
P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

UNIT 5

Linear Search Algorithm(Sequential Search)

What is Search?

Search is a process of finding a value in a list of values. In other words, searching is the process

of locating given value position in a list of values.

Linear Search Algorithm (Sequential Search Algorithm)

• Linear search algorithm finds given element in a list of elements with O(n) time

complexity where n is total number of elements in the list.

• This search process starts comparing of search element with the first element in the list.

• If both are matching then results with element found otherwise search element is

compared with next element in the list.

• If both are matched, then the result is "element found". Otherwise, repeat the same with

the next element in the list until search element is compared with last element in the list.

• if that last element also doesn't match, then the result is "Element not found in the list".

That means, the search element is compared with element by element in the list.

Linear search is implemented using following steps...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the first element in the list.

Step 3: If both are matching, then display "Given element found!!!" and terminate the function

Step 4: If both are not matching, then compare search element with the next element in the list.

Step 5: Repeat steps 3 and 4 until the search element is compared with the last element in the list.

Step 6: If the last element in the list is also doesn't match, then display "Element not found!!!"

and terminate the function.

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Example

Consider the following list of element and search element...

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Program:

#include<stdio.h>
#include<conio.h>

void main(){
 int list[20],size,i,sElement;

 printf("Enter size of the list: ");
 scanf("%d",&size);

 printf("Enter any %d integer values: ",size);
 for(i = 0; i < size; i++)
 scanf("%d",&list[i]);

 printf("Enter the element to be Search: ");
 scanf("%d",&sElement);

 // Linear Search Logic
 for(i = 0; i < size; i++)
 {
 if(sElement == list[i])
 {
 printf("Element is found at %d index", i);
 break;
 }
 }
 if(i == size)
 printf("Given element is not found in the list!!!");
 getch();
}

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Binary Search Algorithm

What is Search?

Search is a process of finding a value in a list of values. In other words, searching is the process

of locating given value position in a list of values.

Binary Search Algorithm

• Binary search algorithm finds given element in a list of elements with O(log n) time

complexity where n is total number of elements in the list.

• The binary search algorithm can be used with only sorted list of element.

• That means, binary search can be used only with list of element which are already

arraged in a order.

• The binary search can not be used for list of element which are in random order.

• This search process starts comparing of the search element with the middle element in the

list.

• If both are matched, then the result is "element found". Otherwise, we check whether the

search element is smaller or larger than the middle element in the list.

• If the search element is smaller, then we repeat the same process for left sublist of the

middle element.

• If the search element is larger, then we repeat the same process for right sublist of the

middle element.

• We repeat this process until we find the search element in the list or until we left with a

sublist of only one element. And if that element also doesn't match with the search

element, then the result is "Element not found in the list".

Binary search is implemented using following steps...

Step 1: Read the search element from the user

Step 2: Find the middle element in the sorted list

Step 3: Compare, the search element with the middle element in the sorted list.

Step 4: If both are matching, then display "Given element found!!!" and terminate the function

Step 5: If both are not matching, then check whether the search element is smaller or larger than

middle element.

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Step 6: If the search element is smaller than middle element, then repeat steps 2, 3, 4 and 5 for

the left sublist of the middle element.

Step 7: If the search element is larger than middle element, then repeat steps 2, 3, 4 and 5 for the

right sublist of the middle element.

Step 8: Repeat the same process until we find the search element in the list or until sublist

contains only one element.

Step 9: If that element also doesn't match with the search element, then display "Element not

found in the list!!!" and terminate the function.

Example

Consider the following list of element and search element...

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Program:

#include<stdio.h>
#include<conio.h>

void main()
{
 int first, last, middle, size, i, sElement, list[100];
 clrscr();

 printf("Enter the size of the list: ");
 scanf("%d",&size);

 printf("Enter %d integer values in Assending order\n", size);

 for (i = 0; i < size; i++)
 scanf("%d",&list[i]);

 printf("Enter value to be search: ");
 scanf("%d", &sElement);

 first = 0;
 last = size - 1;
 middle = (first+last)/2;

 while (first <= last) {
 if (list[middle] < sElement)
 first = middle + 1;
 else if (list[middle] == sElement) {
 printf("Element found at index %d.\n",middle);
 break;
 }
 else
 last = middle - 1;

 middle = (first + last)/2;
 }
 if (first > last)
 printf("Element Not found in the list.");
 getch();
}

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Insertion Sort

Sorting is the process of arranging a list of elements in a particular order (Ascending or

Descending).

• Insertion sort algorithm arranges a list of elements in a particular order. In insertion sort

algorithm, every iteration moves an element from unsorted portion to sorted portion until

all the elements are sorted in the list.

Step by Step Process

The insertion sort algorithm is performed using following steps...

Step 1: Assume that first element in the list is in sorted portion of the list and remaining all

elements are in unsorted portion.

Step 2: Consider first element from the unsorted list and insert that element into the sorted list in

order specified.

Step 3: Repeat the above process until all the elements from the unsorted list are moved into the

sorted list.

Sorting Logic

Following is the sample code for insrtion sort...

 //Insertion sort logic

 for i = 1 to size-1 {
 temp = list[i];
 j = i;
 while ((temp < list[j]) && (j > 0)) {
 list[j] = list[j-1];
 j = j - 1;
 }
 list[j] = temp;
 }

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Program:

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Selection Sort

• Selection Sort algorithm is used to arrange a list of elements in a particular order

(Ascending or Descending).

• In selection sort, the first element in the list is selected and it is compared repeatedly

with remaining all the elements in the list.

• If any element is smaller than the selected element (for Ascending order), then both are

swapped.

• Then we select the element at second position in the list and it is compared with

remaining all elements in the list. If any element is smaller than the selected element,

then both are swapped. This procedure is repeated till the entire list is sorted.

Step by Step Process

The selection sort algorithm is performed using following steps...

Step 1: Select the first element of the list (i.e., Element at first position in the list).

Step 2: Compare the selected element with all other elements in the list.

Step 3: For every comparision, if any element is smaller than selected element (for Ascending

order), then these two are swapped.

Step 4: Repeat the same procedure with next position in the list till the entire list is sorted.

Sorting Logic

Following is the sample code for selection sort...

 //Selection sort logic

 for(i=0; i<size; i++){

 for(j=i+1; j<size; j++){

 if(list[i] > list[j])

 {

 temp=list[i];

 list[i]=list[j];

 list[j]=temp;

 }

 }

 }

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Example:

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Complexity of the Insertion Sort Algorithm:

• To sort a unsorted list with 'n' number of elements we need to make

((n-1)+(n-2)+(n-3)+......+1) = (n (n-1))/2 number of comparisons in the worst case. If the

list already sorted, then it requires 'n' number of comparisons.

Worst Case : O(n2)

Best Case : Ω(n2)

Average Case : Θ(n2)

Program:

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

Basic concept of order of complexity:

Performance analysis of an algorithm is the process of calculating space required by that

algorithm and time required by that algorithm.

Performance analysis of an algorithm is performed by using the following measures...

1).Space required to complete the task of that algorithm (Space Complexity). It includes program

space and data space

2).Time required to complete the task of that algorithm (Time Complexity).

Space Complexity:

What is Space complexity?

When we design an algorithm to solve a problem, it needs some computer memory to complete

its execution. For any algorithm, memory is required for the following purposes...

• Memory required to store program instructions

• Memory required to store constant values

• Memory required to store variable values

• And for few other things

Space complexity of an algorithm can be defined as follows...

Total amount of computer memory required by an algorithm to complete its execution is

called as space complexity of that algorithm

Generally, when a program is under execution it uses the computer memory for THREE reasons.

They are as follows...

Instruction Space: It is the amount of memory used to store compiled version of instructions.

Environmental Stack: It is the amount of memory used to store information of partially

executed functions at the time of function call.

Data Space: It is the amount of memory used to store all the variables and constants.

To calculate the space complexity, we must know the memory required to store different

datatype values (according to the compiler). For example, the C Programming Language

compiler requires the following...

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

2 bytes to store Integer value,

4 bytes to store Floating Point value,

1 byte to store Character value,

6 (OR) 8 bytes to store double value

Example 1

Consider the following piece of code...

int square(int a)

{

 return a*a;

}

In above piece of code, it requires 2 bytes of memory to store variable 'a' and another 2 bytes of

memory is used for return value.

That means, totally it requires 4 bytes of memory to complete its execution. And this 4 bytes of

memory is fixed for any input value of 'a'. This space complexity is said to be Constant Space

Complexity.

Constant Space Complexity :If any algorithm requires a fixed amount of space for all input

values then that space complexity is said to be Constant Space Complexity

Example 2

Consider the following piece of code...

int sum(int A[], int n)

{

 int sum = 0, i;

 for(i = 0; i < n; i++)

 sum = sum + A[i];

 return sum;

}

In above piece of code it requires

'n*2' bytes of memory to store array variable 'a[]'

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

2 bytes of memory for integer parameter 'n'

4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each)

2 bytes of memory for return value.

That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the

amount of memory depends on the input value of 'n'. This space complexity is said to be Linear

Space Complexity.

Linear Space Complexity :If the amount of space required by an algorithm is increased with the

increase of input value, then that space complexity is said to be Linear Space Complexity

Time Complexity

What is Time complexity?

Every algorithm requires some amount of computer time to execute its instruction to perform the

task. This computer time required is called time complexity.

Time complexity of an algorithm can be defined as follows...

The time complexity of an algorithm is the total amount of time required by an algorithm to

complete its execution.

Generally, running time of an algorithm depends upon the following...

• Whether it is running on Single processor machine or Multi processor machine.

• Whether it is a 32 bit machine or 64 bit machine

• Read and Write speed of the machine.

• The time it takes to perform Arithmetic operations, logical operations, return value and

assignment operations etc.,

• Input data

Calculating Time Complexity of an algorithm based on the system configuration is a very

difficult task because, the configuration changes from one system to another system. To solve

this problem, we must assume a model machine with specific configuration. So that, we can able

to calculate generalized time complexity according to that model machine.

To calculate time complexity of an algorithm, we need to define a model machine. Let us assume

a machine with following configuration...

1. Single processor machine

2. 32 bit Operating System machine

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

3. It performs sequential execution

4. It requires 1 unit of time for Arithmetic and Logical operations

5. It requires 1 unit of time for Assignment and Return value

6. It requires 1 unit of time for Read and Write operations

Now, we calculate the time complexity of following example code by using the above defined

model machine...

Example 1

Consider the following piece of code...

int sum(int a, int b)

{

 return a+b;

}

In above sample code, it requires 1 unit of time to calculate a+b and 1 unit of time to return the

value. That means, totally it takes 2 units of time to complete its execution. And it does not

change based on the input values of a and b. That means for all input values, it requires same

amount of time i.e. 2 units.

Constant Time Complexity.:If any program requires fixed amount of time for all input values

then its time complexity is said to be Constant Time Complexity.

Example 2

Consider the following piece of code...

int sum(int A[], int n)

{

 int sum = 0, i;

 for(i = 0; i < n; i++)

 sum = sum + A[i];

 return sum;

}

P.VAMSHEEDHAR REDDY

(Asst.Prof,CSE DEPT)

(If any data needed to add into this material please write to : pvamsheedharreddy@gmail.com)

For the above code, time complexity can be calculated as follows...

In above calculation

Cost is the amount of computer time required for a single operation in each line.

Repeatation is the amount of computer time required by each operation for all its repeatations.

Total is the amount of computer time required by each operation to execute.

So above code requires '4n+4' Units of computer time to complete the task. Here the exact time

is not fixed. And it changes based on the n value. If we increase the n value then the time

required also increases linearly.

Totally it takes '4n+4' units of time to complete its execution and it is Linear Time Complexity.

Linear Time Complexity :If the amount of time required by an algorithm is increased with the

increase of input value then that time complexity is said to be Linear Time Complexity

Best Case,Worst Case and Average Case Efficiencies:

Best Case: It is the minimum number of steps that can be executed for a given problem is know

as Best Case.

Worst Case: It is the maximum number of steps that can be executed for a given problem is

know as Worst case.

Average Case: It is the Average number of steps that can be executed for a given problem is

know as Average Case.

