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Abstract 

A river generally exhibits a two stage geometry i.e. deeper main channel and shallow floodplain called compound section. In 
most of the compound channels, the floodplain geometry is found to be varying along the length of the flow called non-prismatic 
compound channel. The modelling of such flows is of primary importance when seeking to identify flooded areas and for flood 
risk management studies etc. The water surface profile is a series of transition curve from the normal depth line in one sub reach 
to the normal depth line in the adjacent sub reach. Water surface modeling help for the study of flood waves, water level 
calculation during flood, stage discharge relation, design of water work structures. All non-prismatic open channel flows are 
found to be unsteady and non-uniform. So these flows are difficult to analyse. In this paper experiments have been conducted to 
compute the water surface profile of non-prismatic compound channel for different converging angle and an attempt has been 
made to formulate mathematical models for predicting water surface profile by using the new experimental data of N.I.T, 
Rourkela and other standard data sets for different converging compound channels. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of organizing committee of ICWRCOE 2015. 
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1. INTRODUCTION 

A compound channel consists of a main channel and floodplains. The main river channel carries low flows and 
the flood plains transport overbank flows during flooding. The storage provided by floodplains in overbank flow 
reduces river channel that carries low flows flood stages. The interaction between the main channel and floodplain 
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flow is a complex one because of the momentum transfer at the interface. This phenomenon is more complex in non-
prismatic compound channels with converging floodplains due to change in geometry. In converging compound 
channel the flow is forced to leave the flood plains and enter the main channel resulting in increased interactions and 
momentum exchange (Bousemer and Zech (1999), Bousemer et al. (2004), Proust et al. (2006), Rezai (2006)). This 
extra momentum exchange should also be taken into account in the flow modelling. Today more than half of the 
world’s population live within 65km of a sea cost, and most of the major cities are also located on main river 
systems. So whenever flood occurs, this has lead to increase in the loss of life and economic cost (Knight and 
Shamseldin 2005). Water surface profile prediction is a vital issue in flood risk management and also in assessing 
ecological effects of bridge construction or changing the cross section geometry of channels. The effect of 
contraction on the water depth in a compound channel with converging compound channel is now investigated. In 
present work based on the experimental data of N.I.T Rourkela data and Rezai (2006) data an attempt has been made 
to develop a mathematical model for water surface calculation in converging compound channels. The method can 
be applied to the converging compound channels of different configurations and flow conditions. 

 
Nomenclature 

 width ratio 
  aspect ratio 

 relative depth 
Xr          relative distance 

 
 

2. EXPERIMENTAL WORK 

2.1. Experimental Setup 

Experiments had been conducted at the Hydraulics and Fluid mechanics Laboratory of Civil Engineering 
Department of National Institute of Technology, Rourkela, India. Three sets of non-prismatic compound channels 
with varying cross sections were built inside a concrete flume measuring 15m long × 0.90m width × 0.55m depth 
and flume with Perspex sheet of same dimensions. The width ratio of the channel was α = 1.8 and the aspect ratio 
was δ = 5. Keeping the geometry constant, the converging angles of the channels were varied as 12.38°, 9º and 50 
respectively. Converging length of the channels fabricated were found to be 0.84m, 1.26m and 2.28m respectively. 
Longitudinal bed slope of the channel was 0.0011. Roughness of the floodplain and main channel were identical and 
the Manning's n was determined as 0.011 from the experimental runs in the channel. A re-circulating system of 
water supply was established with pumping of water from an underground sump to an overhead tank from where 
water flows under gravity to the experimental channel. Adjustable vertical gates along with flow strengtheners are 
provided in upstream section sufficiently ahead of rectangular notch to reduce turbulence and velocity of approach 
in the flow near the notch section. An adjustable tailgate at the downstream end of the flume helps to maintain 
uniform flow over the test reach. Water from the channel was collected in a volumetric tank that helps to measure 
the discharge rate. From the volumetric tank water runs back to the underground sump. Figure 1(a) shows the plan 
view of experimental setup. Figure 1(b) shows the plan view of experimental sections.  

A movable bridge was provided across the flume for both span wise and stream wise movements over the 
channel area so that each location on the plan of compound channel could be accessed for taking measurements. The 
broad parameters of this channel are aspect ratio of main channel (δ), width-ratio (α). 

A micro-Pitot tube of 4.77 mm external diameter in conjunction with suitable inclined manometer is used to 
measure velocity at these points of the flow-grid. The Pitot tube is physically rotated with respect to the main stream 
direction till it gives maximum deflection of the manometer reading. A flow direction finder having a least count of 
0.1° is used to get the direction of maximum velocity with respect to the longitudinal flow direction. The angle of 
limb of Pitot tube with longitudinal direction of the channel is noted by the circular scale and pointer arrangement 
attached to the flow direction meter. The overall discharge obtained from integrating the longitudinal velocity plot 
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and from volumetric tank collection is found to be within ±3% of the observed values. 

 
Fig.1 (a). Plan view of experimental Setup (b). Plan view of experimental Section 

 
Table1.Hydraulic parameters for the experimental channel data set collected from literature experiments 
 

 
 

3. EXPERIMENTAL RESULTS 

The stage discharge relationship of different sections for the converging compound channel of angle 12.38° from in 
bank to over-bank flow conditions are shown in Fig.2 (a) and Fig.2 (b). A total 13 stage-discharge runs for are 
observed at the test reach. 
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     Meter Meter Meter  Meter  

Rezai 

(2006) 

Convergent 

(CV2) 

11.31° 0.002 Rectangular 1.2 0.398 0.05 3 2 7.96 

Rezai 

(2006) 

Convergent 

(CV6) 

3.81° 0.002 Rectangular 1.2 0.398 0.05 3 6 7.96 

Rezai 

(2006) 

Convergent 

(CV6) 

1.91° 0.002 Rectangular 1.2 0.398 0.05 3 6 7.96 

N.I.T. Rkl Convergent 5° 0.0011 Rectangular 0.9 0.5 0.1 1.8 2.28 

 

5 

N.I.T. Rkl Convergent 9° 0.0011 Rectangular 0.9 0.5 0.1 1.8 1.26 5 

N.I.T. Rkl Convergent 12.38° 0.0011 Rectangular 0.9 0.5 0.1 1.8 0.84 5 

b a 
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Fig. 2(a). Stage discharge relationship for the converging angle 12.38° (Sec-1 prismatic part)  (b). Stage discharge relationship for the converging 

angle 12.38° (Sec-3- Non-prismatic part) 

4. WATER SURFACE PROFILE COMPUTATION AND MODEL DEVELOPMENT 

From the literature study, it is seen that water surface profile (WP) = F (α, β, δ) for prismatic compound channel, 
Where F is the functional symbol. But when all the equations are tested against non-prismatic compound channels 
of converging sections significant errors are found due variation of geometry. So an attempt has been made here to 
see the variation of Non prismatic water surface profile with respect to different independent parameters. Non 
prismatic water surface profile has been derived from a wide range of experimental data sets from three different 
types of converging compound channels of NIT, Rourkela, India along with three series of converging compound 
channels data of Rezai (2006) (details of the data sets are given in Table.1) These compound channels have 
homogeneous roughness both in the main channel and floodplain subsections. Manning’s n values for all these 
smooth surfaces are taken as 0.01.A multiple-variable regression model is developed by taking five important  
dimensionless independent parameters. The dependency of Non dimensional water surface profile (NWP - Flow 
depth over floodplain divided by full main channel depth) and the best functional relationships of it have been found 
out from different plots described below. The relationships may be in the following form 
NWP = F (α, β, δ, θ, Xr)           (1) 
 
The variation of NWP has been found out for six converging compound channels. The variation of NWP in terms of 
relative depth β and relative distance Xr are plotted for different converging angles θ in Fig 4, 5, 6, 7, 8, 9. From 
these figures it is seen that NWP increases with increase in relative depth.  

 
Fig.4. Variation of NWP along the Non prismatic length for converging angle 1.91˚ 
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Fig.5. Variation of NWP along the Non prismatic length for converging angle 3.81˚ 

 

 
Fig.6. Variation of NWP along the Non prismatic length for converging angle 3.81˚ 

 

 
Fig.7. Variation of NWP along the Non prismatic length for converging angle 5˚ 
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Fig.8. Variation of NWP along the Non prismatic length for converging angle 9˚ 

 

 
 

Fig.9. Variation of NWP along the Non prismatic length for converging angle 12.38˚ 
 

By analysing the above plots, the best functional relationships of NWP with different non-dimensional geometric 
and hydraulic parameters for the ranges of overbank flow depths are given by 

NWP = 0.25 e - 0.57 X
r    for lower Relative flow depth i.e Dr= 0.2, 0.25, 0.3        (2) 

NWP = 0.40 e - 0.22 X
r    for higher Relative flow depth i.e Dr= 0.4, 0.5                           (3)  

Here the R2 value of the chosen functional relationship has been found to be very high and varies from 0.97 to 0.99 
(please see the Fig. no. 4, 5, 6, 7, 8, 9).  The equations (2) and (3) can be applied to compute the water surface 
profile  of a converging compound channel flow for different converging angles and at different reaches in terms of  
relative distance from the starting part of non-prismatic reach i.e. Xr.  
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5. RESULTS AND DISCUSSION 

The NWP for all the new non-prismatic compound channels and the data of Rezai (2006) has been computed using 
equation (2) and (3).  The variation between the calculated values of NWP of equations (2) and (3) and the 
corresponding observed values for all the six types of channels are shown in Fig.10 for higher Relative depth and 
Fig.11 for lower Relative depth. The percentage error NWP is less for both Present experimental Channel as well as  
Rezai (2006) Channel proving the effectiveness of the equation (2) and (3). 
 

 
 

Fig.10. Scatter plot for observed and modelled value of NWP for higher Dr 
 

  
 

Fig.11. Scatter plot for observed and modelled value of NWP for lower Dr 
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6. CONCLUSIONS 

 
The following conclusions can be derived from the above research presented in this work. 
 
 From the experimental results on converging compound channels, the stage discharge of different sections of the 

converging compound channels is measured.  
 The water surface profile along a non-prismatic compound channel are found to increase with increase of 

Relative depth for converging compound channels of different converging angles and decreases along the 
converging lengths of the channel under sub-critical flow conditions.  

 The dependency of Non prismatic water surface profile is influenced by non-dimensional geometric and 
hydraulic parameters. The NWP in converging compound channel is found to be a non-linear function of all 
these non-dimensional parameters.  

 The present mathematical model for a converging compound channel showing the dependency of NWP with 
relative distance for different flow depths are presented and modelled. The equations are found to provide good 
results when compared with the observed NWP. 
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