
The following figure shows the corresponding Bode plot.

The magnitude plot is having magnitude of 0 dB upto ω =
1
τ
 rad/sec. From ω =

1
τ
 rad/sec, it is

having a slope of 20 dB/dec. In this case, the phase plot is having phase angle of 0 degrees

up to ω =
1
τ  rad/sec and from here, it is having phase angle of 900. This Bode plot is called

the asymptotic Bode plot.

As the magnitude and the phase plots are represented with straight lines, the Exact Bode
plots resemble the asymptotic Bode plots. The only difference is that the Exact Bode plots
will have simple curves instead of straight lines.

Similarly, you can draw the Bode plots for other terms of the open loop transfer function
which are given in the table.

Control Systems - Construction of Bode Plots
In this chapter, let us understand in detail how to construct (draw) Bode plots.

Follow these rules while constructing a Bode plot.

Represent the open loop transfer function in the standard time constant form.

Substitute, s = jω in the above equation.

Find the corner frequencies and arrange them in ascending order.

Consider the starting frequency of the Bode plot as 1/10th of the minimum corner
frequency or 0.1 rad/sec whichever is smaller value and draw the Bode plot upto 10

Rules for Construction of Bode Plots
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times maximum corner frequency.

Draw the magnitude plots for each term and combine these plots properly.

Draw the phase plots for each term and combine these plots properly.

Note − The corner frequency is the frequency at which there is a change in the slope of the
magnitude plot.

Consider the open loop transfer function of a closed loop control system

G(s)H(s) =
10s

(s + 2)(s + 5)

Let us convert this open loop transfer function into standard time constant form.

G(s)H(s) =
10s

2
s
2 + 1 5

s
5 + 1

⇒ G(s)H(s) =
s

1 +
s
2 1 +

s
5

So, we can draw the Bode plot in semi log sheet using the rules mentioned earlier.

From the Bode plots, we can say whether the control system is stable, marginally stable or
unstable based on the values of these parameters.

Gain cross over frequency and phase cross over frequency

Gain margin and phase margin

The frequency at which the phase plot is having the phase of -1800 is known as phase
cross over frequency. It is denoted by ωpc. The unit of phase cross over frequency is

rad/sec.

The frequency at which the magnitude plot is having the magnitude of zero dB is known as
gain cross over frequency. It is denoted by ωgc. The unit of gain cross over frequency is

rad/sec.

The stability of the control system based on the relation between the phase cross over
frequency and the gain cross over frequency is listed below.

If the phase cross over frequency ωpc is greater than the gain cross over frequency 

ωgc, then the control system is stable.

Example

( ) ( )

( ) ( )

Stability Analysis using Bode Plots

Phase Cross over Frequency

Gain Cross over Frequency
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If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc,

then the control system is marginally stable.

If the phase cross over frequency ωpc is less than the gain cross over frequency ωgc,

then the control system is unstable.

Gain margin GM is equal to negative of the magnitude in dB at phase cross over frequency.

GM = 20log
1
Mpc

= 20logMpc

Where, Mpc is the magnitude at phase cross over frequency. The unit of gain margin (GM) is

dB.

The formula for phase margin PM is

PM = 1800 + ϕgc

Where, ϕgc is the phase angle at gain cross over frequency. The unit of phase margin is

degrees.

The stability of the control system based on the relation between gain margin and phase
margin is listed below.

If both the gain margin GM and the phase margin PM are positive, then the control
system is stable.

If both the gain margin GM and the phase margin PM are equal to zero, then the
control system is marginally stable.

If the gain margin GM and / or the phase margin PM are/is negative, then the control
system is unstable.

Control Systems - Polar Plots
In the previous chapters, we discussed the Bode plots. There, we have two separate plots for
both magnitude and phase as the function of frequency. Let us now discuss about polar
plots. Polar plot is a plot which can be drawn between magnitude and phase. Here, the
magnitudes are represented by normal values only.

The polar form of G(jω)H(jω) is

G(jω)H(jω) = |G(jω)H(jω) |∠G(jω)H(jω)

The Polar plot is a plot, which can be drawn between the magnitude and the phase angle of
G(jω)H(jω) by varying ω from zero to ∞. The polar graph sheet is shown in the following
figure.

Gain Margin

( )

Phase Margin
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This graph sheet consists of concentric circles and radial lines. The concentric circles and
the radial lines represent the magnitudes and phase angles respectively. These angles are
represented by positive values in anti-clock wise direction. Similarly, we can represent

angles with negative values in clockwise direction. For example, the angle 2700 in anti-clock

wise direction is equal to the angle −900 in clockwise direction.

Follow these rules for plotting the polar plots.

Substitute, s = jω in the open loop transfer function.

Write the expressions for magnitude and the phase of G(jω)H(jω).

Find the starting magnitude and the phase of G(jω)H(jω) by substituting ω = 0. So, the
polar plot starts with this magnitude and the phase angle.

Find the ending magnitude and the phase of G(jω)H(jω) by substituting ω = ∞. So, the
polar plot ends with this magnitude and the phase angle.

Check whether the polar plot intersects the real axis, by making the imaginary term
of G(jω)H(jω) equal to zero and find the value(s) of ω.

Check whether the polar plot intersects the imaginary axis, by making real term of 
G(jω)H(jω) equal to zero and find the value(s) of ω.

For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω) by
considering the other value(s) of ω.

Rules for Drawing Polar Plots
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Consider the open loop transfer function of a closed loop control system.

G(s)H(s) =
5

s(s + 1)(s + 2)

Let us draw the polar plot for this control system using the above rules.

Step 1 − Substitute, s = jω in the open loop transfer function.

G(jω)H(jω) =
5

jω(jω + 1)(jω + 2)

The magnitude of the open loop transfer function is

M =
5

ω(√ω2 + 1)(√ω2 + 4)

The phase angle of the open loop transfer function is

ϕ = − 900 − tan − 1ω − tan − 1ω
2

Step 2 − The following table shows the magnitude and the phase angle of the open loop
transfer function at ω = 0 rad/sec and ω = ∞ rad/sec.

Frequency (rad/sec) Magnitude Phase angle(degrees)

0 ∞ -90 or 270

∞ 0 -270 or 90

So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the second terms
within the brackets indicate the magnitude and phase angle respectively.

Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will
intersect the negative real axis. The phase angle corresponding to the negative real axis is

−1800 or 1800. So, by equating the phase angle of the open loop transfer function to either

−1800 or 1800, we will get the ω value as √2.

By substituting ω = √2 in the magnitude of the open loop transfer function, we will get 

M = 0.83. Therefore, the polar plot intersects the negative real axis when ω = √2 and the polar

coordinate is (0.83,−1800).

So, we can draw the polar plot with the above information on the polar graph sheet.

Control Systems - Nyquist Plots
Nyquist plots are the continuation of polar plots for finding the stability of the closed loop
control systems by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the
complete frequency response of the open loop transfer function.

Example
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The Nyquist stability criterion works on the principle of argument. It states that if there
are P poles and Z zeros are enclosed by the ‘s’ plane closed path, then the corresponding 
G(s)H(s) plane must encircle the origin P − Z times. So, we can write the number of
encirclements N as,

N = P − Z

If the enclosed ‘s’ plane closed path contains only poles, then the direction of the
encirclement in the G(s)H(s) plane will be opposite to the direction of the enclosed
closed path in the ‘s’ plane.

If the enclosed ‘s’ plane closed path contains only zeros, then the direction of the
encirclement in the G(s)H(s) plane will be in the same direction as that of the enclosed
closed path in the ‘s’ plane.

Let us now apply the principle of argument to the entire right half of the ‘s’ plane by
selecting it as a closed path. This selected path is called the Nyquist contour.

We know that the closed loop control system is stable if all the poles of the closed loop
transfer function are in the left half of the ‘s’ plane. So, the poles of the closed loop transfer
function are nothing but the roots of the characteristic equation. As the order of the
characteristic equation increases, it is difficult to find the roots. So, let us correlate these
roots of the characteristic equation as follows.

The Poles of the characteristic equation are same as that of the poles of the open
loop transfer function.

The zeros of the characteristic equation are same as that of the poles of the closed
loop transfer function.

We know that the open loop control system is stable if there is no open loop pole in the the
right half of the ‘s’ plane.

i.e.,P = 0 ⇒ N = − Z

We know that the closed loop control system is stable if there is no closed loop pole in the
right half of the ‘s’ plane.

i.e.,Z = 0 ⇒ N = P

Nyquist stability criterion states the number of encirclements about the critical point
(1+j0) must be equal to the poles of characteristic equation, which is nothing but the poles
of the open loop transfer function in the right half of the ‘s’ plane. The shift in origin to
(1+j0) gives the characteristic equation plane.

Follow these rules for plotting the Nyquist plots.

Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane.

Nyquist Stability Criterion

Rules for Drawing Nyquist Plots
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Draw the polar plot by varying ω from zero to infinity. If pole or zero present at s =
0, then varying ω from 0+ to infinity for drawing polar plot.

Draw the mirror image of above polar plot for values of ω ranging from −∞ to zero

(0− if any pole or zero present at s=0).

The number of infinite radius half circles will be equal to the number of poles or zeros
at origin. The infinite radius half circle will start at the point where the mirror image
of the polar plot ends. And this infinite radius half circle will end at the point where
the polar plot starts.

After drawing the Nyquist plot, we can find the stability of the closed loop control system
using the Nyquist stability criterion. If the critical point (-1+j0) lies outside the encirclement,
then the closed loop control system is absolutely stable.

From the Nyquist plots, we can identify whether the control system is stable, marginally
stable or unstable based on the values of these parameters.

Gain cross over frequency and phase cross over frequency

Gain margin and phase margin

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is

1800) is known as the phase cross over frequency. It is denoted by ωpc.

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain
cross over frequency. It is denoted by ωgc.

The stability of the control system based on the relation between phase cross over frequency
and gain cross over frequency is listed below.

If the phase cross over frequency ωpc is greater than the gain cross over frequency 

ωgc, then the control system is stable.

If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc,

then the control system is marginally stable.

If phase cross over frequency ωpc is less than gain cross over frequency ωgc, then the

control system is unstable.

The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the
phase cross over frequency.

GM =
1
Mpc

Where, Mpc is the magnitude in normal scale at the phase cross over frequency.

Stability Analysis using Nyquist Plots

Phase Cross over Frequency

Gain Cross over Frequency

Gain Margin

Loading [MathJax]/jax/output/HTML-CSS/jax.js



The phase margin PM is equal to the sum of 1800 and the phase angle at the gain cross over
frequency.

PM = 1800 + ϕgc

Where, ϕgc is the phase angle at the gain cross over frequency.

The stability of the control system based on the relation between the gain margin and the
phase margin is listed below.

If the gain margin GM is greater than one and the phase margin PM is positive, then
the control system is stable.

If the gain margin GM is equal to one and the phase margin PM is zero degrees, then
the control system is marginally stable.

If the gain margin GM is less than one and / or the phase margin PM is negative,
then the control system is unstable.

Control Systems - Compensators
There are three types of compensators — lag, lead and lag-lead compensators. These are
most commonly used.

The Lag Compensator is an electrical network which produces a sinusoidal output having the
phase lag when a sinusoidal input is applied. The lag compensator circuit in the ‘s’ domain is
shown in the following figure.

Here, the capacitor is in series with the resistor R2 and the output is measured across this

combination.

The transfer function of this lag compensator is -

Phase Margin

Lag Compensator
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Vo(s)

Vi(s)
=

1
α

s +
1
τ

s +
1
ατ

Where,

τ = R2C

α =
R1 + R2

R2

From the above equation, α is always greater than one.

From the transfer function, we can conclude that the lag compensator has one pole at 

s = −
1
ατ

 and one zero at s = −
1
τ
 . This means, the pole will be nearer to origin in the pole-

zero configuration of the lag compensator.

Substitute, s = jω in the transfer function.

Vo(jω)

Vi(jω)
=

1
α

jω +
1
τ

jω +
1
ατ

Phase angle ϕ = tan − 1ωτ − tan − 1αωτ

We know that, the phase of the output sinusoidal signal is equal to the sum of the phase
angles of input sinusoidal signal and the transfer function.

So, in order to produce the phase lag at the output of this compensator, the phase angle of
the transfer function should be negative. This will happen when α > 1.

The lead compensator is an electrical network which produces a sinusoidal output having
phase lead when a sinusoidal input is applied. The lead compensator circuit in the ‘s’ domain
is shown in the following figure.

( )

( )

Lead Compensator
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Here, the capacitor is parallel to the resistor R1 and the output is measured across resistor

$R_2.

The transfer function of this lead compensator is -

Vo(s)

Vi(s)
= β

sτ + 1
βsτ + 1

Where,

τ = R1C

β =
R2

R1 + R2

From the transfer function, we can conclude that the lead compensator has pole at s = −
1
β

and zero at s = −
1
βτ .

Substitute, s = jω in the transfer function.

Vo(jω)

Vi(jω)
= β

jωτ + 1
βjωτ + 1

Phase angle ϕ = tan − 1ωτ − tan − 1βωτ

We know that, the phase of the output sinusoidal signal is equal to the sum of the phase
angles of input sinusoidal signal and the transfer function.

So, in order to produce the phase lead at the output of this compensator, the phase angle of
the transfer function should be positive. This will happen when 0 < β < 1. Therefore, zero will
be nearer to origin in pole-zero configuration of the lead compensator.

Lag-Lead compensator is an electrical network which produces phase lag at one frequency
region and phase lead at other frequency region. It is a combination of both the lag and the
lead compensators. The lag-lead compensator circuit in the ‘s’ domain is shown in the
following figure.

( )

( )

Lag-Lead Compensator
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This circuit looks like both the compensators are cascaded. So, the transfer function of this
circuit will be the product of transfer functions of the lead and the lag compensators.

Vo(s)

Vi(s)
= β

sτ1 + 1

βsτ1 + 1
1
α

s +
1
τ2

s +
1
ατ2

We know αβ = 1.

⇒
Vo(s)

Vi(s)
=

s +
1
τ1

s +
1
βτ1

s +
1
τ2

s +
1
ατ2

Where,

τ1 = R1C1

τ2 = R2C2

Control Systems - Controllers
The various types of controllers are used to improve the performance of control systems. In
this chapter, we will discuss the basic controllers such as the proportional, the derivative and
the integral controllers.

The proportional controller produces an output, which is proportional to error signal.

u(t) ∝ e(t)

( ) ( )

( )( )

Proportional Controller
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⇒ u(t) = KPe(t)

Apply Laplace transform on both the sides -

U(s) = KPE(s)

U(s)
E(s)

= KP

Therefore, the transfer function of the proportional controller is KP.

Where,

U(s) is the Laplace transform of the actuating signal u(t)

E(s) is the Laplace transform of the error signal e(t)

KP is the proportionality constant

The block diagram of the unity negative feedback closed loop control system along with the
proportional controller is shown in the following figure.

The proportional controller is used to change the transient response as per the requirement.

The derivative controller produces an output, which is derivative of the error signal.

u(t) = KD
de(t)

dt

Apply Laplace transform on both sides.

U(s) = KDsE(s)

U(s)
E(s)

= KDs

Therefore, the transfer function of the derivative controller is KDs.

Where, KD is the derivative constant.

The block diagram of the unity negative feedback closed loop control system along with the
derivative controller is shown in the following figure.

Derivative Controller
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The derivative controller is used to make the unstable control system into a stable one.

The integral controller produces an output, which is integral of the error signal.

u(t) = KI∫e(t)dt

Apply Laplace transform on both the sides -

U(s) =
KIE(s)

s

U(s)
E(s)

=
KI
s

Therefore, the transfer function of the integral controller is 
KI
s .

Where, KI is the integral constant.

The block diagram of the unity negative feedback closed loop control system along with the
integral controller is shown in the following figure.

The integral controller is used to decrease the steady state error.

Let us now discuss about the combination of basic controllers.

The proportional derivative controller produces an output, which is the combination of the
outputs of proportional and derivative controllers.

Integral Controller

Proportional Derivative (PD) Controller

Loading [MathJax]/jax/output/HTML-CSS/jax.js



u(t) = KPe(t) + KD
de(t)

dt

Apply Laplace transform on both sides -

U(s) = (KP + KDs)E(s)

U(s)
E(s)

= KP + KDs

Therefore, the transfer function of the proportional derivative controller is KP + KDs.

The block diagram of the unity negative feedback closed loop control system along with the
proportional derivative controller is shown in the following figure.

The proportional derivative controller is used to improve the stability of control system
without affecting the steady state error.

The proportional integral controller produces an output, which is the combination of outputs
of the proportional and integral controllers.

u(t) = KPe(t) + KI∫e(t)dt

Apply Laplace transform on both sides -

U(s) = KP +
KI
s

E(s)

U(s)
E(s)

= KP +
KI
s

Therefore, the transfer function of proportional integral controller is KP +
KI
s .

The block diagram of the unity negative feedback closed loop control system along with the
proportional integral controller is shown in the following figure.

Proportional Integral (PI) Controller

( )
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The proportional integral controller is used to decrease the steady state error without
affecting the stability of the control system.

The proportional integral derivative controller produces an output, which is the combination
of the outputs of proportional, integral and derivative controllers.

u(t) = KPe(t) + KI∫e(t)dt + KD
de(t)

dt

Apply Laplace transform on both sides -

U(s) = KP +
KI
s

+ KDs E(s)

U(s)
E(s)

= KP +
KI
s

+ KDs

Therefore, the transfer function of the proportional integral derivative controller is 

KP +
KI
s + KDs.

The block diagram of the unity negative feedback closed loop control system along with the
proportional integral derivative controller is shown in the following figure.

The proportional integral derivative controller is used to improve the stability of the control
system and to decrease steady state error.

Control Systems - State Space Model
The state space model of Linear Time-Invariant (LTI) system can be represented as,

Ẋ = AX + BU

Proportional Integral Derivative (PID) Controller

( )
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