = .
48i  16i 24 12

X2

x2 9)(x% 4)2 dx.

X2 x?

(x> 9)(x* 4)? dx ZZo(x2 9)(x* 4)? dx

Q. 5. Evaluate ZU

Sol. Consider Z ..(1)

‘ Za f)dx 2 Z:f(x) dx iff(x) is even

Z2

(22 +9) (2% +4)?
The poles are given by z = + 3i, + 2i and £ 2i.

Out of these 3i, 2i lie in the upper half of the plane.

z = 3i isa simple pole whereas z = 2i is a double pole.
We now find the residues of f(z) at those poles

Here f(2)

L L _ (z - 3i)z?
NowRes. ({2, 30 = 14, 6= 30 10 = L ah e —aiZ 47

Z2

bt —— =
z 3i(z 3i)z® 4)?
9 9% 3i
T 6i.25 150 50
1d

Also Res.(f(2), 2i) = Lt - [(z-2)2. ()]



30 A TEXTBOOK OF ENGINEERING MATHEMATICS

Z2

(2 9z 2i)(z-2i)
S
2 9@ 2i)?)
2 9z 2i)?%.2z Z%(2(z2> 9)(z 2i) 2zz 2i)2H
(2 9z 2] |
_ (-4 9@*40) 424 9 4i4i)?)
[(-4 9]
_ —320i 4(20i — 64i)
) (- 80)°
_ —320i-176i _ —496i _ —3i

_ 6400 ~ 6400 ~ 200
Hence by using Cauchy Residue Theorem, we have from (1)

d .2
= LtZiE (z-2i)".

z

= L

z

¢ 4

2i dz
_ . he
- thZiN

2
X 1
dx = . 2pi (Sum of residues in the upper half plane
Z0 & 9od af X g pp plane)

=piﬁ3_i 13ik
50 200%0 200

Q.6 Evaluatez0 x25|n>; dx.
X a
. Xsin X Xsin x
SoI.ConS|derZ dx ZZD dx
x?> a? x> a?
a a
Z f(x) dx:zz0 f(x) dx, If f(x) is even
—a
Xsin X 1 X sin x 1 xe™™ . o
p Zo—dx —Z ——dx I.P.—Z dx el9=cos g+ isin
x? a? 2k x2 a? 2k 2 2 | a a
iz
Here f(z) = .
0=

The poles are given by z = + ai. But z = ai lies in the upper half of the plane.
Further Res. (f(2), ai)

ze"? aie? e?

(z ai)(z ai) 2ai 2
Hence by Cauchy Residue Theorem, we have

X sin X 1 . he?
——dx = I.P.2pi. —e 2.
ZDXZ a? 2 P E Zk 2

COS X

= Lt (z ai)
z al

dx,a>b>0.

Q. 7. Evaluate Z
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CoS X
SoI.Z dx
eiz
= Real artZ dz (1
eiz
Here f(z) = .
DT )
The poles are given by z = + ai, z=* bi.
Only z = ai, bi lie in the upper half of the plane.
eiz e a
Further Res. (f(z),ai)= Lt (z ai).
(o). = L )(z ai)(z ai)(z> b?) 2ai(b® a?)
larl (2), b b e” e
Similarly Res. (f(z), bi)= Lt (z bi
Y (o). b= L )(22 a®)(z bi)z bi) 2bi( b*> a?)
Therefore by using Cauchy Residue Theorem, we have, from (1)
Z cos X dx =R.P. 2pi [Sum of residues in upper half of the plane]
(X2 aZ)(XZ bZ) R p pp p
H a b
=R.P.2__'H S ° ZH
2i flap® a®) 2b@@® b?)|
a2 b af
Q. 8. Evaluate Z0 % dx,m>0,a>0.
X(x= a“)
Sol. HereZ %dx
X(x= a“)
2120 S|;1mx2 dx
2% x(x° a“)
1 eImX
=|p =] ————dx
I.P. 2ZU X0Z a?) (1)
sin mz

Here f(z) = m. The poles are given by z =0, z = + ai. The pole z = 0 lies on the real axis.

Therefore we choose the contour C to be a large semi-circle | z| = R and a small circle of radius r. Then the

only pole within C is z = ai.
. . eimz
Now Res. (f(2), ai) = Lt (z-ai).f(z)= Lt (z- a')-m
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Cimz C
= Lt (z ai) - — = Lt ST 2
z ai z(z ai)(z ai) z aiz(z ai) 2a

Therefore by using Cauchy Residue theorem,

imz am
e

Z)Cf(z)dz 2 i(sum of residues in the upper half plane)

—_am .
-nl
_ g—am

= 27
-2a%? a?

P Zer(z)dz Lf(z)dz ZF:f(z)dz Lf(z)dz _2ieam

a
b I1+I2+I3+I4=a—2'e-am,say
eizm
Consider I =ZC f(2)dz ZC ———dz
2 R (2 < Z(z ai)(z ai)
1 ei(Rcos isin )m

= — _ _ - _ - d— ®0,asR® ¥
Ri B Re' (Re' ai)(Re' ai) €'

()

|Putx=Rcosq,y=Rsinq,0£q£p, for the upper half z = Re%, dz = Ri e dq

Further l,= L f(2) dz

eImZ
=ZC—dZ Putz=rcosq+isinqg=re" dz=ireldq

cz(z*  a?)

eimz 1
b ME L—dz =
) ‘ 2z a?) ‘ a2

Therefore from (*), we get

R r i i
Z f(2) dz Z f@dz — —-e"
r R a a
Taking r ® 0, R ® ¥, we get
o . . i
p zof(z)dz Z f(2) dz a—zleam a—2|=¥(l—e-am).

Therefore from (1),



SOLUTIONS OF COMPLEX VARIABLE 33

H imx
[ Snm g Lap]

x(x* a® 2 x(x* a®)
1 ZC 1 i
==ILP.| f(dz==I1P.—(1 e?®) — (1-e®).
> (2) > 2 ( ) o ( )
Q. 9. Evaluate ZO2 1
(5 3cos )2

1 2
d

b cos \/ a2

Differentiating w.r.t. a, by Leibnitz’s rule for differentiation under the integral sign,

we get

2
Sol. Consider Z0 (asin Q. 2)
a b2

i 2 ; d = i 2p(a2— b2)-1/2
da (a bcos ) da
2 _ _3
b d4_ 1 g =2pﬁ—1k (@% —b%) 2(2a)
da (a bcos ) 2
2 -1 -2 a
S o -
(@ bcos )2 (a% — b?)%?2
2 1 2 a
S
(a bCOS )2 (az _b2)3/2

Take a=5b=-3,

ZDZ 1 10 5
(5 3cos )? 16%2 32
X2
Q. 10. Evaluatez —————dx
x= = 4)

2

_ z
Sol. Here f(z)——(22 D 4).

The polesare givenbyz=+1i,z=%2i.
Out of these z = i, 2i lie in the upper half of the plane.

Z2

(z+i)(z—-i)(z? +4)

Res. (f(2), 1) = ZL_)ti(z —-i).f(2) = ZI._)ti(z —-1i).
2

zZ
2 (z i)z® 4)
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-1 -1
T2i-1 4) 6i

Similarly Res. (f(2), 2i) = ZLt2i(z— 2i) . 1(2)

2

. Z
=% G e 2
_ 2? _ 1

252 (22 +1)(z + 2i)  12i° 3i

Therefore, by using Cauchy Residue Theorem, we have

2
X
Z m dx = 2pi (sum of residues in the upper half of the plane)

-1 01
=2 |E_ _k:
P 6i  3i

Q. 11. Evaluate ZU COS X ix.
X

iz
Sol. Consider the integral Zce— dz Zcf(z) dz,
z

where C consists of (i) The real axis from rto R
(ii) The upper half of the circle | z| = R, say C,
(iii) The real axis—Rto—r

61

(iv) The upper half of the circle [ z| =r,say C_and R>.

Now the singularities of f(z) isz= 0. As
z=0liesoutside C \ By Cauchy Theorem,

Zcf(z) dz=0

pi(12 2

61

=} Zer(z)dz L f(z)dz ZF:f(z)dz Lf(z) dz=0

L+, +1,+1,=0,say

eiz
Consider l,= ZC f(2) dz L —dz
R R z

. ZD eiR(cos isin )Rei
Re'

d

i Le Rsin

()

| Putz=Re", dz=Riedq,0£q£p

.e

iR cos d
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b ‘ZC f(Z) dz ‘izoe iRsin |Rcos d ‘ ZO|e|Rcos Rsin d
R
=ZOe Rsin d IleiRcosq|=1
2 an 2 RZ
= e d 2 e d
FForO ?sm 2 or sin 2—'&
R |12
=2 GZR — (1-¢%) ®0,asR®Y¥
0
2} l,=
imz
Now consider I4=Zcf(z)dz Zce dz
r r Z
mz
ch e ZC dz L 1dz
Takez=re" b dz=riel"dg,p£q£DO.
Therefore ZC dz ﬁd =-pi
imz
and ZC € 1 dz
i(rcos isin ) rsin ircos
:Za‘e i 1 ZC € € 14 ®0,asr@y
r re r |
Therefore I, = - pi. Hence from (*), we have
I, +1,-pi=
r
R

b Zer(z) dz Z F:f(z)dz=pi Zof(z) dz ZO f(z) dz = pi

=Z f(z) dz = pi.
p Z e—:dzzpi.

Equating real part,
Z 52 4z=0 b 220 S X 4x=0 b Z0 €08 X 4x = 0.
X

z




36 A TEXTBOOK OF ENGINEERING MATHEMATICS

sin x
.12.Eva|uatez ———dx.
Q x?> 4x 5
eiz
Sol. Consider f(z) = ——.
@) z? 4z 5
The poles are given by 22+ 4z+5=0
p z2=-2-i,-2+1.
Onlyz=-2 +ilies in the upper half of the plane.
eiz
— )= Lt z 2 i
Res. (f2), -2 +0) = Lt ( )72 vz 2 )
el 2 1) e 2ig 1t
2 i 2 2i
Therefore by Cauchy Residue Theorem,
iz 2ig 1
Z ———dz 2 iﬁe € é 2 (cos2-isin2)
z° 4z 5 2i e
Equating imaginary part,
Z 2smx dx sin 2
X 4x 5 e
Section C

SOME MORE IMPORTANT PROBLEMS

Q. 1. Solve z0 LSSX dx (P.T.U. B. Tech., May 2005)

X

Sol. Try yourselfasin Q. 19. Ans. Py

dx \/E

4

2 3 ;a>0.
X a 4a

Q. 2. Apply calculus of residues to prove that ZD

(P.T.U. B. Tech., Dec. 2006)

Sol. Consider the integral ZC f(z) dz where f(z) = 7.

z* a
The poles of f(z) are given by
Z4 + a4 - 0 p Z4 - a4epi - a462npi +pi
or z=ae®r:n=0,1,2,3.
Since there is no pole on the real axis, therefore, we may take the closed contour C consisting of the
upper half C_ of a large semi-cicle |z| = R and the real axis from - R to R.

\ By Cauchy’s residue theorem, we have



or

and

ZCf(z)dz 21 R

=} ZRRf(x)dx+ZCRf(z)dz=2 i R

R 1 1
— 7 dx
RX" a RZy 8y

| where R

dz
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2i R (1)

= sum of residue of f(z) at poles within C.

The polesz= ae* and z= ae" are the only two poles which the lie within the contour C.

Let a denote any one of these poles, then
at+a‘=0

p at=-at

Residue of f(z) atz=ais

A

| d
dz

|
M

. . 1
\ Residue atz=aeP*is=— 122 gpira
. . 1 .
residue at z = ag¥" is = — —5 %"
4a
\ Sum of residues = L e L
43° 43°

(24 a4)5 4 3

4 4

. 3 ... 3
cos— isin /4 cos— isin
4 4 4

isin— cosF —k isinﬁ AM
4 4 4
isin— cos— isin—&
4 4 4
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R dx dz ) i J2
\ Froml,z +ZC =2pi [ - 0
1 R x4 a4 74 a4 p HZ\/Z_ask PYE 2
1 dz dz
Now, ZC dz EZC 1dz| ZC ldz|
RZ4 a4 Rlz4 a4| RIZ4I Ia4|
Rd
“hRr* A Q |z|=RonC,
R
= W ®0asR®¥.
Hence when R ® ¥, relation (2) becomes
L e S
X4 a4 2a3 X4 a4 433 .
Q. 3. Show by the method of residues that :
Lo e B :
17 8cos 15" (P.T.U. B. Tech., Dec. 2003)
2
Sol. ZU d  _, ZU 1y
17 8cos 17 8cos
2a a
Since ZO f(xX)dx =2 ZO f (x) dx, if f(2a - x) = f(x)
Here cos(2p-q)=cosq
1 172 1
L g 1] .
g ZO 17 8cos 2k 17 8cos (1)
Putting z = €', so that
COSq:&ﬁZ ik and dz=iedq
2 Z
1
=—dz
i da iz
2 1 1
! ZO 17 8cos d Z)E 1' 1' E,Wherec:|z|=1
17 8.—ﬁz *k 1z
2 Z
i D S
TR 17z 422 1 i
1Z 1
==L o " 2
i b 472 177 4 (2)

The poles are given by 422 - 172+ 4 =0
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b =4,

, 17 289 64 _17 J225 17 15
N 8 - 8 -8

A

Out of these, z=1/4liesin |z = 1

\ Residue of f(z)atzﬁ l‘a: Lt ﬁz 112 f(2)
4N 1 4
4
P P
R
4

4

= — Lt = — —
4i, 1z 4 4
4

Hence from (2), by using Cauchy Residue theorem,

ol g2l 2
17 8cos "15i 15
\ From (1), we have

Z0 1 g 12
17 8cos 215 1
PROBLEMS FOR PRACTICE

2 d
Evaluate Zo PP
2 cos

2 d
Use Residue Calculus to evaluate the integral Zo 5 asin (P.T.U.B.Tech Dec. 2006)
Eval Z:Ld
valuate 3 on U0
Using Residue th luate the i |ZD—1ZCOS
sing Residue theorem evaluate the integra 5 4005 Ud

sin2 d

1 2pcos p
2

2
Evaluatez0 >,0<p<1
sin

2
_d
Evaluatez0 5 4008

2 sin2 _
Evaluate by Residue theorem z0 sin” —2c0s d
2 cos

ad
Show by method of residues that Z0 2 sin? \/1 2

sSin

d

2
Evaluatez0 1 2asin

a2 O<a<l (P.T.U.B.Tech. Dec. 2001)
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P2 2
z Sin
P - - — — l 2 2
10. rove that d 2 (a a b ), where0<b<a.

b cos
11. Evaluatez0 d ,wherea>|b|.
a bcos
| ==
12. Evaluate o ad)E bd) dx. (P.T.U.B.Tech. Dec. 2003)
dx
13. Evaluate & 1 (P.T.U.B.Tech. Dec. 2006)
14, Evaluate] —% 5 15, Evaluate | e
. Evaluate m X. . Evaluate A 52 4
| ZU dx | ZU €oS ax ix(a
16. Evaluate & 1 17. Evaluate Z 1 x(a 3 0)
cos 3x COS 2X

18. Evaluate Z0 o DE 4 dx. 19. Evaluatt’-zz0 o0& 92 (% 16) dx

Ccos a
20. Using Calculus of Residue evaluate the integral given by z0 ﬁ dx;a>,b>0
X sin ax
21. Evaluate z0 & a4 dx;a>0. 22. Evaluate Z0 Sih mx dx, m> 0.
) cos 2ax cos 2bx
23. Showthatifa3b?30, then ZO -2 dx =p(b-a).
24, Eval z0 X ix:a>0
. valuate X(X2 az) X;a>0.
. . 1 cosx
25. By contour integration, show that ZO 2 dx = Ex (P.T.U. May 2005)
Answers
1 2 2 2 3.0
. \/5 . 3 .
4. 0 50 6. —
4
2 2
7. — 9. 11.
x/g 1 a? a2 p?
12. P 13. 20z 14. —
e—a
15. — 16. — 17
3 3 2

-8 -6 — ab
18. —(2¢3-¢ 9 19 —Me 3¢ 20, (@0 De ™
12 ap®
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2 2
21. 22. = 24, — (1-e®
Sz 1=

_Zeisina_ i
422" 2 T2 2

PRobIEM

An analytic function with constant modulus is constant.
Proof. Let f(z) = u + iv be an analytic function with constant modulus. Then,
| f(z) | = | u + iv | = constant

p Ju?  v2 =constant = c (say)

Squaring both sides, we get

u?+v2=c? ..(1)
Differentiating egn. (1) partially w.r.t. x, we get
20— 2v—Y=0
X X
b u2 vY=o -2
oo XX .
Again, differentiating egn. (1) partially w.r.t. y, we get
2u — 2v—V =
y y
u \Y
p u— V—=0
y
Y u u Y vV u
b u ﬁ —k vﬁ—k =0 -.(3) ‘ vo—  —and— —
X X y X y X

Squaring and adding egns. (2) and (3), we get
uj? v)?
(U2 +v2) P ] k=0

|Q u2+v2=c210

T
—=
x| c
——
N
—=
x <
——
N

|

o

b 1f¢(z) F=0 2 f (2) —‘)J( i—

X
p |fe(z)|=0
b f(z) is constant.

SOLVED EXAMPLES

Example 1. If f and y are functions of x and y satisfying Laplace’s equation, show that s + it is
analytic, where

Ss=— — and t=— —.
y X Xy
Sol. Since fand y are functions of x and y satisfying Laplace’s equations,
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2 2
\ — — =0
X2 y2
2 2
and — —=0.
X2 y2
For the function s + it to be analytic,
st
Xy
S
and - -
y X
must satisfy.
IS 2 2
Now, — Rl = —
X Xy X Xy X
t F k 2 2
y ylhx yb= yx y?
s _F_ _k c
y yly xb y* yx
t 2 2
and - 07 dA=—7
x xllx vy X X'y
From (3), (5) and (6), we have
2 2 2 2 2
b —
Xy X2 y X y2 X2

which is true by (2).
Again from (4), (7) and (8), we have,
2 2 2 2 2

y> Yy X X Xy X
which is also true by (1).
Hence the function s + it is analytic.

0

=0

=0

Exampl tyiti =YW 1010 =0 is analyt ?
xample 2. Verify if f(z) = <y ,210; f(0) =0 is analytic or not~
2 -

Sol. u+iv=w;zlo
Xy
\ _ 2y2 Xy3
U=—=2—2V=2 2
y Xy
Atthe origin, Ui U9 u©.0) _ ;0 O
X x 0 X x 0 X
Ui u0y) u009 _;,0 0
y vo y yo.y

Q)

Q)

.(3)
. (4)

..(5)

..(6)

()

.(8)
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v lim v(x,0) Vv(0,0) - lim 0 0 -0
X x 0 X x 0 X
NV im0y V0.0 5,0 0y
y vo y y oy
Hence Cauchy-Riemann equations are satisfied at the origin.
_ 2
But f¢(0)=|in(1)w=li Okixyz(XHy) of.— 1 lim X
z— Z 630 X +y X 1y >)</ gx \
Let z® 0 along the real axisy = 0, then
f¢(0)=0
Again let z® 0 along the curve x = y?, then
fe0) = lim—*— %
( )_ x 0 x2 x2 2

which shows that f ¢(0) does not exist. Hence f(z) is not analytic at origin although Cauchy-Riemann
equations are satisfied there.

Example 3. Show that the function defined by f(z) = yI xy| is not regular at the origin, although
Cauchy-Riemann equations are satisfied.

Sol. Let f(2) = u(x,y) +iv(x,y) = JIxyl then u(x,y)= JIxyl,v(x,y)=0
At the origin (0, 0), we have

YU im u(x,0) u(o,0) lim 0 0 -0
X x 0 X x 0 X
Ui YOy w00 0 0
y v o y y 0y
v lim v(x,0) v(0,0) lim 0 0 —o
X x 0 X x 0 X
Y lim vO.y) v(0.0) lim o0 =0
y v o y y 0y
u v u \Y
Clearly, — —
X y y X
Hence C-R equations are satisfied at the origin.
0
Now f¢0)= lim f@ 1O f(o) lim Y110
z z 0 X Iy

If z® 0 along the line y = mx, we get

2
f¢(0)—||mv MLy M1

x(1 im) x o 1 im
Now this limit is not unique since it depends on m. Therefore, f ¢(0) does not exist.
Hence the function f(z) is not regular at the origin.

Example 4. Prove that the function f(z) defined by
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3 ; 3 ;
f(z)=X(1 |2) y2(1 i)

,210andf(0)=0
X

is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f ¢(0) does not exist.
3 3 fry3 3
X i(x
Sol. Here, f(z) = ( y Z (2 y) 210
y
3 3 3 3
Lo X Yy y
Let f(D=u+iv= 1 )
€ ()=u+iv 2P X2 2
3 3 3 3
X X
then u=— y2 WV=— y2
Xy Xy
Since

z!0 b x!0,y!0

\ uandv are rational functions of x and y with non-zero denominators. Thus, u, v and hence f(z) are

continuous functions when z 0. To test them for continuity at z = 0, on changing u, v to polar co-ordinates
by putting x =r cos g, y = r sin g, we get

u=r(cos® q-sin®qg) and v =r (cos® g + sin®q)
Whenz®0,r ® 0

\ limu [lim r(cos®q-sinq)=0
z 0 r 0
Similarly, limv=0
z 0
\

Iim0 f(z) =0=1(0)
,
P f(z) is continuous at z = 0.

Hence f(2) is continuous for all values of z.
At the origin (0, 0), we have

u lim u(x,0) u(o,0) I x 0 -1
X x 0 X x 0 X
Ui YOy 00 Y O
y v o y y 0y
Q: lim v(x, 0) — v(0, 0) _lim x-0 —1
OX x-0 X x>0 X
Vo im v(0,y) Vv(0,0) lim Y 0 1
y v o y y 0y
u v u \Y
\ — — and — —

X Yy y X
Hence C-R equations are satisfied at the origin.

3

3 ru3 3
Now te(0) = lim ~2_fO o, X 32) '2(X y) 0
z 0 z z 0 (X7 y9)(x iy)
Let z® 0 along the liney = x, then
- 3 - - - -
fe) = tim 2 2x 1 1 D 11 ()
x 02x3(1 i) 1 i 2 2

Also, let z® 0 along the x-axis (i.e., y = 0), then
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3 -3
f ¢(0) = )!imo%zlﬂ -(2)

Since the limits (1) and (2) are different, f ¢(0) does not exist.

Example 5. (i) Examine the nature of the function
f(z) = —X y” (X _iy) ;210

X le
f0)=0
in the region including the origin.
3 -
X“y(y — %)
@I fz) = X +y2 » 220 prove that ) f(O)®0asz®0alonganyradiusvectorbut
0, z=0
not as z ® 0 in any manner and also that f(z) is not analytic at z = 0.
2.5 H
X i
Sol. () Here,  u+iv= 22X W .0
Xy
3,,5 2,,6
X X
\ us=-—7 y10*V= 4 y10
Xy Xy
u . u(x0) u(,o0 .00
Atthe origin, — Ilmw lim —— =0
X x 0 X x 0 X
Ui YOy w09 0 0
y v o y y ©
Similarly, Yo=Y
X
Hence Cauchy-Riemann egns. are satisfied at the origin.
2.,5 H
But f¢(0)= lim @ 1O f(o) lim by (X ) of 1
Z X N X X iy
y
2.5
I — 10
X OX y
y
Let z® 0 along the radius vector y = mx, then
£6(0) = lim X fim X
()_x 0X4 mlOXlO x 01 mlOX6_
Again let z® 0 along the curve y> = x2
Jiim X1
fe@=lim-3—7 3

which shows that f ¢(0) does not exist. Hence f(z) is not analytic at origin although Cauchy-Riemann
equations are satisfied there.
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3 -
i f(z)zf(O) hxxﬁ(y y;x) . 'xliy

Cy(x iy) 1 i 3y
¢ YY) Tx iy Y
Let z® 0 along radius vector y = mx then,

. f(» fO) . ix3(mx) _ .. imx?
:I —_— =
z“n]) z >!Im0 x®  m?x? XImO x4 m? 0
Hence @ 1O ® 0 as z ® 0 along any radius vector.
z

Now let z® 0 along a curve y = x® then,

- 3 3 -
lim f(z) f(0) lim ixX>.x* i
z 0 Z x 0 X6 x6 2
Ht—znceM does not tend to zero as z ® 0 along the curve y = x5,
z

We observe that f ¢(0) does not exist hence f(z) is not analytic at z = 0.

Example 6. Show that the following functions are harmonic and find their harmonic conjugate

functions.
. 1 N .
(Hu= > log(x? + y?) (i) v = sinh x cos y.

(ili) u=e*cosy.

1
Sol. (i) u=> log (x2+y?)
u 1 1 X
— —. .2X
X 2 X2 y2 X2 y2
u (¢ Y1 x2x yE X
X2 (X2 y2)2 (X2 y2)2
u 1 1 y
— = .2
Also, y 22 y? y X2 y?
u (¢ YD1 y2y XY
y’ o y?)? x* y?)?
u Cu 0
X2 y2 -

Since u satisfies Laplace’s equation hence u is a harmonic function.

Let dv=—de —de
X y

(Tirunelveli 2010)

Q)

Q)

.(3)

[From (2) and (3)]
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§ e Bl
el b

_ xdy ydx ydx:than 1Fy H

2

¢ y?) X
Integration yields, v=tan F%’Q +C
which is the required harmonic conjugate function of u.
(i) v =sinh x cos y
2
—V=coshxcosy =} —\2/=sinhxcosy
X X
v _ _ 2y )
_y =-sinhxsiny b —5 =-sinhxcosy
Since i i =0
! X2 y2 -
Hence v is harmonic.
u u \Y \Y
Now, du=—dx —dy=—dx —dy
X y y X

—sinh x sin y dx — cosh x cos y dy
— [sinh x sin y dx + cosh x cos y dy]
=—d(cosh x siny).

Integration yields, u=-coshxsiny+c
which is the required harmonic conjugate function of v.
(iii) u=e*cosy

ou 0%u

—=¢e" cos b ——=e"cos

oX y axz y
2

u X u x
— e'siny b —=-e cosy
oy

2 2
Since a_u+a_u=0 \ uisharmonic.
ox?  oy?
Let v=Vv(X,Y)

= E_a_uk dx + F@k dy
oy oX

=e*siny dx +e*cosydy
=d(e*siny)

[Using C-R equations]

| ¢ is a constant

Q)
Q)

.(3)

| ¢ is a constant
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Integration yields, v=e*siny+c.

1.11. HARMONIC FUNCTION

A function of x, y which possesses continuous partial derivatives of the first and second orders and satisfies
Laplace’s equation is called a Harmonic function.

1.11.1 THEOREM

If f(z) = u + iv is an analytic function then u and v are both harmonic functions.
Proof. Let f(z) = u + iv be analytic in some region of the z-plane, then u and v satisfy C-R equa-

tions.

and

and

and

u v
\ — —
Xy
v
X
Differentiating (1) partially w.r.t. x and (2) w.r.t. y, we get
Pu_
ox?  oxoy
u A
y> o yXx
. 2V 2V .
Assuming and adding (3) and (4), we get
Xy yX
2u 2
EEAN
Now, differentiating (1) partially w.r.t. y and (2) w.r.t. x, we get
2 2
u v
yx oy
o
Xy x?
2y 2y
Assuming Xy and subtracting (7) from (6), we get
v %y
— —=0
X2 2

Q)
Q)

.(3)

. (4)

..(5)

..(6)

()

.(8)

Equations (5) and (8) show that the real and imaginary parts u and v of an analytic function satisfy the
Laplace’s equation.

Hence u and v are harmonic functions.
Note. Here u and v are called conjugate harmonic functions.

Example 4. Show that the function e* (cos y + i sin y) is holomorphic and find its derivative.

Sol. f(z) =e*cosy+ie*siny=u+iv
Here, u=e*cosy, v=e*siny



u X
— = e*Cos
X y
u o
— =-—e*siny
y
. u \Vj u
Since, — — and —
X Yy y

<|< ><|<

SOLUTIONS OF COMPLEX VARIABLE 49

=e*siny

=e*cosy

hence, C-R equations are satisfied. Also first order partial derivatives of u and v are continuous everywhere.

Therefore f(z) is analytic.

u

Now, fe(z) =

Y S
I— =ercosy+ietsiny

X
=e‘(cosy+isiny)=e*.ev=e*V =g

Example 5. Given that u(x,y) =x2—y?and v(x, y) = - Exz—yyzk .

Prove that both u and v are harmonic functions but u + iv is not an analytic function of z.

Sol. u=x2—y?
2
u
—=2x b —5=2
X X
— 2 p u 2
y Yy 2 ==
_ 2y Pu _ _
Since Z + 7 = Hence u(x, y) is harmonic.
Also, V= — Y 5
Xy
Vo 2y v 2y Xy
X - (X2 y2)2 X2 - (X2 y2)3
v_ oyt X Av_exPy 2y°
y &y y2o o y)°
2y A
Since Z + — =0. Hence v(x, y) is also harmonic.
But, e Y g Yo M
Xy X y

Therefore u + iv is not an analytic function of z.

Example 8. If f and y are functions of x and y satisfying Laplace’s equation, show that s + it is

analytic, where
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s=— — and t=— —.
y X X

y
Sol. Since fand y are functions of x and y satisfying Laplace’s equations,
2 2
\ — — =0 (1
vl @
2 2
and — —5=0. (2
vl @
For the function s + it to be analytic,
st 5
X ..(3)
st
and y X ..(4)
must satisfy.
S E k 2 2
Now, ~ x _y K= Xy 7 ..(5)
t F k 2 2
— —= —-= — ..(6
y yliix yb yx y? ©)
2 2
- .
y yly xb y* yx
t E k 2 2
and > xfx —y = 7 Xy’ ...(8)
From (3), (5) and (6), we have
2 2 2 2 2 2
p — —5=0
Xy X2 y X y2 X2 y2
which is true by (2).
Again from (4), (7) and (8), we have,
2 2 2 2 2 2
— — — p — —=0
vy X x> Xy X2y

which is also true by (1).
Hence the function s + it is analytic.

1.12. DETERMINATION OF CONJUGATE FUNCTION

If f(z) = u + iv is an analytic function where both u(x, y) and v(x, y) are conjugate functions, then we
determine the other function v when one of these say u is given as follows:

Q V=Vv(xy)

v v
\ dv=—0dx —dy
X y

u
b dvz_—ydx — dy (1) | By C-R eqgns.
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u u
M=-—", N=—
y X
M 2u 2
\ — —5 and — _121
y y X X
M
Now, — —— gives
y
2u 2
y2 X2
or u u =0
X2 2
which is true as u being a harmonic function satisfies Laplace’s equation.
\ dvisexact.

\ dvcan be integrated to get v.

However, if we are to construct f(z) = u + iv when only u is given, we first of all find v by above
procedure and then write f(z) = u + iv.

\Y \Y
Similarly, if we are to determine u and only v is given then we use du = _y dx Y dy and integrate
it to find u. Consequently f(z) = u + iv can also be determined.

Example 1. Show that the following functions are harmonic and find their harmonic conjugate
functions.

1
Hu= > log(x? + y?) (ii) v=sinh x cos y.
(ili) u=e*cosy. (Tirunelveli 2010)
1
Sol. (i) u=> log (x2 +y?) (1)
u 1 1 X
— —. .2
X 2 X2 y2 X X2 y2
2u (x* y?).1 x.2x  y* x?
7 (Xz yz)z (Xz yz)z -(2)
u 1 1 y
— = .2
Also, y 22 y? y X2 2
2u (X y?).1 y.2y  x* y?
7 (Xz yz)z (Xz yz)z -(3)
2u 2
2 7 =0. [From (2) and (3)]

Since u satisfies Laplace’s equation hence u is a harmonic function.
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Let dv = Yax Y dy

X y
= E —uk dx F—uk dy
y X

Y k dx E X k d
EX V2 2y y
_ xdy ydx ydx:dwtanlﬁy

CS%

Integration yields, v=tan F%’Q +C

N

which is the required harmonic conjugate function of u.

(i) v =sinh x cos y
2
—V=coshxcosy =} —\2/=sinhxcosy
X X
v _ _ 2y )
_y =-sinhxsiny b —5 =-sinhxcosy
Since i i =0
) X2 y2 -
Hence v is harmonic.
u u Y Y
Now, du=z —dx —dy=—dx —dy
X y y X

=—sinh x sin y dx — cosh x cos y dy
= — [sinh x sin y dx + cosh x cos y dy]
=—d(cosh x siny).

Integration yields, u=-coshxsiny+c
which is the required harmonic conjugate function of v.
(iii) u=e*cosy

ou 0%u

—=¢e" cos b —-=e"cos

oX y axz y
2

U e“siny b —u——excosy
y oy

2 2
Since a_u+a_u=0 \ uisharmonic.
ox?  oy?

Let v=Vv(X,Y)

oV ov
- —dx+—d
dv ox oy Yy

[Using C-R equations]

| ¢ is a constant

Q)
Q)

.(3)

| ¢ is a constant
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= F_a_uk dx + F@k dy
oy O0X

=e*siny dx +e*cosydy

=d(e*siny)
Integration yields, v=e*siny+c.
Example 15. (i) In a two-dimensional fluid flow, the stream functionisy = - — y 5 find the
Xy

velocity potential f.
(i) An electrostatic field in the xy-plane is given by the potential function f = 3x?y — y&, find the
stream function.

; y
Sol. (i =- (1
® V=T )
w2y o y-x
x ¢y y ¢ y)?
We know that, df=—dx —dy=—dx——dy
X y y X

) 2y

dy
(x> y?)? x> y?)?

(x* yHdx 2x?dx 2xydy

i (< y*)

(x> yHd(x) x@xdx 2ydy)

i o y?)?

¢ y)d) xd (< y2>_d§ x k

i Y7y A
Integration yields, f= 2 Xy2 +C wherec isaconstant.

(ii) Lety (x, y) be a stream function.

dy=—dx —dy:ﬁ —kdx F%dy
X y y X

{- (3x2-3y?)} dx + 6xy dy
— 3x2 dx + (3y? dx + 6xy dy)
—d (x°) +3d (xy?)

Integrating, we get
y=-x3+3xy?+¢ c is a constant

1.17. MILNE’S THOMSON METHOD




54 A TEXTBOOK OF ENGINEERING MATHEMATICS

With the help of this method, we can directly construct f(z) in terms of z without first finding out v when u is
given or uwhen v is given.

Z=x+iy
Z =x-1ly

1 _ 1 _

p X-E(z+z)andy-z(z—z)
\ @) =ulxy) +iv(xy)

e ey

Relation (1) is an identity in zand Z . Putting Z = z, we get

f(z) = u(z, 0) + iv(z, 0) ..(2)
Now, f(z)=u+iv
_u ;v u.u
p fe(z) = " < x y | By C-R eqgns.
=f(y) -if(xy)
u u
where ;(x,y) — and ,(X,y) —
X y
Now, fe(z) =1 (z,0)-if,(z0) | Replacing xbyzandy by 0
Integrating, we get f(z) = Z {f(z,0)-if(z,0)}dz+c | cisan arbitrary constant.
Hence the function is constructed directly in terms of z.
Similarlyif v(x, y) is given, then
f(z) = Z [y,(z, 0) +iy,(z, 0)] dz + ¢ ‘ (%Y — and  L(xy) —
A 2\% y X

Milne’s Thomson method can easily be grasped by going through the steps involved in following
various cases.
Case 1. When only real part u(x, y) is given.

To construct analytic function f(z) directly in terms of z when only real part u is given, we use follow-
ing steps:
. u
1. Find —
X
2. Write it as equal to f.(x, y)
u
3.Find —
y
4. Write it as equal to f,(x, y)
5. Find f (z, 0) by replacing x by zand y by 0 in f (, y).
6. Find f(z, 0) by replacing x by zand y by 0 in f,(x, y).
7. f(z) is obtained by the formula
f(z) = Z{ 1(z,0)—i ,(z,0)}dz+cC

directly in terms of z.
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Case 1. When only imaginary part v(x, y) is given.

To construct analytic function f(z) directly in terms of z when only imaginary part v is given, we use
following steps:

\Y
1. Find —
y
2. Write it as equal to y,(x, y)
. Y
3. Find —
X
4. Write it as equal to y,(x, y)
5. Find y,(z, 0) by replacing x by zand y by 0 in y,(x, y)

6. Find y,(z, 0) by replacing x by zand y by 0 in y,(x, y)
7. f(z) is obtained by the formula

@=[{ (20 i ,(z0}dz ¢
directly in terms of z.
Case I11. When u—v s given.

To construct analytic function f(z) directly in terms of z when u — v is given, we follow the following
steps:

1Lf(2)=u+iv (1)
2.if(2)=iu-v .(2)
3. Add (1) and (2) to get
A+Df@=u-Vv)+i(u+tv)
or, F@)=U+iV
where F@=01+i)f(z2), U=su-v,V=u+v
4. Since u—v is given hence U(x, y) is given

. U
5. Find —
X
6. Write it as equal to f,(x, y)
U
7. Find —
y
8. Write it as equal to f,(x, y)
9. Find f,(z, 0)

10. Find f,(z, 0)
11. F(2) is obtained by the formula

F(z)=Z{ 1(z,0) =i ,(z,0)}dz ¢

F(z
12. f(z) is determined by f(z) = # directly in terms of z.
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Case IV. When u + v is given.

To construct analytic function f(z) directly in terms of zwhen u + v is given, we follow the following

steps:
1L.fz)=u+iv
2.if@=iu-v
3. Add (1) and (2) to get
A+Df@=u-Vv)+i(u+tv)
p F@=U+iVv
where, F@O)=1+i)f(z),U=u-v,V=u+v

4. Since u + v is given hence V(x, y) is given

\%
5. Find —
y
6. Write it as equal to y, (X, y)
. Vv
7. Find —
X
8. Write it as equal to y,(X, y)
9. Find y,(z, 0)
10. Find y,(z, 0)
11. F(2) is obtained by the formula

FO=[{ 120 i @0z c
. . F@) . .
12. f (z) is determined by f(z) = T directly in terms of z.

Solved Example
Example 14. Determine the analytic function w=u + iv if

(M u=x3-3xy2+3x2-3y? + 1. (iHu=———
X +y

Sol. (i) U=x3—3xy?+3x2-3y?+1

—)l: =3x*-3y*+6x=1 (x,Y)
\ f (z,0) =32+ 6z

u

Again, _y =-6xy-6y="1, (x,y)
\ f,(2,0)0=0

By Milne’s Thomson method,

i@=[1 20 i ,z0ldz c

:Z(Sz2 6z)dz c=7+32+c.

()
Q)

(Tirunelveli 2010)

Q)

|say
(2)

say

| ¢ is a constant



and
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Hence, w=2+32+¢C
- X
(i) u=-2_, y2
u (< +y?).1-x.2x  y*-x°
x (X% + y?)? T 02 1 y?)? ~ ) |52y
1
\ f(z,0)=- -7
ou —2xy
H —_— = X'
Again, oy 2+ y)? 92(X,Y) | say

\ f,(z,0)=0
By Milne-Thomson method,

f(z) = Z [0,(z,0)—i¢,(z,0)]dz+cC = %+ ¢ where c is a constant.

Example 17. (i) Determine the analytic function whose real part is

€% (X cos 2y —y sin 2y).
(ii) Find an analytic function whose imaginary part is e*(x cosy + y siny).
Sol. (i) Let f(z) = u + iv be the required analytic function.

Here, u = e (x cos 2y —y sin 2y)
\ —)li = e? (2x cos 2y — 2y sin 2y + cos 2y) = f (X, y) | say
u
_y =—e?(2xsin 2y +sin 2y + 2y cos 2y) = f, (x, y) | say
Now, f (z,0)=e”(22+1)

f,(z,0)=-e*(0)=0
By Milne’s Thomson method,

f(z)=Z{ 1(z,0) i ,(z,0)}dz c:ZeZZ(Zz Ddz c

2z 2z
=(2z+1) 62 ZZ.e2 dz c
2z
=(22+1)eT %ezwc

=ze*+¢

where c is an arbitrary constant.

(ii) Let f(z) = u + iv be the required analytic function.

Here v=eXxcosy+ysiny)
v . .
—y=e-X(—xsmy+ycosy+smy)=y1(x,y) | say
v .
— =e¥cosy—e*(xcosy+ysiny)=y, (X Y) | say
X
\ y, (z,0)=0

Y@ 0 =et-et (@)= (L-2)e*
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By Milne’s Thomson method,

)= [

[

=|Z(1 c
o
[

1(z0) i ,(z0)]dz c

( e?) Z( D( endg o

Zi[z-1)e?+ef+c

p f(z) =ize*+c

Example 18. Show that the function u = e¥ sin (x2 — y?) is harmonic. Find the conjugate function v
and express u + iv as an analytic function of z.

Sol. Here, u=e2sin (x2-y?
\ ~ = =2y e2sin (X2 —y?) + 2xe2Ycos (X2 - y?)
2y
— =4y?e?sin (X2 - y?) — 4xy e 2V cos (x> - y?) + 272 cos (X* - Y?)
X
—4xy €29 cos (x2—y?) — 4x2 e 29 sin (X2 - y?) ..(2)
u
_y = - 2xe2sin (x> -y?) — 2y e 29 cos (x> - y?)
2u
7 = 4x? e 29 sin (X* - y?) + 4xy €29 ¢os (X* — y?) — 2e29 cos (X* - y?)
+ 4xy e cos (X2 —y?) — dy? e sin (X2 - y?) ..(2)
Adding (1) and (2), we get
2LI 2LI ) - -
2 7 =0 which proves that u is harmonic.

Now, f(z,0)=2zcos 2%, f(z,0)=~-2zsinz?
By Milne’s Thomson method,

@=[[ 120 i,z01d c

=2Z(zcosz2 izsinz%)dz ¢

=2[2e dz Put iz2=t
1 . dt
‘Tze dt c=-ie'” +c \2zdz=—
Since, U+iv=—ie? +c=—jel®* ¥ 4
- _ iei(x2 y2 2ixy) +C=—je2v. ei(x2 y2) +c

=—ie? [cos (X2 —y?) +isin (x*—y?)] +c
= e 293sin (Xz _ y2) + i[— e~ cos (Xz _ yZ)] +C
\ v=—e?Ycos (xX2—y2) +b lif c = a+ ib is complex constant
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Example 19. If u—v=(x-y) (x2+4xy +y?) and f(z) = u + iv is an analytic function of z = x + iy,

find f(z) in terms of z.
Sol. Here, f(z)=u+iv
\ if(z) =iu—-v
Adding, (1 +i)f(z)=(u-v)+i(u+v)
=} F@=U+iVv

where, F@=Q+i)f(z2),U=u-vandV=u+v.
Now, Uzu-v=(X-y) (x®+4xy +y?
U
p e X2+ 4xy + Y2 + (X —y)(2x + 4y) = 3x? + 6xy — 3y* = (X, y)
U
and _y =— (X +4xy +y°) + (X —y)(4x + 2y) = 3x*— 6xy — 3y* = (X, y)
Now, f(z,0) =32
f(z,0) =32
By Milne’s Thomson method,
F(z) = Z [ 1(z0)—i »(z0)]dz c= Z [32° iBz%)]dz ¢
Fo)=(1-i)+c
p L+)f@=@A-i)+c
] P R ZiQ 5 F
= — — = z7 ¢ where ¢
or f(2) Fl ik z : > 1 1
or f(z)=-i2+c,.

Example 20. If u+v=

2 sin 2x
e” e?® 2cos2x
iy, find f(z) in terms of z.
Sol. Let f(z)=u+iv
Multiplying both sides by i
if(z)=iu-v
Adding (1) and (2), we get
A+Df@=u-Vv)+i(u+tv)
p F@)=U+iV
where F@=@1+1i)f(
U=u-v and V=u+v
It means that we have been given
2sin 2x
e?Y e?Y 2cos2x

V=

| say

| say

and f(z) = u + iv is an analytic function of z =x +

Q)
Q)
.(3)
. (4)

..(5)
..(6)

()
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or

and

sin 2x
= e e?
cosh 2y cos 2x

2cosh 2y

Now v 2sin 2xsinh 2y x.y) Isa
’ Yy (cosh2y cos2x)? BN y

V. 2cos 2x(cosh 2y  cos 2x) 2sin? 2x

X (cosh 2y cos2x)?
_2cos2xcosh2y 2 x.y) Isa
~ (cosh 2y cos 2x)? VY y
\ y,(z,0)=0
v,(2,0) = 2(cos2z 1) 2 _ 2 - coseC 2

(1 cos22? 1 cos2z 1 1 2sin’z

By Milne’s Thomson method, we have
F(z)=0{y,(z,0) +iy,(z,0)}dz +¢
=0-icosec’zdz+c=icotz+c
Replacing F(z) by (1 + i) f(z), from egn. (5), we get
@+if(z)=icotz+c

b fz)= ——cotz ——
11 11

\ fz)=2 (L+i)cotz+c, whereclz%.
i

cosx sinx e

Example 21. If f(z) = u + iv is an analytic function of zand u—v = , prove that
2cosx 2coshy
f(2) = 2 Ml cot EH when f F—'a =0.
2 2 2
Sol. Let f(z)=u+iv ..(1)
\ if(z)=iu-v
Add, 1+i)f(2=u-Vv)+iu+v) ..(2)
=} F@=U+iVv ..(3)
where u-v=U, u+v=V and (1+i)f(z) =F(@).

or

_cosx sinx e
2cosx 2coshy

We have, u-v

_cosx sinx coshy sinhy
B 2cosx 2coshy

sinx sinhy ()
2(cos x cosh y)

U

[Q eY=coshy-sinhy]

1
2
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Diff. (4) w.r.t. x partially, we get

U lh(cosx cosh y) cos X (sinx sinh y)( sin X)H
x 2| (cos x cosh y)? 0

1 coshycosx sinhysin XH
(cos x cosh y)? 0

1
=5

1 cosz H 1 5)
(cos z 1)20 2(1 cosz)’
Diff. (4) partially w.r.t. y, we get

1
1z 0)=3

U 1g(cosx coshy).coshy (sinx sinhy)( sinh y)H
2

y (cos x cosh y)?

£ (x )_1 cos xcosh y sin xsinhy 1H
S (cos x cosh y)? 0

L |

' ' ..(6
2N(cosz 1)20 2 Fl cos z (6)
By Milne’s Thomson Method,

Fo= [ (20 i ,z0ldz c

=ZN1 1 i 1 Hdz+c

2°(1 cosz) 21 coszU

EH cos z 1H=1 h

\ f(z0)=

1 1
= 2'Z dz+c=%Zcosecz(z/2)dz c

2sin? z/2
1 ik z
=_j—— cot=
[ o 2o
. 1 i z
or (1+|)f(z)=—ﬁ—k cot— ¢
b f)=-Leot 2 S (7
2 2 1 1
T 1 T C
—J=—=cot—+—
fM 5 GOt + T [From (7)]
1 Cc I 1
0o=-— — b — = ...(8
2 i 10 2 ®)
1 z 1 1 y4 .
\ From (7), f(z)=- =cot— —=—ﬁ1 cot—k. Using (8
(M, @) S %0lS 575 : [Using (8)]

Example 22. (i) If f(z) is a regular function of z, prove that

2 2
E7 7& [f@)>=4|fe@)"
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(Coimbatore 2010, Anna 2006, 2009, 2010)
(ii) If f(z) is a harmonic function of z, show that

2 2
$—X|f(z)|w %If(Z)Iw =|f @

Sol. (i) Let f(z) = u + iv so that [f(z)| = yu? V2

or [f@)F = u? + v2 = f(x, y) (say)
\ —_ 2u—u 2v—v
X X X
Y HZ S HZ
X2 X2 X X2 X
2 2 2

imilarly, — — — ry —
y y? y2 Ty y> Ty

Adding, we get
2 2 2 2 2 2 2 2 2 2

B TR TR T
X y X y X Yy X y X y

Since f(z) = u + iv is a regular function of z, u and v satisfy C-R equations and Laplace’s equation.

\ U vu v 0
x vy 5 an 2y 2y
\ From (1), we get

Now, f)=u+iv
2 2
\ fe)=— i—~ and [fe@)P= ﬁ—”k ﬁ—"k
X X X X
From (2), we get
2 2 2 2

— 7& f=4[f ¢ or E7 7& f2) = 4[f ¢@)

(ii) We have, f(z) = u+iv (1)

\ f@)I=yu® v ()

Partially differentiating eqn. (2) w.r.t. xand y, we get
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0 1 2 2 1/2ﬁ u \ " VX
< ==@u? v 2u— ZV%ZM ..(3
p UG] 5 ( ) ™ ™ 121 ©)
u v
u— v—
i y y
Similarly, —If|=—— ..(4)
y 191
Squaring and adding (3) and (4), we get
ﬁ u vkz E u vkz
$ 2 2 Ju— v— u— Vv—|
X X y y
—If(Z)Iw $7If(2)lw =
X y 1f@) 1
oy v by o
u \Y u
u— VvV— — V—
X X X X .
= | Using C-R eqgns.
If@) P
ul® vl
u? v li— —
X X
els
FRE
= 1— — 2 =112 2
m Q f@)F=u+v
= [ ¢2)P ‘ f @z — iy
X X
Example 23. (i) Show that a harmonic function satisfies the formal differential equation
2
Yoo
zzZ
(ii) If w=1(z) is a regular function of z, prove that
2 2
E7 ?k log |f ¢(z)] = 0. (Anna 2009)

Further, if | f ¢(z) | is the product of a function of x and function of y, show that
f ¢(z) = exp.(az? + bz + g) where a is a real and b, g are complex constants.

Sol. (i)Wehave x+iy=z and x-iy=2Z

1 _ 1 _
sothat X—E(Z 7), y= > (z-2)
\ x 1 y i

z 2’ z 2

X 1 y 1

7z 2’ zZ 2
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Now N
z X z y z 20X y
and — ——)_( ——X EF— i—k
z X Z y z 20X y
2 2 2
1
Hence, — _E_Z —Zk
zZ 417 x y
2 2 2
— — 4
or, X2 y2 zZ7Z
A harmonic function u satisfies the eqn.
2 2 2 2
_121 _121:0 which implies that 4 u_=0 or =0.
X y zZ zZ
i —5 — log|f¢(z
(i) Z gf ¢l
=4 ——=9-loglf I =2 ——[log{f (2 f (2)}]
2712 z7zZ
2
=2 —[log f (2) log f (2)]
z7
f (2 . - - :
=2— f—(i) =0. | Since f ¢(Z) and f2(Z) are independent of z

Further, let |[f¢ (@) |=FT(X)y ()
where f(x) is a function of x only and y(y) is a function of y only. Here f(x) and y(y) are either both positive

or negative.
2 2
Now, 3 7 log|f¢(z2)|=0
2 2
b Z {log f(x) + log y(y)} = 0
d? d?
p —— {log f(x)} + — {lo =0
e {log f(x)} ay? {log y(v)}
d? d?
=} — {log f ()} =— — {log y(y)} = ¢ (a constant) | say
dx dy
d? d?
\ —— {logf(x)}=c and — {lo =-cC
e {log f(x)} ay? {log y(y)}
1 1
p Iogf(x)zacx2+dx+e and Iogy(y)z—E cy?+dey +e¢
1 2 1 2
= f(x) = exp. f ©X dx and  y(y) = exp. SO dy e



SOLUTIONS OF COMPLEX VARIABLE 65

where d, e, d¢ and e¢ are real constants.

c
\ |f(I:(z)|=f(x)y(y)=exp.ME(X2 y?) dx dy e eH (1)
Similarly,
|exp . (az2+ bz +g) |=|exp. a(x +iy)*+ (a+ib) (x +iy) + (c +id) |
=exp. [a (2 —y?) + ax—by + c] (2 ‘ le® Bl et
where b=a+ib,g=c+id

Expression (2) is of the same form as (1).
Hence we can write f ¢(z) = exp. (az? + bz + g).

EXERCISE

1. (i) Determine a, b, c, d so that the function f(z) = (x> + axy + by?) + i(cx? + dxy + y?) is analytic.
(i) Find the constants a, b, ¢ such that the function f(z) where
f(z) = — X2+ xy + y? + i (ax? + bxy + cy?) is analytic. Express f(z) in terms of z.
(iii) Find the value of the constants a and b such that the following function f(z) is analytic.
f(z) = cos x (cosh y + asinh y) +isin x (cosh y + b sinh y)

(iv) Determine p such that the function f(z) = % log (x2 + y?) + i tan~ 2X is an analytic function.
y

(v) For what values of a, b and c, the function f(z) = x — 2ay + i(bx — cy) is analytic ?
2. Discuss the analyticity of the following functions:
1
(i)sinz (ii) cosh z (iii) S (iv) z8
3. (i) Iff(2) = (x = y)? + 2i(x + y), show that C-R equations are satisfied along the curve x—y = 1.

(i) Show that the function f(z) = (x® — 3xy?) + i(3x%y — y3) satisfies Cauchy-Riemann equations.
(Coimbatore 2010)

(iii) Find the analytic region of f(z) = (x — y)? + 2i (x + ).
(iv) Check whether w= 7 is analytic everywhere ?
(v) Determine whether the function 2xy + i(x? - y?) is analytic or not ?
2

(vi) If w=f(z) is analytic, prove that aw - _w i wherez=x+ iy and prove that V\i 0.
dz X y zZ
2
(vii) Find where the following function ceases to be analytic:  f(z) 22 14,
1

(viii) Verify if the function e~ cos 2y can be the real/imaginary part of an analytic function.

4. Show that the polar form of Cauchy-Riemann equations are —l: %—V —\r/ %—u Deduce that
2 2
u iy I Moy (Anna 2009)
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5. Showthat if f(z) is differentiable at a point z, then
X uy

u
ViV

If ¢(2)f? =

6. (i) Show that an analytic function f(z), whose derivative is identically zero, is constant.

(i) Itis given that a function f(z) and its conjugate f(z) are both analytic. Determine the function f(z).

. . . x3y5(x iy) . .
7. (i) Show that the function f(z) defined by f(z) = x6—y1°’ 210, f(0) = 0, is not analytic at the
origin even though it satisfies Cauchy-Riemann equations at the origin.

(ii) Show that for the function
@?
@@=y *
0, z O

the Cauchy-Riemann equations are satisfied at the origin. Does f ¢(0) exist?
(iii) Show that for the function

2xy (X +1y)
, z#0
f(z) = x2+y2
0, z=0

the C-R equations are satisfied at origin but derivative of f(z) does not exist at origin.
8. (i) If uisa harmonic function then show that w= u? is not a harmonic function unless u is a constant.
(ii) If f(z) is an analytic function, show that |f(z)| is not a harmonic function.
(iii) Show that the function y + e* cosy is harmonic.
Also find the analytic function f(z) = u(x, y) + iv(x, y) whose real part isy + e* cos y.
(iv) Showthat v = log (x? + y?) is harmonic. Find a function u such that u + iv is analytic.
(Anna 2009)
(v) Show that the function u = 2x — x3 + 3xy? is harmonic.
(vi) Showthat u = 3x%y — y3is a harmonic function.

9. (i) Showthat the function u(x, y) = 2x + y®— 3x?y is harmonic. Find its conjugate harmonic function
v(X, y) and the corresponding analytic function f(z).

(i) Show that the function u(x, y) = 3x%y + 2x? - y3 — 2y? is harmonic. Find the conjugate harmonic
function v and express u + iv as an analytic function of z. (Coimbatore 2010)

(iii) Show that the function v(x, y) = e* sin y is harmonic. Find its conjugate harmonic function
u(x, y) and the corresponding analytic function f(z).

(iv) Showthat v = x% — xy2 + x + y is harmonic and also find the analytic function w=u + iv interms
of z. (Anna 2010)

10. (i) Showthat the function u(r, q) = r? cos 2q is harmonic. Find its conjugate harmonic function and
the corresponding analytic function f(z).



11.

12.

13.

14.

15.

16.

17.
18.
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(i) Determine constant ‘b’ such that u = e™ cos 5y is harmonic.

(iii) Provethat u = x? — y2 — 2xy — 2x + 3y is harmonic. Find a function v such that f(z) = u + iv is
analytic. Also express f(z) in terms of z.

Determine the analytic function f(z) in terms of z whose real part is

0] % log (x? +y?) (i) cos x cosh y

. sin 2x

iii) e* cos V) ————————

(it y ( )cosh 2y cos 2x
sin 2x

M o0 ceox

cosh 2y cos 2x

Find the regular function f(z) in terms of zwhose imaginary part is

(vi) e*sin 2y.

(i) 5— (ii) cos x cosh y (iiii) sinh x cos y
X2y
(iv) 6xy —5x + 3 (v) -z X 7 + cosh x cosy.
(i) Showthat v =e? (y cos 2y + x sin 2y) is harmonic and find the corresponding analytic function f(z)
=u+iv

(i) Construct the analytic function f(z) = u + iv given that 2u + 3v = e*(cos y —sin y).
(iii) Show that the function u = x3 + x? — 3xy? + 2xy — y? is harmonic and find the corresponding
analytic function f(z) = u + iv.
(i) An electrostatic field in the xy-plane is given by the potential function f = x2-y?, find the stream
function.
(ii) If the potential function is log (x? + y?), find the flux function and the complex potential function.

(i) Inatwo dimensional fluid flow, the stream function isy = tan~! F%’ , find the velocity potential f.

X
(i) If w=f + iy represents the complex potential for an electric field and y = x? - y? 2 7

determine the function f.
If f(z) is an analytic function of z, prove that

2 2
ﬁ? 7}1 R @) =2f ¢(2)]%

Find an analytic function f(z) = u(r, q) + iv(r, q) such that v(r, q) = r> cos 2q — r cos q + 2.
If f(z) = u + iv is an analytic function, find f(z) in terms of z if

((Ju—v=eX(cosy-siny) (Anna2012) (ii)u+v= ZX >, when f(1) =1
Xty

Yy i 3 i
(|||)u_vzwwhenfﬁ—‘a 3 i
cosh y cos x 2 2

sin 2x

cosh 2y — cos 2x

(ivyu-v= (Anna 2009)
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19.

20.

21.

22.

23.

24,

25.

10.

(i) If f(z) = u + iv is an analytic function of z=x + iyand u + v= (X +y) (2 - 4xy + x2 + y?) then
construct f(z) interms of z.

(ii) If f(z) = u + ivis an analytic function of z=x + iyand u—v=e*[(x—y) sin y— (x + y) cos y] then
construct f(z) interms of z.

If f=u+ ivisanalytic show thatg =-v + iuand h = v—iu are also analytic. Also show that u and —
v are conjugate harmonic. (Anna 2009)

Show that the function

i) f(2) = ﬁ isanalyticatz = ¥. (ii) f(2) = zis not analytic at z = ¥.
+

Iff(z) = u(x, y) + iv(x, y) wherex = % y= % is continuous as a function of two variables z and

Z then show that —i =0 is equivalent to the Cauchy-Riemann equations.
4

. of ﬁau ox ou ay& .ﬁav oX ov ay&
Hlnt.—_= —_———t— = + 1 — — + — —]
0z oX 0z 0y o0z ox 0z 0y oz

If f(z) = u + iv is a regular function of z in a domain D. Prove that the following relations hold in D:
(i) N2 [arg f(z)] = O i.e., arg f(z) is harmonic in D.

(i) N2 Im f(2) =2 [f ¢(2) |~

If f(z) = u + iv is a regular function of z in a domain D, show that the following relation holds in
D NZ[f@)° = p? [f(@)P"-2 | f ¢(2)P.

If f(z) = u + ivis a regular function of z in a domain D, prove that the following relation holds in D.
NZlog |f(z) |=0 iff(z)f¢(z)10in D Or log [f(z) | is harmonic in D.

Answers

1 1 1
(Ja=2,b=-1,c=-1,d=2 (i)a= 3,b=-2,c=3;f)= ;@+)Z

(iMa=-1,b=-1 (ivyp=-1 (v)2a=b,c=1
(iix-y=1 (iv) nowhere analytic (v) No
(vilyz==%i (viii) yes

(ii) constant function 7. (ii) No.

o o X

(iii)e?—iz+c (|v)u—2tan1py'2 c

(i) v=2y=-3xy?+x3+c;f()=2z+ i +ic(ii)) v=3xy? + 4xy - x3+ ¢, f(z) = - iz + 222 + ic
4

(iiyu=eXcosy +c;f(z2)=e?+ ¢ (iv)w:%+(1+i)z+c

(Yv=r?sin2q+c;f(z)=22+ic (i)b==%5

(iii) v=x2—y? + 2xy - 2y - 3x, f(z) = (1 + i)2? - (2 + 3i)z



11.

12.

13.

14.

15.

18.

(i)logz+c
(ivycotz+c

(iv) 322 -5iz+¢
(i)ze¥%+c
(y=2xy+c
1

(i) 5 10g (€ +y?)

(iYer+c

(iv) f(2) =

cot z
1 i

Cl-
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(ii)cosz+c
(Vtanz+c

(ii)icosz+c

) % +icoshz

f1osih
(")F 13 K¢ 2 3

(ii) 2 tan? F%’ ,2logz+c

(i)-20+ 77 °

OR

19. (i) 2z+i+¢c

(iii) e+ ¢
(vi) —ieZ +¢

(iii)) i sinh z + ¢

(iii) 2+ 241 - i) + ¢

17.i(Z2-2+2) +¢c

z

(i) cot - % 1-i)

(ii) ize7?+ ¢
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