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10.5 PARAMETER ESTIMATION METHODS 

A number of methods have been developed to estimate parameters of hydrologic models. Some 

commonly used methods in hydrology include: (1) method of moments; (2) method of 

probability weighted moments; (4) L-moments; (5) maximum likelihood estimation; and (6) least 

squares method. Each of these methods is discussed here. 

 

10.5.1 Method of Moments  

This method is very commonly employed to estimate parameters of linear hydrologic models. 

This method is based on the premise that when the parameters of a probability distribution are 

estimated correctly, the moments of the probability density function are equal to the 

corresponding moments of a sample data. Nash (1959) developed the theorem of moments which 

relates the moments of input, output and impulse response functions of linear hydrologic models.  

 

Let X be a continuous variable and f(x) its function satisfying some necessary conditions. 

The rth moment of f(x) about an arbitrary point ‘a’ is denoted as a
rM (f). The rth moment of the 

function f(x) can be expressed as  

 

 

      (10.48) 

 

Fig. 10.10 shows the definition of various terms used in the above equation. 

 

Consider the special case when r = 0. In this case, eq.(10.48) gives 

 

            (10.49) 

 

Thus, the zero-order moment is the area under the curve defined by f(x) subject to - <x < .  

For probability distribution, this area is unity. If r = 1, eq. (10.48) yields 

 

             (10.50) 

 

where  is the mean. If the moment is taken around the origin, then a = 0, and the first moment 

gives the mean. When a = , the rth moment about the mean is expressed by 

 

                  (10.51) 
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Fig. 10.10  Concept of moment of a function f(x) about an arbitrary point. 

 

For simplicity of notation, we drop the superscript if the moment is taken about the origin 

0 and the familiar terminology of the moments can be written as follows: 

 

M0 =Area 

M1 = Mean 

M2
 = Variance,  

M3
 = Measurement of skewness of the function 

M4
 = Kurtosis,  

These terms have already been defined earlier. 

 

10.5.2 Method of Moments for Discrete Systems 

For a discrete function, represented as fj, j = -,…, -1,0,1,…, , the rth moment about any 

arbitrary point can be defined in an analogous manner as for continuous functions. The rth 

moment about the origin, is defined as 

 

      (10.52) 

 

 

Fig. 10.11 depicts the concept of moment of a discrete function. 

 

Example 10.11: The frequency table of annual flows of Sabarmati River is given Table 10.2. 

Find the mean and variance of the data by using the method of moments. 
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Second moment  

  

= [ (150-664)2*6 + (250 – 664)2*9 + … + (1750-664)2*1]/98 

  = 120000 cumec2. 

Hence, the standard deviation (s) = (120000)0.5 =346.61 cumec.  

This leads to the coefficient of variation cv = s/xm =346.61/664.29 = 0.52.  

 

10.5.3 Method of Maximum Likelihood (MLE) 

The maximum likelihood (ML) estimation method is widely accepted as one of the most 

powerful parameter estimation methods. Asymptotically, the ML parameter estimates are 

unbiased, have minimum variance, and are normally distributed, while in some cases these 

properties hold for small samples. The MLE method has been extensively used for estimating 

parameters of frequency distributions as well as fitting conceptual models.  

 

Let f(x; a1, a2,… am) be a PDF of the random variable X with parameters ai, i=1, 2, …, m, 

to be estimated. For a random sample of data x1, x2, …xn, drawn from this probability density 

function, the joint PDF is defined as 

 

             (10.53) 

 

Interpreted conceptually, the probability of obtaining a given value of X, say x1, is 

proportional to f(x; a1, a2,… am). Likewise, the probability of obtaining the random sample x1, 

x2,… xn from the population of X is proportional to the product of the individual probability 

densities or the joint PDF. This joint PDF is called the likelihood function, denoted by L. 

 

      (10.54) 

 

where the parameters ai, i=1,2,…m, are unknown. 

 

 By maximizing the likelihood that the sample under consideration is the one that would 

be obtained if n random observations were selected from f(x; a1, a2, … am), the unknown 

parameters are determined, and hence the name of the method. The values of parameters so 

obtained are known as MLE estimators. Since the logarithm of L attains its maximum for the 

same values of ai, i = 1, 2, … m, as does L, the MLE function can also be expressed as 
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   (10.55) 

 

Frequently ln[L] is maximized, for it is many times easier to find the maximum of the 

logarithm of the maximum likelihood function than that of the normal L. 

 

 The procedure for estimating parameters or determining the point where the MLE 

function achieves its maximum involves differentiating L or ln L partially with respect to each 

parameter and equating each differential to zero. This results in as many equations as the number 

of unknown parameters. For m unknown parameters, we get 

 

 

       (10.56) 

 

These m equations in m unknowns are then solved for the m unknown parameters. 

 

Example 10.12: Using the method of maximum likelihood, find the parameter  of the 

exponential distribution for the data of the Sabarmati River in India, given in Example 10.1. 

 

Solution: The probability density function of the one-parameter exponential distribution is given 

by 

  fX(x) = exp(-x)       (10.57) 

 

The likelihood function is given by 
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This can be used to form the log-likelihood function:  
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where n is the sample size. Differentiating eq. (10.59) with respect to : 
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                                                    (10.60) 

 

In Example 10.1, the mean of the data was found to be 664.29 cumec. Hence, the estimate of  

is: 

  = 1/664.29 = 1.51×10-3 cumec-1. 

 

10.5.4 Method of Least Squares 

The method of least squares (MOLS) is one of the most frequently used parameter estimation 

methods in hydrology. Natale and Todini (1974) presented constrained MOLS for linear models 

in hydrology.  

 

 Let there be a function Y = f(X; a1, a2,… am), where ai, i = 1, 2, … m, are parameters to 

be estimated. The method of least squares (MOLS) involves estimating parameters by 

minimizing the sum of squares of all deviations between observed and computed values of Y. 

Mathematically, this sum D can be expressed as 

 

     (10.61) 

 

where y0(i) is the ith observed value of Y, yc(i) is the ith computed value of Y, and n > m is the 

number of observations. The minimum of D in eq. (71) can be obtained by differentiating D 

partially with respect to each parameter and equating each differential to zero, e.g., 

 

       (10.62) 

 

The resulting m equations, usually called the normal equations, are then solved for estimation of 

m parameters. This method is frequently used to estimate parameters of linear regression model. 

 

10.5.5 Method of L-Moments 

Greenwood et al. (1979) introduced the method of probability weighted moments (PWM) and 

showed its usefulness in deriving explicit expressions for parameters of distributions whose 

inverse forms X=X (F) can be explicitly defined. They derived relations between parameters and 

PWMs for Generalized Lambda, Wakeby, Weibull, Gumbel, Logistic and Kappa distributions. 

However, the probability-weighted moments characterize a distribution but are not meaningful 
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by themselves.  

 

L-moments were developed by Hosking (1986) as functions of PWMs which provide a 

descriptive summary of the location, scale, and shape of the probability distribution. These 

moments are analogous to ordinary moments and are expressed as linear combinations of order 

statistics, hence the name. They can also be expressed by linear combinations of probability-

weighted moments. Thus, the ordinary moments, the probability weighted moments, and L-

moments are related to each other. L-moments are known to have several important advantages 

over ordinary moments. L-moments have less bias than ordinary moments because they are 

linear combinations of ranked observations. As an example, variance (second moment) and 

skewness (third moment) involve squaring and cubing of observations, respectively, which 

compel them to give greater weight to the observations far from the mean. As a result, they result 

in substantial bias and variance. 

 

The first L-moment denoted as λ1 is the arithmetic mean: 

λ1 = E[X]        (10.63) 

 

Let us consider a sample of size n and arrange the data such that X(i|n) is the ith largest 

observation; clearly i = n will be the largest value. Then, for any distribution, the second L-

moment, λ2, is a description of scale based upon the expected difference between two randomly 

selected observations: 

 

λ2 = (1/2) E[X(2|1) -X(1|2)]       (10.64) 

 

To compute L-moment measures of skewness three randomly selected observations are used and 

for kurtosis, we use four randomly selected observations. 

 

λ3 = (1/3) E[X(3|3) - 2X(2|3) + X(1|3)]      (10.65) 

λ4 = (1/4) E[X(4|4) - 3X(3|4) + 3X(2|4) - X(1|4)]     (10.66) 

 

Sample L-moment estimates are often computed using (PWMs). The rth PWM is defined 

(Loucks and Beek, 2005) as: 

 

βr= E{X [F(X)]r }        (10.67) 

 



where F(X) is the cumulative distribution function of X. Recommended (Landwehr et al., 1979; 

Hosking and Wallis, 1995) unbiased PWM estimators, br, of βr are computed as:  
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  (10.68) 

 

The general formula for computing estimators br of βr is given by 
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      (10.69) 

for r = 1, … , n -1. 

 

L-moments are easily calculated in terms of PWMs using: 

λ1 = β0 

λ2 = 2β1 - β0 

λ3 = 6β2 - 6β1 + β0 

λ4 = 20β3 - 30β2 + 12β1 - β0       (10.70) 

 

As with traditional product moments, measures of the coefficient of variation, skewness and 

kurtosis of a distribution can be computed with L-moments. Following L-moment ratios are 

important: 

 

L- coefficient of variation (L-CV)  t2 = λ2 / λ1  

L- coefficient of skewness (L-sk)  t3 = λ3 / λ2 

L- coefficient of kurtosis (L-ku)  t4 = λ4 / λ2 

 

Example 10.13: Table 10.3 gives annual discharge data of a river for 36 years. Compute sample 

L-moments and L-moment ratios, L-CV, L-sk, and L-ku. 

 



Table 10.3 Annual discharge data of a river for 36 years 

Year  Discharge  Year  Discharge Year  Discharge Year  Discharge 

1950  400  1959  1390  1968  2291  1977  1499 

1951  1100  1960  3300  1969  1340  1978  2598 

1952  900  1961  2190  1970  3200  1979  3487 

1953  440  1962  935  1971  2200  1980  1234 

1954  3000  1963  785  1972  1014  1981  819 

1955  2500  1964  501  1973  1790  1982  1210 

1956  760  1965  1123  1974  1140  1983  1510 

1957  1250  1966  1581  1975  764  1984  1780 

1958  1340  1967  959  1976  783  1985  1398 

 

Solution: Equation (10.68) yields estimates of the first three Probability Weighted Moments: 

 

b0 = 1514.19 

b1 = 889.16 

b2 = 655.38 

b3 = 518.64          (10.71) 

 

The sample L-moments can be calculated using the probability weighted moments to obtain: 

 


 1 = b0 = 1514.19 


 2 = 2b1 - b0 = 264.12 


 3 = 6b2 - 6b1 + b0 = 111.53        (10.72) 


 4 = 20b3 - 30b2 + 12b1 - b0 = -132.82 

 

Thus, the sample estimates of the L-coefficient of variation, t2, and L-coefficient of skewness, t3, 

are: 

 

t2 = 264.12/1514.19 = 0.174 

t3 = 111.53/264.12 = 0.422       (10.73) 

t4 = -132.82/264.12 = -0.502 

 

 



10.6 PROBLEMS OF PARAMETER ESTIMATION 

The parameters of a distribution function are estimated from the available sample data. But while 

doing so, errors may arise due to many reasons. The sample data may contain errors, the 

assumption underlying a particular method of parameter estimation may not hold good, and there 

may be truncation and round-off errors. All these may result in errors in estimates of parameter. 

Each estimate of a parameter is a function of sample parameter data which are observations of a 

random variable. Thus, the estimate value of the parameter itself is a random variable with 

certain distribution. An estimate obtained from a given set of values can be regarded as an 

observed value of the random variable. Thus, the goodness of an estimate can be judged from its 

distribution. 

 

Several questions arise in parameter estimation. How should we employ the available 

data to obtain the best estimate? What is the best estimate? Are these estimates unique? A 

number of statistical properties are available by which to address the above questions. These are 

discussed below. 

 

Bias 

Let the estimate of parameter a be ac denoted by. Estimate ac will be called an unbiased estimate 

of a if the expected value of a, denoted E (ac) = a. In general, an estimate will have a certain bias 

b(a) depending on a so that  

 

 E(ac) = a + b (a)          (10.74) 

 

An unbiased estimate mean b(a) = 0. Note that an individual ac may not be equal to or 

close to a even if b(a) = 0. Unbiasedness simply implies that the average of many independent 

estimates of a will be equal to a. 

 

 The bias in a given quantity is usually measured in dimensionless terms and is often 

referred to as standardized bias (or BIAS). Thus, BIAS is defined as 

 

       (10.75) 

 

where â is an estimate of parameter or quantile of a. In Monte Carlo experimentation, large 

numbers of samples of different sizes are generated from a given population. For each sample, 

then, an estimate of a is obtained. If there are, say, 1000 samples of a given size generated then 

there are 1000 values of parameter a. Thus, E(a) is the average of the 1000 estimates of a for a 
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given sample size and is estimated as  

 

             (10.76) 

 

where n is the number of samples generated or the number of values of the a estimate. The value 

of a in eq. (10.75) is the true value of a or the value of parameter a of the population. 

 

Efficiency 

An estimate ac of a is said to be efficient if it is unbiased and its variance is at least as small as 

that of any other unbiased estimate of a. If there are two estimates of a, say a1 and a2, then the 

relative efficiency of a1 with respect to a2 is defined as 

 

        (10.77) 

 

 

if 2
1

2
2 )()( aaEaaE  , then e  1. An efficient estimate has e = 1. If an efficient estimate 

exists, it may be approximately obtained by use of the MLE or entropy method. 

 

Standard Error 

Another dimensionless performance measure frequently used in hydrology is the standard error 

(SE), defined as 

 

                 (10.78) 

 

where  (.) denotes the standard deviation of a and is computed as 

 

 

                (10.79) 

 

where the summations are over n estimates â of a. In Monte Carlo experiments, referred to as 

above, for each sample size, a value of SE is obtained. Thus, this measure is similar to the 

coefficient of variation. 

 

Root Mean Square Error 

The root mean square error (RMSE) is one of the most frequently employed performance 

measures and is defined for parameter a estimate as 
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              (10.80) 

 

where E[. ] is the expectation of [. ]. It can be shown that RMSE is related to BIAS and SE as 

 

                      (10.81) 

 

Relative Mean Error 

Another measure of error in assessing the goodness of fit of hydrologic models is the relative 

mean error (RME) defined as 

 

      (10.82) 

 

 

in which N is the sample size, Q is the observed quantity of a given probability and Qc is the 

computed quantity of the same probability. Also, used sometimes is the relative absolute error 

defined as 

 

            (10.83) 
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