
Assembler directives

• DB: Define Byte The DB directive is used to
reserve byte or bytes of memory locations in the
available memory.

• Example: VALUE DB 50H
LIST DB 0lH, 02H, 03H, 04H

• This statement directs the assembler to reserve
four memory locations for a list named LIST and
initialise them with the above specified four
values.

• MESSAGE DB 'GOOD MORNING'

Assembler directives

• DW: Define Word. The DW directive serves the
same purposes as the DB directive, but it now
makes the assembler reserve the number of
memory words (16-bit) instead of bytes.

EX: WORDS DW 1234H
• Another option of the DW directive is

explainedwith the DUP operator.
EX: WDATA DW 5 DUP (6666H)
• This statement reserves five words, i.e. 10-bytes

of memory for a word lable WDATA and initialises
all the word locations with 6666H.

DQ: Define Quad word This directive is usedto
direct the assembler to reserve 4 words (8 bytes)
of memory for the specified variable and may
initialise it with the specified values.
DT: Define Ten Bytes. The DT directive directs the
assembler to define the specified variable
requiring la-bytes for its storage and initialise the
10bytes with the specified values.
ASSUME: Assume Logical Segment Name The
ASSUME directive is used to inform the assemble,
the names of the logical segments to be assumed
for different segments used in the program.END:
END of Program The END directive marks the end
of an assembly language program. END statement
should be the last statement in the file

• SEGMENT: Logical Segment The SEGMENT directive marks the starting of a logical segment.
The started segment is also assigned a name, i.e. label, by this statement.

• ENDS: END of Segment This directive marks the end of a logical segment. Any statement
appearing after ENDS will be neglected from the segment.

EX: DATA SEGMENT

.

.

.

DATA ENDS

ASSUME CS: CODE, DS:DATA

CODE SEGMENT.

.

.

.

CODE ENDS

END

• The above structure represents a simple program containing two segments named

DATA and CODE. The data related to the program must lie between the DATA SEGMENT
and DATA ENDS statements. Similarly, all the executable instructions must lie between CODE
SEGMENT and CODE ENDS statements.

• EQU: Equate The directive EQU is used to assign
a label with a value or a symbol. The use of this
directive is just to reduce the recurrence of the
numerical values or constants in a program code.
The recurring value is assigned with a label, and
that label is used in place of that numerical value,
throughout the program.

• Example LABEL EQU 0500H

ADDITION EQU ADD

Assembling ,linking &loading
• Editor: an editor is a program which allows

you to create a file containing the assembly
language statements for your programs.

• The actual position of each field on a line is
not important. After typing the program we
have to save the file on the disk or floppy.

• This file is called source file. It contains the
extension .ASM for turbo assembler.

• Assembler: this program is used to translate the
assembly language mnemonics for instructions
to the corresponding binary codes.

• It runs in two passes.

• on the first pass it generates a symbol table.

• On the second pass it generates the binary
codes.

• The first file is called the object file and having
the extension .OBJ

• The second file generated by the assembler is
called the assembler list file and is having the
extension .LST

• LINKER:it is a program used to join several
object files into one object file.

• The linker produces link file which contains the
binary codes for all combined modules.

• The linker also produces a link map file which
contains the address information about the
linked files.

• The produced link files have the extension .EXE
and .MAP

• LOCATOR:it is a program used to assign the
specific addressess of where the segments of
object code are to be loaded into memory.

• A locator program converts the .EXE file to a
.BIN file which has the physical addressess.

• Debugger:if your program does not require
external hardware or requires only hardware
accessible directly from your microcomputer
then you can use a debugger to run and debug
your program.

• It allows you to load your object code program
and troubleshoot it.

• A debugger also allows you to set a breakpoint
at any point in your program.

• The advantage of a breakpoint is we can debug
the program upto the breakpoint and it is
correct then we can further move after that
point.

• Emulator: another way to run the program is
using emulator. It is a mixture of hardware and
software.

• It is used to teat and debug external systems.

Timing and delays

• The rate at which 8086 instructions executed are
determind by a clock.

• Each instruction takes a certain number of clock
cycles to execute.

• Generally we have to introduce a delay between
the execution of 2 instructions.

• For example we want to read the data values
from port wait 1ms and then read again.

• The basic princple is to execute an instruction or
series of instructions over and over until the
desire time has elapsed.

