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11.4.1 Estimation of Multiple Regression Coefficients 

In multiple linear regression, we essentially solve n equations for the p unknown parameters. 

Thus n must be equal to or greater than p and in practice n should be at least 3 or 4 times as large 

as p. The difference between the observed and predicted value of y (using regression) or the error 

is = ii yy ˆ . The regression coefficients are obtained by minimizing the sum of squares of errors. 

 

In matrix form, the n equations can be written as 

 

 Y = Xb + e        (11.36) 

 

where Y = (n x 1) column vector of the dependent variable, X = (n x p) matrix of independent 

variables, b = (p x 1) column vector of the regression coefficients, and e = (n x 1) column vector 

of residuals. The residuals are conditioned by: 

 

E[e] = 0        (11.37) 

  IeCov 2
         (11.38) 

 

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements 

= 0; and σe
2 = variance of (Y|X).  

 

According to the least squares principle the estimates of regression parameters are those 

which minimize the residual sum of squares eTe. Hence 

 

eTe = (Y – Xb)T(Y-Xb)       

 (11.39) 

 

is differentiated with respect to b, and the resulting expression is set equal to zero. This gives: 

 

YXXbX TT             (11.40) 

 

which are called the normal equations. Multiplying both sides with (XTX)-1 leads to an explicit 

expression for b: 

 



      (11.41) 

 

 

Note that the independent variables should be chosen such that none of these is a linear 

combination of other independent variables. The properties of the estimator b: 

 

    12 
 XXbCov T

          (11.42) 

 

By (21) and (22) the total adjusted sum of squares YTY can be partitioned into an explained 

part due to regression and an unexplained part about regression, as follows: 

 

.eeYXbYY TTTT            (11.43) 

 

where (Xb)TY = sum of squares due to regression; eTe = sum of squares about regression. 

 

This equation states: 

 

Total sum of squares about mean = regression sum of squares + residual sum of Squares 

 

The mean squares values of the right hand side terms in (11.43) are obtained by dividing 

the sum of squares by their corresponding degrees of freedom. If b is a (p x 1)-column vector, 

i.e. there are p-independent variables in regression, then the regression sum of squares has p-

degrees of freedom. Since the total sum of squares has (n-1)-degrees of freedom (note: 1 degree 

of freedom is lost due to the estimation of ȳ), it follows by subtraction that the residual sum of 

squares has (n-1-p)-degrees of freedom. It can be shown that the residual mean square Se
2: 
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T

e 


1
2         (11.44) 

Is an unbiased estimate of σε
2 .The estimate se of σε is the standard error of estimate. 

 

The analysis of variance (ANOVA) table (see Table 11.2) summarizes the sum of squares 

quantities. 

 

Table 11.2: Analysis of variance table (ANOVA) 

Source Sum of squares Degrees of freedom 

Total SY = YTY n 



Mean n 2Y  1 

Regression bTXTY - n 2Y  p-1 

Residual YTY - bTXTY n-p 

 

As for the simple linear regression a measure for the quality of the regression equation is 

the coefficient of determination, defined as the ratio of the explained or regression sum of 

squares and the total adjusted sum of squares. 
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11.4.2 Confidence Intervals on the Regression Line 

To place confidence limits on Y0 where Y0 = X0b it is necessary to have an estimate for the 

variance of Ŷ0. Considering Cov(b) as given in (25) the variance Var(Ŷ0) is given by: 

  TT
e XXXXSYVar 0
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The confidence limits for the mean regression equation are given by 
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 0,2/10 YVartbXCL pna         (11.47) 

 

Coefficient of Determination (R2) 

 

Let Zi,j = (Xi,j - jx )/Sj          (11.48) 

 

where x j  and Sj are the mean and standard deviation of the jth independent variable. The 

correlation matrix is: 

 

R = ZT Z/(n-1) = [Ri,j]         (11.49) 

 

where Ri,j is the correlation between the ith and jth independent variables. R is a symmetric matrix 

since Ri,j = Rj,i. The coefficient of determination is defined as  

 

 R2 = Sum of squares due to regression / Sum of squares about mean 
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or          (11.50) 

 

Here bT is the transpose of vector b of 

size (1xp), and YT is the transpose of vector Y of size (1xn).  Let the residual error be  = Y – X b. 

R2 is the part of the total sum of squares conceted for mean that is explain by the regression 

equation. It ranges between 0 and 1 and closer it is to1, the better is the regression. 

 

11.4.3 Inferences on Regression Coefficients 

 

(i) Confidence intervals on bi  

 

Assuming that the model is correct, the quantity  Sb
bi i
ˆ/ˆ follows a t-distribution with (n-p) 

degrees of freedom. The confidence intervals on bi are given as 

 

     (11.51) 

 

(ii) Test of hypothesis concerning bi 

 

The hypothesis that the ith variable is not contributing significantly to explaining the variation in 

the dependent variable is equivalent to testing the hypothesis Ho : bi = bo versus Ha : bi  bo. The 

test is conducted by computing: 

 

         (11.52) 

 

Null hypothesis Ho is rejected if |t| > t(1-/2), (n-p) . If this hypothesis is accepted, it is advisable to 

delete the concerned variable from the regression model. 

 

Significance of the overall regression 

The null hypothesis Ho : b1 = b2 = … bp = 0 versus Ha : at least one of these b's is not zero is used 

to test whether the regression equation is able to explain a significant amount of variation of Y or 

not. The ratio of the mean square error due to regression to the residual mean square has an F 

distribution with p-1 and n-p degrees of freedom. Hence, the hypothesis is tested by computing 

the test statistic: 
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        (11.53) 

 

Ho is rejected if F exceeds the critical value F(1-), (p-1), (n-p). 

 

Confidence Intervals on Regression Line: 

 

To put the confidence limits on Yk = Xkb, it is necessary to estimate the variance of kŷ . This is 

given by 

 

     (11.54) 

 

where 

 

Confidence Intervals on Individual Predicted Value of Y  

 

        (11.55) 

 

                        (11.56) 

 

 

Example 11.5: Table contains rainfall for the months of July and August and discharge for the 

August month for a catchment. Estimate the parameters of linear regression and multiple linear 

regression and find out if there is an advantage in using multiple linear regression in this case. 

 

Table 11.3  Data and computations for multiple linear regression example  

YEAR 
RF-JUL 

(MCM) 

RF-AUG 

(MCM) 

Obs Q 

Aug 

(MCM) 

Comp. Q 

by Lin 

Reg (QL) 

(Qob-QL)^2 

Comp. Q 

by Mult. 

Lin Reg 

(QM) 

(Qob-

QM)^2 

1982 5020.04 15664.05 5996.939 6830.0 694015.6 6873.0 767532

1983 7980.13 6546.24 2557.916 3263.6 497987.7 3572.3 1028983

1984 3002.36 13086.63 4395.515 5821.9 2034467.0 4736.5 116242

1985 8572.75 7532.13 5725.02 3649.2 4308915.7 4314.0 1990914

1986 5242.03 5799.34 2532.373 2971.4 192787.2 2045.2 237329

1987 6311.05 9522.80 2774.517 4427.9 2733589.2 4353.5 2493329

1988 6040.00 7285.46 4163.013 3552.7 372427.7 3123.1 1081472



1989 1597.33 6922.49 2046.694 3410.8 1860702.7 1068.8 956235

1990 8561.71 6889.43 4190.084 3397.8 627652.7 3988.7 40541

1991 7153.31 12566.82 6107.452 5618.5 239036.6 6227.3 14365

1992 5623.67 10263.08 5145.44 4717.4 183188.8 4433.0 507510

1993 4233.30 7108.91 2300.774 3483.7 1399281.8 2273.2 759

1994 13076.88 10472.23 8994.085 4799.2 17596705.8 7679.9 1727088

1995 6843.64 8068.47 3695.11 3859.0 26865.5 3852.6 24788

1996 7819.49 9330.16 4870.4 4352.5 268196.6 4893.4 531

1997 9403.82 7424.92 3943.455 3607.3 113005.8 4610.9 445541

1998 7040.85 8306.55 3801.727 3952.1 22624.6 4054.5 63883

1999 7380.56 9987.30 5895.899 4609.6 1654653.4 5036.2 739043

2000 8620.28 4283.79 1501.445 2378.6 769480.6 2713.5 1469074

2001 9113.46 5071.52 2670.739 2686.8 256.8 3314.4 414338

2002 1296.93 11168.68 3192.95 5071.7 3529547.4 3060.5 17531

2003 7493.84 7784.62 3708.33 3748.0 1572.8 3985.1 76593

Sum 147427.41 191085.61 90209.88 90209.88 3.91E+07 9.02E+04 1.42E+07

Average 6701.25 8685.71 4100.45 4100.449    

 

Solution: Using the data given in the table, linear regression equation of the following form was 

established between the rainfall and observed discharge for the August month. 

 

QA = a+ b RA  where QA = discharge for August and RA = rainfall for August. 

 

The parameters a and b were estimated to yield the following equation: 

 

 QA = 703.05 + 0.391 RA 

 

Coefficient of determination R2 = 1 – 3.91*107/6.33*107 = 0.382. 

 

 Next, discharge for the August month was computed by using the above equation and the 

sum of square of residuals turned out to be 3.91*107.  

 

In case of multiple linear regression, the independent variables were the rainfall for the 

month July and August and dependent variable as the discharge for August. Regression equation 

of the following form was envisaged 

 

 QA = a + b1 RJ + b2 RA 



where RJ = rainfall for July month. 

 

After computations, the following regression equation was obtained. 

 

 QA = -3058.24 + 0.42 RJ + 0.50 RA  

 

Coefficient of determination R2 = 1 – 1.42*107/6.33*107 = 0.78. 

 

The discharge for August was computed by LR and MLR equations and the sum of 

squares of errors were computed. The values were 3.91*107 for LR and 1.42*107 for MLR. 

When these values are compared along with R2 for the two cases, it can be concluded that MLR 

gives much improved estimates of the discharge compared to LR. 

 

 


