
International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

27

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

An Approach to Automatic Generation of Test Cases from
Use-Cases

IDr. B V Ramana Murthy, IIProf. Vuppu Padmakar, IIIA. Vasavi
I,IIIDept. of CSE, Jyotishmathi College of Technology, and Science, Shamirpet, Hyderabad India

IIDept. of CSE, Guru Nanak Institutions Technical, Campus, Hyderabad, India

I. Introduction
A use case (or set of use cases) has these characteristics:

Organizes functional requirements•	
Models the goals of system/actor (user) interactions•	
Records paths (called scenarios) from trigger events to •	
goals

Describes one main flow of events (also called a basic course of
action), and possibly other ones, called exceptional flows of events
(also called alternate courses of action)[3] Is multi-level, so that
one use case can use the functionality of another one.
Use case analysis is a technique used to identify the requirements
of a system (normally associated with software/process design)
and the information used to both define processes used and classes
(which are a collection of actors and processes) which will be
used both in the use case diagram and the overall use case in the
development or redesign of a software system or program. The
use case analysis is the foundation upon which the system will
be built.
A use case analysis is the primary form for gathering usage
requirements for a new software program or task to be completed.
The primary goals of a use case analysis are: designing a
system from the user’s perspective, communicating system
behavior in the user’s terms, and Specifying all externally visible
behaviors. Another set of goals for a use case analysis is to clearly
communicate: system requirements, how the system is to be used,
the roles the user plays in the system, what the system does in
response to the user stimulus, what the user receives from the
system, and what value the customer or user will receive from
the system. [5]

II. Reasons why use cases are indispensable to your
software development project
Use cases help the analysis team, Improve communication among
team members. Collaborative effort enhances the success of any
team. As the team members work to describe business processes, use
cases provide a repository of team members' business knowledge.
As a written document, each use case spawns meaningful discussion
within the group. The axiom, "the whole is greater than the sum
of the parts", applies here. Group discussion exposes in-depth
viewpoints that would otherwise remain hidden. With use cases,
the team captures these perspectives while identifying the related
business goals, conditions, and issues.

III. Encourage common agreement about system
requirements
The process of writing and revising use cases produces three
important outcomes in the analysis team clarity, consensus, and
commitment. Remarkably, it is common for stakeholders to be
uncertain about how a process they own actually works! Writing
a use case helps stakeholders align the narrative with the details
of an existing process.
In a recent project, it became clear that stakeholders could not
agree about the specifics of several core processes. However,
consensus came quickly as the team wrote and revised use
cases.[6] For many stakeholders, these written documents offer
a foothold on a sometimes bewildering mountain of complex
business processes. Remarkably, use cases often help stakeholders
reach common agreement on "best practice" processes as well. In
a facilitated group setting, divergent perspectives are welcomed,
understood, and appreciated. As a by-product of this agreement,
team members inevitably commit to support improved processes
to both management and peers.

IV. Reveal process alternatives, process exceptions,
undefined terms, and outstanding issues
I always have the analysis team start a use case by developing
the "Main Course of Events" (see the sample use case). As the
group develops a coherent and ordered set of process steps, team
members tend to volunteer statements that begin with the words
"what about..." - a clue to previously unidentified "Alternative
Paths" to a successful outcome. The "Exception Paths" often arise
in a similar way. More of these become obvious when the team
considers what happens if any step in the "Main Course" fails. As
the facilitator of team meetings, carefully listen for any jargon used
by stakeholders. Write these terms down in front of the group and
ask for a definition for each one. Later, you'll add these definitions
into the project glossary. Also, listen for issues as they arise. Is a
process step fuzzy? Is there an area that needs more research, or
an item on which team members disagree? Write these down as
well and later include them in a project issue log.

V. Expose what belongs outside project scope
Constraints on the project may limit resources and/or the project
timeline. As a result, the analysis team may need to prioritize
development work, or separate project deliverables into phases.

Abstract
A use case is a methodology used in system analysis to identify, clarify, and organize system requirements. The use case is made up
of a set of possible sequences of interactions between systems and users in a particular environment and related to a particular goal.
It consists of a group of elements (for example, classes and interfaces) that can be used together in a way that will have an effect
larger than the sum of the separate elements combined. The use case should contain all system activities that have significance to
the users. A use case can be thought of as a collection of possible scenarios related to a particular goal, indeed, the use case and
goal are sometimes considered to be synonymous

Keywords
Use cases, Gent Case, Tools, Test Case

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

28

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

You can help the analysis team by creating a catalog of the use
case titles, and arranging them into some meaningful order (e.g.,
by sub-system or umbrella process). With this catalog, the analysis
team can prioritize the use cases. They may decide that some
fall outside the project scope, or that some are not needed in the
first project phase. Either way, you have given the stakeholders
an opportunity to declare which functions they need the most, or
which ones they need first.

VI. Transform manual processes into automated
processes
When software is being designed to automate aspects of an existing
system, the analysis team usually begins by writing "as is" use
cases to describe the current business processes. While this effort
is time consuming, the result is valuable. Besides revealing the
details of an existing business process (including business rules,
alternative paths, and exception paths), you will create a launching
pad for the team's imagination. As they are writing the use cases,
they often discover an improved process, recognize unnecessary
steps, or reach agreement on "best operational practices". The
"as is" use cases may also allow the system architect to propose
high-level process flow diagrams that represent how the new
system could work. While the first attempts may not be viable,
iterative review and revision by the analysis team may generate
a workable architecture for the new system. Use cases help the
development team...

VII. Understand business processes
Software developers often lack an understanding of the customer's
business. It is easy to forget that software systems should help
business people get work done -- effectively, efficiently, and
inexpensively. To achieve these objectives, the development
team must understand not only the business process the software
must support, but also the process' alternatives and exceptions.
Use cases provide this information in clear, structured language
that developers can readily understand.[2] Use cases also offer
a valuable perspective on the stakeholders' business goals,
assumptions, and operational rules. These features provide
developers with a solid foundation for developing cost-effective
solutions to business challenges.

VIII. Recognize patterns and contexts in functional
requirements
Developers may view a set of use cases horizontally. For example,
one use case requires a customer lookup function. Another use
case requires a similar function but with customer data sorted
in a different order. The clever development team can find such
patterns within a set of use cases. Patterns are often discovered
in the "Business Rules" section of use cases as well. Developers
may transform these patterns into universal software objects.
As another aid to developers, use cases also reveal operational
context. The "Stakeholders Goals", "Pre-Conditions",
"Assumptions", and "Post-Conditions" give developers a sense
of how the software will be used. By reading these sections, the
developer understands what the role identified in the use case is
trying to accomplish, and what motivates him or her. Although
the analysis team may have prioritized and winnowed the use
cases, the development team views them from a far different
perspective.[1] As a good development teams writes code, they
search for coding efficiencies. While the analysis team may want
12 use cases completed in phase one, the technical manager and

the development team may see cost-savings in delivering phase
one software for the 12 use cases, plus two more from phase
two that are cheaper to build as part of phase one. Of course, the
analysis team and the development should jointly consider the
effect of this change.

IX. Discover gaps between the requirements and the
delivered software
Some years ago, I was asked to join a troubled project in which
the system design phase was nearly complete. Unfortunately,
detailed functional requirements were nowhere to be seen, and the
developers had already begun writing code! In order to catch up,
I taught a team of functional users to write use cases themselves.
Although we completed the narratives quickly, the developers
largely ignored our use cases. That condition changed, however,
after the developers installed their first software release. It was
clear to us that critical features were missing. The rooky analysis
team and I compared the delivered software to our use cases.
Although we created a long list of missing features, we challenged
the developers to close the gaps rapidly. The next installation was
acceptable.

X. Ensure the delivered software works properly
While use cases significantly differ from test cases, the former
may be used to derive the latter. The "Assumptions", "Pre-
Conditions", and "Post-Condition", "Main Course", "Alternative
Paths", "Exception Paths", and "Business Rules" sections are all
source material for creating good test scripts. Bundles of use cases
organized into system-wide process flows become a source for
writing comprehensive endto- end test scripts. As an added bonus,
the testing team develops test scripts from the use cases as the
development team begins its work. The test scripts are now ready
for use as developers complete programs.[8]

Example of use case diagram

Test case:
Test Cases are the implementation of a test case design which will
help the software tester to detect defects in the application or the
system being tested. This should be the primary goal of any test
case or set of test cases. When I write a test case, I think of both

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

29

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)
ISSN : 2347 - 9817 (Print)

www.ijarcst.com © All Rights Reserved, IJARCST 2014

types of test cases, positive test cases and negative test cases.
Positive test cases are those which execute the happy path in the
application and make sure that the happy path is working fine.
Negative test cases as the name suggests are destructive test cases
which are documented with some out-ofbox thinking to break the
system.[10] A Test Case should be documented in a manner that
is useful for the current test cycle and any future test cycles. At a
bare minimum each test case should contain: Sr No, Summary or
Title, Description, Steps to reproduce, Expected Results, Actual
Results and Status of the test case or remarks.

Test Case in Sdlc
Software Development Life Cycle, or Software Development
Process, defines the steps/stages/phases in the building of software.
There are various kinds of software development models like:
 Waterfall model
 Spiral model
 Iterative and incremental development (like ‘Unified Process’
and ‘Rational Unified Process’)
 Agile development (like ‘Extreme Programming’ and
‘Scrum’)
Models are evolving with time and the development life cycle can
vary significantly from one model to the other. It is beyond the
scope of this particular article to discuss each model. However,
each model comprises of all or some of the following phases/
activities/tasks.

Test case vs. use cases
A Use Case is not a substitute for a Test Case. I start with this
point because there is a growing trend of organizations using
Use Cases as Test Cases. Writing Use Cases takes a lot less time,
requires fewer resources and less expertise. Use Cases are user
scenarios—typical sequences of tasks performed on the software
by a typical user. A Use Case is useful for one purpose, in User
Acceptance Test (UAT), to verify the software works correctly
in typical workflows. Use Cases will include normal flow and
alternate flow sequences, but they are still confined to fairly
normal end-user workflows. Test Cases cover the software more
thoroughly and in more detail than Use Cases. Test Cases include
every function that the software is capable of (or is supposed to
be capable of); handling every type of data input/output, every
expected behavior, every design item, and every class of defect.
There are a lot of Requirements that are not covered in Use Cases.
But all Requirements must be covered in Test Cases. To satisfy
a Test Case, there may be one, two, or more test scripts. Ideally,
test scripts have stepby- step, click-by-click instructions that any
person off the street could see and instantly perform with no
training. (But because of reality constraints, test scripts often
assume knowledge common to the designated testers.) When
the test scripts pass, the Test Case passes. When the Test Cases
pass, the Requirements pass. Every part of a Test Case must be
traceable to specific items in the Requirements document, which
is not complete until you have captured implied requirements, and
converted them into documented Requirements.[9] For example,
if I’m testing to verify that closing “print preview” takes the user
back to the “print dialog box,” then the Requirements document
better state that closing “print preview” must take the user back
to the “print dialog box.” If I am testing the boundary of max
characters allowed in a field, the Requirements document better
state the max characters allowed in that field. Then you can trace
the test back to the requirement.

The tool
The tool, which we call GenTCase (Generator for Test Cases),
can be used to layout the usecase diagram of any system. The tool
is also able to automatically generate the test cases of the system
according to the use-case diagram that has been formed previously.
The tool is developed using object-oriented approach with C++
programming language. The tool has 3 major components as
shown in The workspace is used as a place for a user to provide
the system’s requirements by means of a use-case diagram. In
the workspace, a Toolbox is used to create, edit and display the
use-case diagram. The Toolbox consists of standard symbols and
arrows for a use-case diagram such as symbols for an actor and
a use case, and arrows for connecting an actor with use cases as
well as arrow for generalizations. In the Workspace, a user can
also type-in the text for each of the use cases used in the Text Box
provided by the tool. The Workspace will allow a user of the tool
to layout the use- case diagram according to any system. Once
the use-case diagram has been finalized, the user can generate the
test cases by using the generator of the tool. The Engine will take
all the use cases and search the keywords used in the provided
database. The database consists of most standard keywords of
a use case. Once the use case used matches the keyword inside
the database, the engine will generate its respective test cases
according to its use case. Intelligent search technique is used to
search all the metadata fields in the entire database.
The intelligent searching technique includes three major processes.
First, the keywords are pre-processed by some automatic text
operation methods. The result is a collection of metadata, which
is considered the logical view of the use case diagram. Next,
the metadata describing the logical views are used to construct
a metadataoriented index. An index such as this “allows fast
searching over large volumes of metadata field”.
During the retrieval, the information retrieval engine first performs
similar text operations on the user query as those performed on
the original use cases. The output of the text operation is a list
of metadata, each of which is used to locate, through the index,
a list of all the documents in which it occurs. When multiple
metadata are present in the query, the search returns the union
of the additional information retrieved by all the words. In short,
searching is a process of matching keywords in the use cases with
those in the query. Lastly, every retrieved metadata is evaluated
by its relevance to the query and the additional information of
use cases. The way the engine works is by choosing the shortest
time-to-locate the object being searched. This will ensure the
result returns in few seconds.
The tool will produce the test cases based on the use-case diagram
provided in the workspace. These test cases are generated
automatically from the tool as the output of the tool. The output
is displayed on the screen as well as stored in a file with extension
.txt, namely output.txt. A user can open this output file by using a
Notepad or Microsoft Word. The output can be used as a checklist
for a programmer to test the system that he or she will develop
according to the provided test cases. These test cases can also be
used to validate the results of the test cases so the requirements
of the system are meet.
User who uses the tool can layout the use cases using the Workspace.
The Toolbox is used in order to ease the drawing of the use-case
diagram. Then, the button for Generator of test cases (GTC) in
the Workspace can be used to generate the test cases.[7]

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

30

Vol. 2, Issue 3 (July - Sept. 2014)
ISSN : 2347 - 8446 (Online)

 ISSN : 2347 - 9817 (Print)

www.ijarcst.com© 2014, IJARCST All Rights Reserved

XI. Conclusion and Future Work
Gent Case is a tool that is able to generate the test cases automatically
according to the system’s requirements. The test cases can be used
as a checklist for a programmer to validate that the system meets
its requirements. The purpose of Gent Case is to reduce the cost of
testing the system. However, Gent Case has its limitations where
the use cases used are only for functional requirements of a system.
The tool is unable to capture the non-functional requirements of
a system. Therefore, the nonfunctional requirements need to be
captured and tested outside of the tool.

References
A. Bahrami Object oriented systems development : using [1].	
the unified modeling language, Mc-Graw Hill, Singapore.
(1999)
C. Nebut, F. Fleurey and Y.L. Traon, Automatic Test [2].	
Generation: A Use Case Driven Approach, IEEE
TRANSACTION ON SOFTWARE ENGINEERING Vol.32,
No.3 (2003)
D. Wood and J. Reis (1999). Use Case Derived Test Cases, [3].	
Software Quality Engineering for Software Testing Analysis
and Review (STAREAST99) Online. http://www.stickyminds.
com/
I. Jacobson, G. Booch, J. Rumbaugh. The Unified [4].	
SoftwareDevelopment, England (1992)
J. Gutierez, Escalona M.J. and Torres M.M. An Approach [5].	
to Generate Test Cases from Use Cases, Proceedings of
the 6th International Conference on Web Engineering. pp.
113-114 (2006).
J. Heumann, Generating Test Cases from Use Cases, [6].	
Rational Software, IBM. (2001).
J. Jansen Using an Intelligent Agent To Enhance Search [7].	
Engine Performance http://www.firstmonday.org (1996)
R.V. Binder Testing Object-Oriented System. Addison-[8].	
Wesley. USA (2000)
Rational. (2003). Mastering Requirements Management [9].	
with Use Cases, Rational Software, IBM.
T. Stanley, Intelligent Searching Agent on the Web, http://[10].	
ariadne.ac.uk/issue7/searchengine

Dr. B. V.Ramana Murthy has done his PhD
from Osmania University, presently he
working as Professor in Computer Science
and Engineering, has 18 years of experience
in Teaching and R&D. His primary area
of interest is Software Engineering & Web
Engineering.

Mr. V Padmakar is pursuing PhD in CSE
and has done his M Tech (CSE) from
JNTUH, presently working as Professor
in Computer Science and Engineering has
17 years of experience in Teaching and
Industry. His primary area of interests is
Software Engineering, Network Security
and Data mining

Mrs. A.Vasavi has done her M.Tech (CSE)
from JNTUH, presently She is working as
Associate Professor in Computer Science
and Engineering department, has 10 years
of experience in Teaching. Her area of
interest is Network Security and Formal
Languages.

