
151

Volume-4, Issue-6, December-2014, ISSN No.: 2250-0758

International Journal of Engineering and Management Research
Available at: www.ijemr.net

Page Number: 151-157

Energy Reduction under Different Cache Configurations by using Way
Tag Architecture

Harika1, D.VaraPrasada Rao
M. Tech Scholar, VLSI and Embedded Systems, Turbo Machinery Institute of Technology and Sciences, INDIA

2

Associate Professor & HOD Dept of ECE, Turbo Machinery Institute of Technology and Sciences, INDIA

ABSTRACT
To perform operations the processor has to fetch the

instructions from the memory in this process the time taken to
fetch the instructions from the larger memory block (main
memory) is more i.e., it does not reach the processor speed of
execution, to decrease the gap between the processor speed of
execution and data fetching of the processor we go for the cache
memory. The cache memory performance is the most significant
factor in achieving high processor performance because cache
memory is the very small in size than the main memory it will
helpful in fetching the data very fastly which increase the
performance of the processor if the data is not present in the
cache memory then it fetch the data from the main memory and
stored in the cache memory.

The cache memory work on the principle of locality. Cache
works by storing a small subset of the external memory contents,
typically out of its original order. Data and instructions that are
being used frequently, such as a data array or a small instruction
loop, are stored in the cache and can be read quickly without
having to access the main memory. Cache runs at the same speed
as the rest of the processor, which is typically much faster than
the external RAM operates at. This means that if data is in the
cache, accessing it is faster than accessing memory.

In this paper we are going to increase the performance of the
processor by a new policy called write-through and a new cache
architecture referred to as way-tagged. In this way-tagged
process we are having L1 cache and L2 cache and the address at
which the data have to be stored is divided into three parts tag,
index and offset address and the data which is going to be stored
in the L1 & L2 caches are stored with reference with the tag
address and the copy of the tag address is stored in the way-tag
array. Way-tag array is an array where the way-tag address of
the data is stored.

When the processor required the data to perform the required
operations first it check the L1 cache and if the data is present in
the L1 cache it fetches the data otherwise it check the L2 cache
for the data and similarly if the data is not present in L2 cache
the processor checks the data in the main memory .while
processor fetching the data from the main memory it stores the
data in the L2 & L1 cache respectively and stores the way-tag
address in the respectively L1 and L2 way-tag arrays.

By this process of way-tag we are going to increase the
performance of the processor than the previous cache process.
Simulation results on the ModelSim and synthesis results on
Xilinx demonstrate that the proposed technique achieves total
power saving of 56.42% and dynamic power saving of 41.31% in
L2 caches on average with small area overhead and no
performance degradation.

Furthermore, the idea of way tagging can be applied to existing
low-power cache design techniques to further improve energy
efficiency.

Index Terms— Cache, dynamic power, write-through policy.

I. INTRODUCTION
A general-purpose processor is a finite-state automaton that

executes instructions held in a memory. The state of the system
is defined by the values held in the memory locations together
with the values held in certain registers within the processor
itself (see Fig. 1). Each instruction defines a particular way the
total state should change and it also defines which instruction
should be executed next.

Fig.1: The state in a stored-program digital computer

If we want to make a processor go fast, we must first

understand what it spends its time doing. It is a common
misconception that computers spend their time computing, that
is, carrying out arithmetic operations on user data. In practice
they spend very little time 'computing' in this sense. Although

http://www.ijemr.net/�

152

they do a fair amount of arithmetic, most of this is with
addresses in order to locate the relevant data items and program
routines. Then, having found the user's data, most of the work
is in moving it around rather than processing it in any
transformational sense.

At the instruction set level, it is possible to measure the
frequency of use of the various different instructions. It is very
important to obtain dynamic measurements, that is, to measure
the frequency of instructions that are executed, rather than the
static frequency, which is just a count of the various instruction
types in the binary image.

A typical set of statistics is shown in Table. These statistics
were gathered running a print preview program on an
instruction emulator, but are broadly typical of what may be
expected from other programs and instruction sets.

Table 1: Typical dynamic instruction usage

These sample statistics suggest that the most important

instructions to optimize are those concerned with data
movement, either between the processor registers and memory
or from register to register. These account for almost half of all
instructions executed. Second most frequent are the control
flow instructions such as branches and procedure calls, which
account for another quarter. Arithmetic operations are down at
15%, as are comparisons.

Now we have a feel for what processors spend their time
doing, we can look at ways of making them go faster. The most
important of these is pipelining. Another important technique is
the use of a cache memory, which will be covered in Section
10.3 on page 272. A third technique, super-scalar instruction
execution, is very complex, has not been used on processors.

In this paper we are concerned mainly about the Data
movement by keeping the data very near to the processor by
using the L1 & L2 Cache and by employing Write-through and
Write-back polices. Under the write-back policy, a modified
cache block is copied back to its corresponding lower level
cache only when the block is about to be replaced. While under
the write-through policy, all copies of a cache block are
updated immediately after the cache block is modified at the
current cache, even though the block might not be evicted. As a
result, the write-through policy maintains identical data copies
at all levels of the cache hierarchy throughout most of their life
time of execution.

It has been reported that single-event multi bit upsets are
getting worse in on-chip memories. Currently, this problem has
been addressed at different levels of the design abstraction. At
the architecture level, an effective solution is to keep data
consistent among different levels of the memory hierarchy to
prevent the system from collapse due to soft errors. Benefited
from immediate update, cache write-through policy is
inherently tolerant to soft errors because the data at all related
levels of the cache hierarchy are always kept consistent. Due to
this feature, many high-performance microprocessor designs
have adopted the write-through policy.

II. TYPE RELATED WORK

To improve the performance of the processor we use Way-

tagged cache this will help in storing the data in the L1 and L2
caches in a order that the data with same address tag are stored
in the same location and the data with different address tag are
stored in the different locations.

Fig. 2: Block diagram of way-tag cache

We consider a conventional set-associative cache system

when the L1 data cache loads/writes data from/into the
L2cache, all ways in the L2 cache are activated simultaneously
for performance consideration at the cost of energy overhead.

By this process when the processor required the data for the
execution of the instructions it directly check the any one of the
way-tag array instead of checking all the memory location(all
the way-tag array).This is shown in the Fig .2.

153

In this the data with address starting with 00 are stored in the
same way-tag array in 00 location i.e., the data 12342 and
12346 are stored in same location. Similarly the data with
address starting with 01,10,11 are stored in the same way-tag
array in 01,10,11 location respectively.
Write-Back:

 In this write-back police data is stored in memory
when it is about to replace.

In this write-back policy there is a chance of data missing
because it does not store the data instantly in the memory
location when the data is modified. To over come this draw
back we use write-through policy.
Write-Through:

In this write-through policy when ever the data is modified
by the processor it stores the modified data in the memory
location.

Fig. 3:Different Operations perform in L1,L2 and Main

Memory

Under the write- through policy, the L2 cache always

maintains the most recent copy of the data. Thus, whenever a
data is updated in the L1 cache, the L2 cache is updated with
the same data as well. This results in an increase in the write
accesses to the L2 cache and consequently more energy
consumption.

 For read process initially the processor check the L1 cache
memory for the data, if the required data is present read_hit
signal is set to Yes other wise No. If read_hit signal in L1 is
Yes then no-need to check the L2 and Main memory. If it is No
it has to check L2 cache in that if the required data is found in
L2 cache then the read_hit signal is set to Yes other wise No. If
the data found in the L2 Cache no need to go for Main memory
otherwise it has to checks the main memory.

For write process the processor initially checks the address
location in the L1 cache if the address location is found the it
compare the data. If the same data is present then no need write
other wise it has to update. Same update operation is carried
out in L2 and main Memory. If the required address is not
found in the L1 cache then it has to copy the data in the L1, L2
and Main Memory.

III. WAY-TAGGED CACHE

Fig. 4 shows the system diagram of proposed way-tagged

cache. We introduce several new components: way-tag arrays,
way-tag buffer, way decoder, and way register, all shown in the
dotted line. The way tags of each cache line in the L2 cache are
maintained in the way-tag arrays, located with the L1 data
cache. Note that write buffers are commonly employed in
write-through caches (and even in many write-back caches) to
improve the performance. With a write buffer, the data to be
written into the L1 cache is also sent to the write buffer.

Fig. 4: Proposed way-tagged cache

The operations stored in the write buffer are then sent to the

L2 cache in sequence. This avoids write stalls when the

154

processor waits for write operations to be completed in the L2
cache. In the pro- posed technique, we also need to send the
way tags stored in the way-tag arrays to the L2 cache along
with the operations in the write buffer. Thus, a small way-tag
buffer is introduced to buffer the way tags read from the way-
tag arrays. A way decoder is employed to decode way tags and
generate the enable signals for the L2 cache, which activate
only the desired way sin the L2 cache. Each way in the L2
cache is encoded into a waytag. A way register stores way tags
and provides this information to the way-tag arrays.

IV. IMPLEMENTATION OF WAY-TAG CACHE

Way-Tag Array: Way-tag array stores the tag information of
the data in different location depending on the starting address
location. And when ever the data is needed by the processor,
the processor check address in the way-tag and if the tag
address is found then the data is fetched from the
corresponding address location. If not then there is no need in
check the memory location.

Fig. 5: Way-Tag Array

Table 2: Operations of Way-Tag array

Way-Tag buffer: Way-Tag buffer is used to mirroring the
information from one place to another place. Way-tag buffer
temporarily stores the way tags read from the way-tag arrays.
Implementation is shown in below fig. 6.

Fig. 6: Way-tag buffer.

Way-Decoder: Way decoders are used to select the way. And
activate only the desired ways in the L2 cache. Below fig. 7
shows the block diagram of the Way-Decoder.

Fig. 7: Block diagram of Way-Decoder

Way Register: The way register are used to provide way tags
for the way-tag arrays. When the data is carried from main
memory to L2 cache and also form L2 to L1 cache i.e., when
the data is carried the way-tag address is carried by way-
register.

V. FURTHER EXTENSION

We can extend this 2-way tag L2 cache architecture to 4-

way tag L2 architecture for more high performance. The below
fig.8 shows the architecture of the 4-way tag L2Cache.

155

Fig. 8: The Architecture of the 4-way tag L2 Cache

VI. EVALUATION AND DISCUSSION

Simulation results of top module:

The below fig. 9 shows the simulation results of top module
with Way-Tag of this project in that at the starting of the
simulation we set CLK (clock) signal and initially we set
RST(reset) signal as logic1 at that instant all the other signal
values are at logic0.

In the next state we set the RST(reset) signal as logic0 then
the operation of the cache controller take place in that process
the processor will do two operation read and write.

Fig.9: Simulation Result of Top Module with Way-Tag

(capture 1)

Depending on the instructions of the programmer at the

starting read operation is take place in that process the
processor checks for the required data in the nearest and the
smallest memory location (L1cache) if the data present in the
L1cache (i.e., L1way_tag array is having the required way-tag
address and data) then the cache-hit signal is set to logic1
otherwise cache-miss signal is set to logic1. If cache-hit is
logic1 then the processor fetch the data from the L1cache
memory and carry out its operations. If the cache-miss signal is
logic1 then the processor check for the data in the L2 cache
memory in the similar way if the data found in the l2cache(i.e.,
L2way_tag array is having the required way _tag address and
data) then the L2cache_hit signal is set to logic1 otherwise the
L2cache_mis signal is set to logic1. If L2cache_hit signal is
logic1 then the processor fetch the data from the L2cache
memory and carry out its operations.

156

Fig. 10: Simulation Result of Top Module with Way-Tag

(capture 2)

If the L2cache_mis signal is logic1 then the processor

check for the data in the main memory in the similar way if the
data found in the main memory then the processor fetch the
data from the main memory and in the processor the data is
stored in the L1cache memory and L2cache memory and the
way-tag address is stored in the way-tag array as shown in
fig.10.

The below fig. 11 shows the simulation results of the top
module without Way-Tag in this we don’t have any tag-array
signal if the processor required the data from the memory
location it has to check the entire L1cache memory if the
required data found it is fetched by the processor otherwise it
has to check the L2cache memory if the data is found in the
L2cache memory it is fetched by the processor otherwise it
checks the main memory and fetch the data from the main
memory and in the same process the copies of the data is stored
in the L1 and L2 cache memories.

Fig. 11: Simulation Result of Top Module without Way-Tag

Synthesis Report:

Synthesis report without way-tag array
--
Power Supply Summary
--
| Supply Power (mW)| 1597.00| 355.56 | 1241.45 |
--

Synthesis report with way-tag array
--
Power Supply Summary
--
| Supply Power (mW) | 901.15 | 146.89 | 1164.67 |
--

VII. CONCLUSION

 This paper presents a new energy-efficient cache

technique for high-performance microprocessors employing
the write-through policy. The proposed technique attaches a tag

157

to each way in the L2 cache. This way tag is sent to the way-
tag arrays in the L1 cache when the data is loaded from the L2
cache to the L1 cache. Utilizing the way tags stored in the way-
tag arrays, the L2 cache can be accessed as a direct-mapping
cache during the subsequent write hits, thereby reducing cache
energy consumption. Simulation results demonstrate
significantly reduction in cache energy consumption with
minimal area overhead and no performance degradation.
Furthermore, the idea of way tagging can be applied to many
existing low-power cache techniques such as the phased access
cache to further reduce cache energy consumption.

REFERENCES

[1] G. H.Asadi,V. Sridharan, M. B. Tahoori, Andd.Kaeli,
“Balancing Performance And Reliability In The Memory
Hierarchy,” In Proc. Int. Symp.Perform. Anal. Syst. Softw.,
2005, Pp. 269–279.
[2] C. Su And A. Despain, “Cache Design Tradeoffs For
Power And Performance Optimization: A Case Study,” In
Proc. Int. Symp. Low Power Electron. Design, 1997, Pp. 63–
68.
[3] C. Zhang, F. Vahid, And W. Najjar, “A Highly-
Configurable Cache Architecture For Embedded Systems,” In
Proc. Int. Symp. Comput. Arch., 2003, Pp. 136–146.
[4] B. Brock And M. Exerman, “Cache Latencies Of The
Powerpc Mpc7451,” Freescale Semiconductor, Austin, Tx,
2006. [Online]. Available: Cache.Freescale.Com
[5] A.Ma, M. Zhang, And K.Asanovi, “Way Memoization To
Reduce Fetch Energy In Instruction Caches,” In Proc. Isca
Workshop Complexity Effective Design, 2001, Pp. 1–9.
[6] T. Ishihara And F. Fallah, “A Way Memoization
Technique For Reducing Power Consumption Of Caches In
Application Specific Integrated Processors,” In Proc. Design
Autom. Test Euro. Conf., 2005, Pp. 358–363.
[7] R. Min, W. Jone, And Y. Hu, “Location Cache: A Low-
Power L2 Cache System,” In Proc. Int. Symp. Low Power
Electron. Design, 2004, Pp. 120–125.
[8] B. Calder, D. Grunwald, And J Emer, “Predictive
Sequential Associative Cache,” In Proc. 2nd Ieee Symp. High-
Perform. Comput. Arch., 1996, Pp. 244–254.

[9] T. N. Vijaykumar, “Reactive-Associative Caches,” In
Proc. Int. Conf. Parallel Arch. Compiler Tech., 2011, P. 4961.
[10] J. Dai And L. Wang, “Way-Tagged Cache: An Energy
Efficient L2 Cache Architecture Under Write Through
Policy,” In Proc. Int. Symp. Low Power Electron. Design,
2009, Pp. 159 164.
[11] R.Min,W. Jone, And Y. Hu, “Phased Tag Cache: An
Efficient Low Power Cache System,” In Proc. Int. Symp.
Circuits Syst., 2004, Pp. 23–26.
[12] About Cache Available at:
http://www.tfinley.net/notes/cps104/cache.html#direct
(Accessed: 20 Aprial 2014)
[13] About Cache Basics by Gene Cooperman Available at:
http://www.ccs.neu.edu/course/com3200/parent/NOTES/cach
e-basics.html
 (Accessed: 17 Aprial 2014)
[14] About Set Associative Cache Available at:
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memo
ry/set.html
(Accessed: 03 May 2014)
[15] A brief tutorial on Xilinx. Available at:
https://www.digilentinc.com/Data/Documents/Tutorials/Xilinx
%20ISE%20WebPACK%20VHDL%20Tutorial.pdf
(Accessed: 19 May 2014)
[16] About Predictions for Low-Power Cache Design
Available at:
http://web.cse.ohio-
state.edu/hpcs/WWW/HTML/publications/papers/TR-02-
7.pdf (Accessed: 27 May 2014)
[17] About Literature Survey and Analysis of Low-Power
Techniques for Memory and Microprocessors Available at:
http://users.ece.utexas.edu/~bevans/courses/ee382c/lectures/00
_welcome/project2.html
(Accessed: 1 June 2014)

Mrs. Surya Mukhi received M.Tech
degree in ES from JNTUH in 2010,
B.Tech degree in ECE from JNTUH in
2005, Diploma in ECE from SBTET
2002.

Presently working as Sr. Assistance
professor in ASTRA, Hyderabad.

Mrs. D.kavitha received M.Tech degree
in VLSI from JNTUH in 2010, B.E
degree in ECE from OU in 2003,Diploma
in ECE from SBTET in 1998.

Copyright © 2011-14. Vandana Publications. All Rights Reserved.

	Introduction
	Type Related Work
	WAY-TAGGED CACHE
	implementation of way-tag cache
	further Extension
	EVALUATION AND DISCUSSION
	Conclusion
	References

