
International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

27

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

An Approach to Automatic Generation of Test Cases from
Use-Cases

IDr. B V Ramana Murthy, IIProf. Vuppu Padmakar, IIIA. Vasavi
I,IIIDept. of CSE, Jyotishmathi College of Technology, and Science, Shamirpet, Hyderabad India

IIDept. of CSE, Guru Nanak Institutions Technical, Campus, Hyderabad, India

I. Introduction
A use case (or set of use cases) has these characteristics:

Organizes functional requirements•	
Models the goals of system/actor (user) interactions•	
Records paths (called scenarios) from trigger events to •	
goals

Describes	one	main	flow	of	events	(also	called	a	basic	course	of	
action),	and	possibly	other	ones,	called	exceptional	flows	of	events	
(also called alternate courses of action)[3] Is multi-level, so that
one use case can use the functionality of another one.
Use case analysis is a technique used to identify the requirements
of	a	system	(normally	associated	with	software/process	design)	
and	the	information	used	to	both	define	processes	used	and	classes	
(which	are	a	collection	of	actors	and	processes)	which	will	be	
used both in the use case diagram and the overall use case in the
development	or	redesign	of	a	software	system	or	program.	The	
use	case	analysis	is	the	foundation	upon	which	the	system	will	
be built.
A use case analysis is the primary form for gathering usage
requirements	for	a	new	software	program	or	task	to	be	completed.	
The	primary	goals	of	a	use	case	analysis	are:	designing	a
system from the user’s perspective, communicating system
behavior in the user’s terms, and Specifying all externally visible
behaviors. Another set of goals for a use case analysis is to clearly
communicate:	system	requirements,	how	the	system	is	to	be	used,	
the	roles	the	user	plays	in	the	system,	what	the	system	does	in	
response	to	the	user	stimulus,	what	the	user	receives	from	the	
system,	and	what	value	the	customer	or	user	will	receive	from	
the system. [5]

II. Reasons why use cases are indispensable to your
software development project
Use cases help the analysis team, Improve communication among
team members. Collaborative effort enhances the success of any
team.	As	the	team	members	work	to	describe	business	processes,	use	
cases	provide	a	repository	of	team	members'	business	knowledge.	
As	a	written	document,	each	use	case	spawns	meaningful	discussion	
within	the	group.	The	axiom,	"the	whole	is	greater	than	the	sum	
of	the	parts",	applies	here.	Group	discussion	exposes	in-depth	
viewpoints	that	would	otherwise	remain	hidden.	With	use	cases,	
the	team	captures	these	perspectives	while	identifying	the	related	
business goals, conditions, and issues.

III. Encourage common agreement about system
requirements
The	process	of	writing	and	revising	use	cases	produces	three	
important outcomes in the analysis team clarity, consensus, and
commitment.	Remarkably,	it	is	common	for	stakeholders	to	be	
uncertain	about	how	a	process	they	own	actually	works!	Writing	
a	use	case	helps	stakeholders	align	the	narrative	with	the	details	
of an existing process.
In	a	recent	project,	it	became	clear	that	stakeholders	could	not	
agree	about	 the	specifics	of	several	core	processes.	However,	
consensus	 came	 quickly	 as	 the	 team	wrote	 and	 revised	 use	
cases.[6]	For	many	stakeholders,	these	written	documents	offer	
a	foothold	on	a	sometimes	bewildering	mountain	of	complex	
business	processes.	Remarkably,	use	cases	often	help	stakeholders	
reach	common	agreement	on	"best	practice"	processes	as	well.	In	
a	facilitated	group	setting,	divergent	perspectives	are	welcomed,	
understood, and appreciated. As a by-product of this agreement,
team members inevitably commit to support improved processes
to both management and peers.

IV. Reveal process alternatives, process exceptions,
undefined terms, and outstanding issues
I	always	have	the	analysis	team	start	a	use	case	by	developing	
the	"Main	Course	of	Events"	(see	the	sample	use	case).	As	the	
group develops a coherent and ordered set of process steps, team
members	tend	to	volunteer	statements	that	begin	with	the	words	
"what	about..."	-	a	clue	to	previously	unidentified	"Alternative	
Paths"	to	a	successful	outcome.	The	"Exception	Paths"	often	arise	
in	a	similar	way.	More	of	these	become	obvious	when	the	team	
considers	what	happens	if	any	step	in	the	"Main	Course"	fails.	As	
the facilitator of team meetings, carefully listen for any jargon used
by	stakeholders.	Write	these	terms	down	in	front	of	the	group	and	
ask	for	a	definition	for	each	one.	Later,	you'll	add	these	definitions	
into the project glossary. Also, listen for issues as they arise. Is a
process step fuzzy? Is there an area that needs more research, or
an	item	on	which	team	members	disagree?	Write	these	down	as	
well	and	later	include	them	in	a	project	issue	log.

V. Expose what belongs outside project scope
Constraints on the project may limit resources and/or the project
timeline. As a result, the analysis team may need to prioritize
development	work,	or	separate	project	deliverables	into	phases.	

Abstract
A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up
of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal.
It consists of a group of elements (for example, classes and interfaces) that can be used together in a way that will have an effect
larger than the sum of the separate elements combined. The use case should contain all system activities that have significance to
the users. A use case can be thought of as a collection of possible scenarios related to a particular goal, indeed, the use case and
goal are sometimes considered to be synonymous

Keywords
Use cases, Gent Case, Tools, Test Case

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

28

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

You can help the analysis team by creating a catalog of the use
case titles, and arranging them into some meaningful order (e.g.,
by	sub-system	or	umbrella	process).	With	this	catalog,	the	analysis	
team	can	prioritize	the	use	cases.	They	may	decide	that	some	
fall outside the project scope, or that some are not needed in the
first	project	phase.	Either	way,	you	have	given	the	stakeholders	
an	opportunity	to	declare	which	functions	they	need	the	most,	or	
which	ones	they	need	first.

VI. Transform manual processes into automated
processes
When	software	is	being	designed	to	automate	aspects	of	an	existing	
system,	the	analysis	team	usually	begins	by	writing	"as	is"	use	
cases	to	describe	the	current	business	processes.	While	this	effort	
is time consuming, the result is valuable. Besides revealing the
details of an existing business process (including business rules,
alternative	paths,	and	exception	paths),	you	will	create	a	launching	
pad	for	the	team's	imagination.	As	they	are	writing	the	use	cases,	
they often discover an improved process, recognize unnecessary
steps,	or	reach	agreement	on	"best	operational	practices".	The	
"as	is"	use	cases	may	also	allow	the	system	architect	to	propose	
high-level	process	flow	diagrams	that	 represent	how	the	new	
system	could	work.	While	the	first	attempts	may	not	be	viable,	
iterative	review	and	revision	by	the	analysis	team	may	generate	
a	workable	architecture	for	the	new	system.	Use	cases	help	the	
development team...

VII. Understand business processes
Software	developers	often	lack	an	understanding	of	the	customer's	
business.	It	is	easy	to	forget	that	software	systems	should	help	
business	people	get	work	done	 --	effectively,	efficiently,	and	
inexpensively.	To	 achieve	 these	 objectives,	 the	 development	
team	must	understand	not	only	the	business	process	the	software	
must support, but also the process' alternatives and exceptions.
Use cases provide this information in clear, structured language
that developers can readily understand.[2] Use cases also offer
a	 valuable	 perspective	 on	 the	 stakeholders'	 business	 goals,	
assumptions,	 and	 operational	 rules.	 These	 features	 provide	
developers	with	a	solid	foundation	for	developing	cost-effective	
solutions to business challenges.

VIII. Recognize patterns and contexts in functional
requirements
Developers	may	view	a	set	of	use	cases	horizontally.	For	example,	
one	use	case	requires	a	customer	lookup	function.	Another	use	
case	requires	a	similar	function	but	with	customer	data	sorted	
in	a	different	order.	The	clever	development	team	can	find	such	
patterns	within	a	set	of	use	cases.	Patterns	are	often	discovered	
in	the	"Business	Rules"	section	of	use	cases	as	well.	Developers	
may	transform	these	patterns	into	universal	software	objects.
As another aid to developers, use cases also reveal operational
context.	 The	 "Stakeholders	 Goals",	 "Pre-Conditions",	
"Assumptions",	and	"Post-Conditions"	give	developers	a	sense	
of	how	the	software	will	be	used.	By	reading	these	sections,	the	
developer	understands	what	the	role	identified	in	the	use	case	is	
trying	to	accomplish,	and	what	motivates	him	or	her.	Although	
the	analysis	team	may	have	prioritized	and	winnowed	the	use	
cases,	 the	development	 team	views	them	from	a	far	different	
perspective.[1]	As	a	good	development	teams	writes	code,	they	
search	for	coding	efficiencies.	While	the	analysis	team	may	want	
12 use cases completed in phase one, the technical manager and

the development team may see cost-savings in delivering phase
one	software	for	 the	12	use	cases,	plus	 two	more	from	phase	
two	that	are	cheaper	to	build	as	part	of	phase	one.	Of	course,	the	
analysis team and the development should jointly consider the
effect of this change.

IX. Discover gaps between the requirements and the
delivered software
Some	years	ago,	I	was	asked	to	join	a	troubled	project	in	which	
the	system	design	phase	was	nearly	complete.	Unfortunately,	
detailed	functional	requirements	were	nowhere	to	be	seen,	and	the	
developers	had	already	begun	writing	code!	In	order	to	catch	up,	
I	taught	a	team	of	functional	users	to	write	use	cases	themselves.	
Although	we	completed	the	narratives	quickly,	the	developers	
largely	ignored	our	use	cases.	That	condition	changed,	however,	
after	the	developers	installed	their	first	software	release.	It	was	
clear	to	us	that	critical	features	were	missing.	The	rooky	analysis	
team	and	I	compared	the	delivered	software	to	our	use	cases.	
Although	we	created	a	long	list	of	missing	features,	we	challenged	
the	developers	to	close	the	gaps	rapidly.	The	next	installation	was	
acceptable.

X. Ensure the delivered software works properly
While	use	cases	significantly	differ	from	test	cases,	the	former	
may	 be	 used	 to	 derive	 the	 latter.	 The	 "Assumptions",	 "Pre-
Conditions",	and	"Post-Condition",	"Main	Course",	"Alternative	
Paths",	"Exception	Paths",	and	"Business	Rules"	sections	are	all	
source material for creating good test scripts. Bundles of use cases
organized	into	system-wide	process	flows	become	a	source	for	
writing	comprehensive	endto-	end	test	scripts.	As	an	added	bonus,	
the testing team develops test scripts from the use cases as the
development	team	begins	its	work.	The	test	scripts	are	now	ready	
for use as developers complete programs.[8]

Example of use case diagram

Test case:
Test	Cases	are	the	implementation	of	a	test	case	design	which	will	
help	the	software	tester	to	detect	defects	in	the	application	or	the	
system	being	tested.	This	should	be	the	primary	goal	of	any	test	
case	or	set	of	test	cases.	When	I	write	a	test	case,	I	think	of	both	

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

29

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

types of test cases, positive test cases and negative test cases.
Positive	test	cases	are	those	which	execute	the	happy	path	in	the	
application	and	make	sure	that	the	happy	path	is	working	fine.	
Negative test cases as the name suggests are destructive test cases
which	are	documented	with	some	out-ofbox	thinking	to	break	the	
system.[10]	A	Test	Case	should	be	documented	in	a	manner	that	
is useful for the current test cycle and any future test cycles. At a
bare minimum each test case should contain: Sr No, Summary or
Title,	Description,	Steps	to	reproduce,	Expected	Results,	Actual	
Results	and	Status	of	the	test	case	or	remarks.

Test Case in Sdlc
Software	Development	Life	Cycle,	or	Software	Development	
Process,	defines	the	steps/stages/phases	in	the	building	of	software.	
There	are	various	kinds	of	software	development	models	like:
	Waterfall	model
	Spiral	model
	Iterative	and	incremental	development	(like	‘Unified	Process’	
and	‘Rational	Unified	Process’)
	 Agile	 development	 (like	 ‘Extreme	 Programming’	 and	
‘Scrum’)
Models	are	evolving	with	time	and	the	development	life	cycle	can	
vary	significantly	from	one	model	to	the	other.	It	is	beyond	the	
scope	of	this	particular	article	to	discuss	each	model.	However,	
each	model	comprises	of	all	or	some	of	the	following	phases/
activities/tasks.

Test case vs. use cases
A	Use	Case	is	not	a	substitute	for	a	Test	Case.	I	start	with	this	
point	because	there	is	a	growing	trend	of	organizations	using	
Use	Cases	as	Test	Cases.	Writing	Use	Cases	takes	a	lot	less	time,	
requires	fewer	resources	and	less	expertise.	Use	Cases	are	user	
scenarios—typical	sequences	of	tasks	performed	on	the	software	
by a typical user. A Use Case is useful for one purpose, in User
Acceptance	Test	(UAT),	to	verify	the	software	works	correctly	
in	typical	workflows.	Use	Cases	will	 include	normal	flow	and	
alternate	flow	sequences,	but	 they	are	 still	 confined	 to	 fairly	
normal	end-user	workflows.	Test	Cases	cover	the	software	more	
thoroughly	and	in	more	detail	than	Use	Cases.	Test	Cases	include	
every	function	that	the	software	is	capable	of	(or	is	supposed	to	
be capable of); handling every type of data input/output, every
expected behavior, every design item, and every class of defect.
There	are	a	lot	of	Requirements	that	are	not	covered	in	Use	Cases.	
But	all	Requirements	must	be	covered	in	Test	Cases.	To	satisfy	
a	Test	Case,	there	may	be	one,	two,	or	more	test	scripts.	Ideally,	
test	scripts	have	stepby-	step,	click-by-click	instructions	that	any	
person	off	 the	street	could	see	and	 instantly	perform	with	no	
training. (But because of reality constraints, test scripts often
assume	knowledge	common	to	 the	designated	 testers.)	When	
the	test	scripts	pass,	the	Test	Case	passes.	When	the	Test	Cases	
pass,	the	Requirements	pass.	Every	part	of	a	Test	Case	must	be	
traceable	to	specific	items	in	the	Requirements	document,	which	
is not complete until you have captured implied requirements, and
converted them into documented Requirements.[9] For example,
if	I’m	testing	to	verify	that	closing	“print	preview”	takes	the	user	
back	to	the	“print	dialog	box,”	then	the	Requirements	document	
better	state	that	closing	“print	preview”	must	take	the	user	back	
to	the	“print	dialog	box.”	If	I	am	testing	the	boundary	of	max	
characters	allowed	in	a	field,	the	Requirements	document	better	
state	the	max	characters	allowed	in	that	field.	Then	you	can	trace	
the	test	back	to	the	requirement.	

The tool
The	tool,	which	we	call	GenTCase	(Generator	for	Test	Cases),	
can	be	used	to	layout	the	usecase	diagram	of	any	system.	The	tool	
is also able to automatically generate the test cases of the system
according to the use-case diagram that has been formed previously.
The	tool	is	developed	using	object-oriented	approach	with	C++	
programming	 language.	The	 tool	has	3	major	components	as	
shown	in	The	workspace	is	used	as	a	place	for	a	user	to	provide	
the system’s requirements by means of a use-case diagram. In
the	workspace,	a	Toolbox	is	used	to	create,	edit	and	display	the	
use-case	diagram.	The	Toolbox	consists	of	standard	symbols	and	
arrows	for	a	use-case	diagram	such	as	symbols	for	an	actor	and	
a	use	case,	and	arrows	for	connecting	an	actor	with	use	cases	as	
well	as	arrow	for	generalizations.	In	the	Workspace,	a	user	can	
also	type-in	the	text	for	each	of	the	use	cases	used	in	the	Text	Box	
provided	by	the	tool.	The	Workspace	will	allow	a	user	of	the	tool	
to layout the use- case diagram according to any system. Once
the	use-case	diagram	has	been	finalized,	the	user	can	generate	the	
test	cases	by	using	the	generator	of	the	tool.	The	Engine	will	take	
all	the	use	cases	and	search	the	keywords	used	in	the	provided	
database.	The	database	consists	of	most	standard	keywords	of	
a	use	case.	Once	the	use	case	used	matches	the	keyword	inside	
the	database,	 the	engine	will	generate	its	respective	test	cases	
according to its use case. Intelligent search technique is used to
search	all	the	metadata	fields	in	the	entire	database.
The	intelligent	searching	technique	includes	three	major	processes.	
First,	 the	keywords	are	pre-processed	by	some	automatic	text	
operation	methods.	The	result	is	a	collection	of	metadata,	which	
is	considered	the	logical	view	of	 the	use	case	diagram.	Next,	
the	metadata	describing	the	logical	views	are	used	to	construct	
a	metadataoriented	 index.	An	 index	such	as	 this	“allows	 fast	
searching	over	large	volumes	of	metadata	field”.
During	the	retrieval,	the	information	retrieval	engine	first	performs	
similar text operations on the user query as those performed on
the	original	use	cases.	The	output	of	the	text	operation	is	a	list	
of	metadata,	each	of	which	is	used	to	locate,	through	the	index,	
a	 list	of	all	 the	documents	 in	which	it	occurs.	When	multiple	
metadata are present in the query, the search returns the union
of	the	additional	information	retrieved	by	all	the	words.	In	short,	
searching	is	a	process	of	matching	keywords	in	the	use	cases	with	
those	in	the	query.	Lastly,	every	retrieved	metadata	is	evaluated	
by its relevance to the query and the additional information of
use	cases.	The	way	the	engine	works	is	by	choosing	the	shortest	
time-to-locate	 the	object	being	searched.	This	will	ensure	the	
result	returns	in	few	seconds.
The	tool	will	produce	the	test	cases	based	on	the	use-case	diagram	
provided	 in	 the	 workspace.	 These	 test	 cases	 are	 generated	
automatically	from	the	tool	as	the	output	of	the	tool.	The	output	
is	displayed	on	the	screen	as	well	as	stored	in	a	file	with	extension	
.txt,	namely	output.txt.	A	user	can	open	this	output	file	by	using	a	
Notepad	or	Microsoft	Word.	The	output	can	be	used	as	a	checklist	
for	a	programmer	to	test	the	system	that	he	or	she	will	develop	
according	to	the	provided	test	cases.	These	test	cases	can	also	be	
used to validate the results of the test cases so the requirements
of the system are meet.
User	who	uses	the	tool	can	layout	the	use	cases	using	the	Workspace.	
The	Toolbox	is	used	in	order	to	ease	the	drawing	of	the	use-case	
diagram.	Then,	the	button	for	Generator	of	test	cases	(GTC)	in	
the	Workspace	can	be	used	to	generate	the	test	cases.[7]

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

30

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

XI. Conclusion and Future Work
Gent	Case	is	a	tool	that	is	able	to	generate	the	test	cases	automatically	
according	to	the	system’s	requirements.	The	test	cases	can	be	used	
as	a	checklist	for	a	programmer	to	validate	that	the	system	meets	
its	requirements.	The	purpose	of	Gent	Case	is	to	reduce	the	cost	of	
testing	the	system.	However,	Gent	Case	has	its	limitations	where	
the use cases used are only for functional requirements of a system.
The	tool	is	unable	to	capture	the	non-functional	requirements	of	
a	system.	Therefore,	the	nonfunctional	requirements	need	to	be	
captured and tested outside of the tool.

References
A. Bahrami Object oriented systems development : using [1].
the unified modeling language, Mc-Graw Hill, Singapore.
(1999)
C. Nebut, F. Fleurey and Y.L. Traon, Automatic Test [2].
Generation: A Use Case Driven Approach, IEEE
TRANSACTION ON SOFTWARE ENGINEERING Vol.32,
No.3 (2003)
D. Wood and J. Reis (1999). Use Case Derived Test Cases, [3].
Software Quality Engineering for Software Testing Analysis
and Review (STAREAST99) Online. http://www.stickyminds.
com/
I. Jacobson, G. Booch, J. Rumbaugh. The Unified [4].
SoftwareDevelopment, England (1992)
J. Gutierez, Escalona M.J. and Torres M.M. An Approach [5].
to Generate Test Cases from Use Cases, Proceedings of
the 6th International Conference on Web Engineering. pp.
113-114 (2006).
J. Heumann, Generating Test Cases from Use Cases, [6].
Rational Software, IBM. (2001).
J. Jansen Using an Intelligent Agent To Enhance Search [7].
Engine Performance http://www.firstmonday.org (1996)
R.V. Binder Testing Object-Oriented System. Addison-[8].
Wesley. USA (2000)
Rational. (2003). Mastering Requirements Management [9].
with Use Cases, Rational Software, IBM.
T. Stanley, Intelligent Searching Agent on the Web, http://[10].
ariadne.ac.uk/issue7/searchengine

Dr. B. V.Ramana Murthy has done his PhD
from Osmania University, presently he
working as Professor in Computer Science
and Engineering, has 18 years of experience
in Teaching and R&D. His primary area
of interest is Software Engineering & Web
Engineering.

Mr. V Padmakar is pursuing PhD in CSE
and has done his M Tech (CSE) from
JNTUH, presently working as Professor
in Computer Science and Engineering has
17 years of experience in Teaching and
Industry. His primary area of interests is
Software Engineering, Network Security
and Data mining

Mrs. A.Vasavi has done her M.Tech (CSE)
from JNTUH, presently She is working as
Associate Professor in Computer Science
and Engineering department, has 10 years
of experience in Teaching. Her area of
interest is Network Security and Formal
Languages.

