

ISSN 2322-0929

Vol.03, Issue.06,

August-2015,

Pages:0892-0896

 www.ijvdcs.org

Copyright @ 2015 IJVDCS. All rights reserved.

Error Detection and Correction using STI in Cache Memory
D. VISHWAKALA

1
, CH. SURESH

2
, K. HYMAVATHI

3

1
PG Scholar, Dept of VLSI System Design, Swami Ramananda Tirtha Institute of Science and Technology, Telangana, India,

Email: vishwakala431@gmail.com.
2
Assistant Professor, Dept of ECE, Swami Ramananda Tirtha Institute of Science and Technology, Telangana, India.

3
Assoc Prof & HOD, Dept of ECE, Swami Ramananda Tirtha Institute of Science and Technology, Telangana, India.

Abstract: With continued technology scaling to the nanometer regime, computer systems are becoming vulnerable to transient

errors. Especially, cache memories are vulnerable because they operate at low voltage levels and their sizes increase due to

popular use of multilevel cache hierarchy and multi-core architecture even in embedded/mobile systems. To combat against

transient errors, cache memories typically employ error protection mechanisms, such as parity codes and single-bit error

correction and double-bit error detection (SEC–DED) codes. However, these schemes are not efficient in terms of area overhead

and error protection coverage. Thus, many techniques are proposed to reduce such inefficiency and enhance protection coverage.

With the trend of increasing transient error rate, it is becoming important to prevent transient errors and provide a correction

mechanism for hardware circuits, especially for SRAM cache memories. Caches are the largest structures in current

microprocessors and, hence, are most vulnerable to the transient errors. Tag bits in cache memories are also exposed to transient

errors but a few efforts have been made to reduce their vulnerability. In this paper, we propose to exploit prevalent same tag bits

to improve error protection capability of the tag bits in the caches. When data are fetched from the main memory, it is checked if

adjacent cache lines have the same tag bits as those of the data fetched. This same tag bit information is stored in the caches as

extra bits to be used later. When an error is detected in the tag bits, the same tag bit information is used to recover from the error

in the tag bits. The proposed scheme has small area, energy, and performance overheads with error protection coverage of 97.9%

on average. Even with large working sets and various cache sizes, our scheme shows protection coverage of higher than 95% on

average.

Keywords: Cache memory, reliability, tag bits, transient Errors.

I. INTRODUCTION

 With continued technology scaling, caches are becoming

more vulnerable to transient errors. There have been many

efforts made to address transient errors in the data arrays of

the caches. However, errors in the tag bits of the caches are

critical for data integrity, too. For example, transient errors in

the tag bits can lead to false misses in the dirty cache lines

and, consequently, stale data can be consumed. Therefore,

addressing transient errors in the tag bits are critical for

correction execution. By our experiments with embedded

benchmarks on an Intel X-scale-based simulator, most tag

bits in the data caches have their replica in other cache sets.

In other words, when a cache line is accessed or replaced, we

can find an adjacent cache line with the same tag bits as those

of the cache line accessed in a upper or lower cache set than

the current set. This is called tag bits similarity in this paper.

Tag bits similarity can be exploited for improving tag bits

vulnerability against transient errors. For instance, when an

error is detected using the conventional parity check bits, the

error could be corrected if the same tag bits were present in

one of adjacent cache lines. Faulty tag bits are simply

replaced with correct tag bits from the adjacent cache line for

error correction. To exploit similar tag bits for transient error

protection, we augment the conventional cache architecture

with four simple hardware components. To access cache lines

in a upper and/or lower cache set than currently accessed

cache set, a shifter right after the decoder of a cache or a

up/down counter is required. Second, an encoder for

generating similarity information between tag bits is needed.

Third, a small circuit is necessary for handling similarity bits

on cache replacements. Finally, an error correction unit

corrects transient errors in the tag bits using the same tag bits

from adjacent cache lines. These extra components are

simple structures and incur little energy, area, and latency

overheads. We evaluated our proposed scheme with in-cache

replication (ICR), which was originally proposed to reduce

data array vulnerability but can also be applied to reduce tag

bits vulnerability. From our experimental results, our scheme

shows high error protection coverage of 97% with no virtual

performance hit while ICR degrades overall system

performance by around 10% and increases DRAM energy

consumption by around 20%, on average.

II. RELATED WORK

 Different techniques are proposed to protect against

transient errors in microprocessors. Protection is generally

achieved by employing redundancy; this redundancy may be

D. VISHWAKALA, CH. SURESH, K. HYMAVATHI

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.06, August-2015, Pages: 0892-0896

in time, in area, or in information. Error Detection Code

(EDC) and Error Correction Code (ECC) are used widely for

protecting caches against transient errors. However, the

conventional ECC protection imposes significant area and

latency penalties, making it practical only for large memories

and second-level (L2) caches where the increased latency has

little impact on performance. To prevent latency increasing,

first level (L1) caches tend to employ parity check codes that

allow bit error detection, but no correction. Bhattacharya et

al. investigate in detail multi-bit soft error rates in large L2

caches and propose a framework based on the amount of

redundancy present in the memory hierarchy.

Table I. Error Protection Techniques for Tag Bits

 Despite the fact that most of the previous work has studied

effectiveness in terms of performance, energy, and area

overheads, it targets data bits reliability with the assumption

that tag bits are intact. However, tag bits also are vulnerable

in caches and they have different inherent properties

compared to data bits. Kim et al. classify tag bits faults into

pseudo-hit, pseudo miss (also called false-hit or false-miss),

and multi-hit. Asadi et al. present L1 and L2 cache

vulnerability computation algorithms and also deal with

algorithms forag vulnerability computation. They analyze in

detail the sources of tag bits vulnerability. In-Cache

Replication (ICR) has been proposed to replicate frequently

accessed cache blocks to dead blocks. Replicated blocks can

be used to correct tag bits errors in the active blocks.

However, the dead block prediction technique is not always

accurate. Thus, ICR increases cache miss and write-back

rates resulting in large performance loss and increased energy

consumption.

III. OUR PROPOSED APPROACH

A. Effects of tag bits corruptions

 Transient errors in tag bits manifest themselves as false

hits, false-misses, and replacement errors. A false-miss

makes cache hit as a cache miss because of transient error in

tag bits. Consequently, the data path gets wrong data on a

read and updates a wrong location on a write. A false-hit

refers to a cache hit that is actually a miss in the absence of a

transient error. If tag bits are corrupted after the line is

modified, it may write back to a wrong location in the next

level of memory, which is classified as a replacement error.

Table I shows tag bits error protection techniques including

our proposed scheme and ICR. Except for no detection, clean

cache lines do not need error recovery. If erroneous data are

in a clean cache line, they can be recovered by invalidating

the cache line and by fetching correct data from the next level

of memory. If an error occurs in a dirty cache line, hardware

exception will be generated and an error handling mechanism

will take over for error recovery. Parity check code can cover

transient errors on clean caches but it cannot protect dirty

cache lines. Single Error Correction Double Error Detection

(SECDED) can detect 2-bit errors and correct 1-bit errors.

Fig.1. Same tag bits in the adjacent sets

 These error codes can be augmented with our proposed

technique. If single or multi-bit errors are detected by parity

or SEC-DED, our technique will correct the errors using the

same tag bits from adjacent cache lines. Our scheme and ICR

use location information for error protection. However our

scheme exploits prevalent same tag bits while ICR replicates

tag bits into other locations by force.

B. Exploiting spatial locality

 It is highly probable that same tag bits exist in adjacent

cache sets (see Fig.1). This is a consequence of spatial

locality of programs. The basic idea of our scheme is to

exploit the same tag bits in an adjacent set for correcting

erroneous tag bits. Additional bits are required to encode

location information which points to exact location of the

same tag bits in a upper or lower set. These extra bits are

called “Same Tag Information” (STI). STI bits consist of

three logical parts; a valid bit, a set location bit, and way

location bits. The valid bit indicates that tag bits have the

same bits in an adjacent set. The set location bit denotes a

lower or upper set and way location bits represent a specific

cache way which has the same tag bits. To find same tag bits

and set STI bits properly, extra components are required. The

tag bits of the missed data are compared with the tag bits of

adjacent sets during fetching data from the next level of

memory on a cache miss. If there is a match, the STI bits for

Error Detection and Correction using STI in Cache Memory

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.06, August-2015, Pages: 0892-0896

the missed data are generated and stored in the data cache. It

is possible that replaced tag bits are indicated by the STI bits

of adjacent sets (A). If this situation is not handled properly,

the STI bits will point non-existing tag bits. To solve this

problem, another extra component reads STI bits from lower

and upper sets A. If there are matching STI bits, new STI bits

are generated. All of these procedures are performed while

pipelines are stalled due to cache misses. Therefore, there is

no performance degradation virtually.

Fig.2. Detailed architecture of Sim Tag.

Fig.3. Counter-based technique to access adjacent sets

C. Proposed architecture

 In this subsection, we present our proposed architecture

and explain additional components which are required to

implement it. Fig.2 shows the micro-architecture-level

schematic of our architecture called Sim Tag. Detailed

operation of each component is described below. Shifter Our

approach uses a shifter for accessing lower or upper cache

lines. This is simple and intuitive but it may increase the

critical path of data cache access. An alternative approach is

to use a counter for hiding the decoding latency. Fig.3 shows

the counter-based technique for set index control. Basic

operation is same as in the shifter approach but it operates in

parallel with cache access.

STI Encoder: To generate STI bits, STI encoder compares

the tag bits of cache missed data with the tag bits from lower

and upper sets during pipelines are stalled due to cache

misses.

STI Replacement Handler: STI replacement handler checks

the STI bits in the upper and lower sets on cache

replacement. If the STI bits point to replaced tag bits in

question, then simply invalidate the STI valid bits and

generate new STI bits by finding other same tag bits.

Error Corrector: When errors are detected, this component

fetches uncorrupted tag bits from an adjacent cache set by

using STI bits (if same tag bits exist) for error correction.

Main Controller: On cache misses or tag bits errors, the

pipelines are stalled and, at the same time, the main

controller signals the additional shifter (or counter) to access

adjacent sets.

 There is little area overhead due to the additional

components. A set index bits-wide shifter or counter is put

into the cache. A 4-to-1 tag bits-wide multiplexer is used for

tag matching in the Error Corrector. STI Encoder uses a 2-

bits multiplexer, a 1-bit AND gate and tag bits-wide

comparators.

Table II. Baseline System Configuration

 Also, STI bits-wide comparators are required for STI

Replacement Handler. A few bits are required for the way

location. These bits depend on the number of sets inside the

data cache. If there are M sets, the size of way location bits is

log2 (M)

IV. RESULTS

Fig.4. Cache memory.

D. VISHWAKALA, CH. SURESH, K. HYMAVATHI

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.06, August-2015, Pages: 0892-0896

Fig.5. STI memory

Fig.6. Encoder Design.

Fig.7 Corrector.

Fig.8. Error correction result

V. CONCLUSION AND FUTURE SCOPE

A. Conclusion

 It is becoming important to provide error detection and

correction capability for hardware circuits, especially for

cache memories. Traditionally, parity or SEC–DED code has

been widely used for caches against transient errors. Many

techniques are proposed to reduce performance, energy, and

area overheads of the conventional error protection

mechanisms. However, most of the techniques consider only

data bits without considering tag bits corruption. To improve

tag bits reliability, this paper exploits tag bits similarity. Most

of the tag bits in the data caches have their replica in adjacent

cache sets due to spatial locality of programs. Hence, when

an error is detected using the conventional parity check bits,

the error can be corrected if the same tag bits were present in

adjacent cache sets. Faulty tag bits are simply replaced with

correct tag bits from the adjacent cache sets for error

correction. We evaluate and compare our proposed

architecture with the ICR scheme. With the trend of

increasing soft error rate, it is becoming important to provide

error detection and correction capability for hardware

circuits, especially for cache memories. However, most of the

previous techniques focus only on data bits without

considering tag bits corruption. Most tag bits in the data

caches have their replica in adjacent cache sets from our

experiments. We exploit this tag bits similarity against

transient errors. Faulty tag bits are simply replaced with

correct tag bits from the adjacent cache lines for error

correction.

B. Future scope

 Processor caches already play a critical role in the

performance of today’s computer systems. At the same time,

the data integrity of words coming out of the caches can have

serious consequences on the ability of a program to execute

correctly, or even to proceed. The integrity checks need to be

performed in a time-sensitive manner to not slow down the

execution when there are no errors as in the common case,

and should not excessively increase the power budget of the

caches which is already high. A novel solution to this

problem by allowing in-cache replication, wherein reliability

can be enhanced without excessively slowing down cache

accesses or requiring significant area cost increases. The

mechanism is fairly power efficient in comparison to other

alternatives as well. In particular, the solution replicates data

that is in active use within the cache itself while evicting

those that may not be needed in the near future. Our

experiments show that a large fraction of the data read from

the cache has replicas available with this optimization.

VI. REFERENCES

[1] Jeongkyu Hong, Jesung Kim, and Soontae Kim, Member,

IEEE, “Exploiting Same Tag Bits to Improve the Reliability

of the Cache Memories”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems.

[2] Z. Herczeg, A. Kiss, D. Schmidt, N. Wehn, and T.

Gyimóthy, “XEEMU: An improved X-Scale power

simulator,” in PATMOS (Lecture Notes in Computer

Science), N. Azémard and L. J. Svensson, Eds. Springer-

Verlag, 2007, pp. 300–309.

[3] S. Kim and A. Somani, “Area efficient architectures for

information integrity in cache memories,” in Proc. Int. Symp.

Comput, Archit., 1999, pp. 246–255.

Error Detection and Correction using STI in Cache Memory

International Journal of VLSI System Design and Communication Systems

Volume.03, IssueNo.06, August-2015, Pages: 0892-0896

[4] W. Zhang, S. Gurumurthi, M. Kandemir, and A.

Sivasubramaniam, “ICR: In-cache replication for enhancing

data cache reliability,” in Proc. Int. Conf. Dependable. Syst.

Netw., 2003, pp. 291–300.

[5] B. Gold, M. Ferdman, B. Falsafi, and K. Mai, “Mitigating

multi-bit soft errors in L1 caches using last-store prediction,”

in Proc. Workshop Archit. Support Giga scale Integr, 2007,

pp. 1–8.

[6] S. Mukherjee, J. Emer, T. Fossum, and S. Reinhardt,

“Cache scrubbing in microprocessors: Myth or necessity,” in

Proc. Int. Symp. Dependable Comput, 2004, pp. 37–42.

[7] C. Slayman, “Cache and memory error detection,

correction, and reduction techniques for terrestrial servers

and workstations,” IEEE Trans. Device Math. Rel., vol. 5,

no. 3, pp. 397–404, Sep. 2005.

[8] N. Wang and S. Patel, “ReStore: Symptom-based soft

error detection in microprocessors,” IEEE Trans. Dependable

Sec. Comput., vol. 3, no. 3, pp. 188–201, Jul. 2006.

[9] H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli,

“Vulnerability analysis of L2 cache elements to single event

upsets,” in Proc. Des., Autom., Test Eur., 2006, pp. 1–6.

[10] T. Austin, “DIVA: A reliable substrate for deep

submicron micro-architecture design,” in Proc. 32nd Annu.

Int. Symp. Micro-architecture, 1999, pp. 196–2007.

[11] O. Ergin, O. Unsal, X. Vera, and A. Gonzaez,

“Exploiting narrow values for soft error tolerance,” IEEE

Comput. Archit. Lett., vol. 5, no. 2, pp. 1–12, Dec. 2006.

[12] C. Weaver, J. Emer, S. S. Mukherjee, and S. K.

Reinhardt, “Techniques to reduce the soft errors rate in a

high-performance microprocessor,” in Proc. 31st Annu. Int.

Symp. Comput, Archit., Jun. 2004, pp. 264–275.

Author’s Profile:

D.Vishwakala, PG Scholar, Dept of VLSI

System Design, Swami Ramananda Tirtha

Institute of Science and Technology,

Telangana, India,

Email: vishwakala431@gmail.com.

 Ch. Suresh, Received B.Tech degree in

Electronics & Communication Engineering

from sri venkateshwara engineering

college, surypet, Nalgonda and M.Tech

degree in VLSISD Systems from netaji

institute of engineering college, nalgonda

,and currently working as an Assistant

Professor, Department of Electronics and Communication

Engineering in Swami Ramananda Tirtha Institute of Science

and Technology, Nalgonda. Area of interest includes

communication Systems.

K. Hymavathi, Received B.E degree in

Electronics & Communication Engineering

from Osmania University, Hyderabad and

M.Tech degree in Digital Systems and

Computer Electronics from Jawaharlal

Nehru Technological University, Hyderabad

and currently working as an Associate

Professor and Head of the Department of Electronics and

Communication Engineering in Swami Ramananda Tirtha

Institute of Science and Technology, Nalgonda. Area of

interest includes Analog and Digital Communications.

