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Abstract: With continued technology scaling to the nanometer regime, computer systems are becoming vulnerable to transient 

errors. Especially, cache memories are vulnerable because they operate at low voltage levels and their sizes increase due to 

popular use of multilevel cache hierarchy and multi-core architecture even in embedded/mobile systems. To combat against 

transient errors, cache memories typically employ error protection mechanisms, such as parity codes and single-bit error 

correction and double-bit error detection (SEC–DED) codes. However, these schemes are not efficient in terms of area overhead 

and error protection coverage. Thus, many techniques are proposed to reduce such inefficiency and enhance protection coverage. 

With the trend of increasing transient error rate, it is becoming important to prevent transient errors and provide a correction 

mechanism for hardware circuits, especially for SRAM cache memories. Caches are the largest structures in current 

microprocessors and, hence, are most vulnerable to the transient errors. Tag bits in cache memories are also exposed to transient 

errors but a few efforts have been made to reduce their vulnerability. In this paper, we propose to exploit prevalent same tag bits 

to improve error protection capability of the tag bits in the caches. When data are fetched from the main memory, it is checked if 

adjacent cache lines have the same tag bits as those of the data fetched. This same tag bit information is stored in the caches as 

extra bits to be used later. When an error is detected in the tag bits, the same tag bit information is used to recover from the error 

in the tag bits. The proposed scheme has small area, energy, and performance overheads with error protection coverage of 97.9% 

on average. Even with large working sets and various cache sizes, our scheme shows protection coverage of higher than 95% on 

average. 
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I. INTRODUCTION 

    With continued technology scaling, caches are becoming 

more vulnerable to transient errors. There have been many 

efforts made to address transient errors in the data arrays of 

the caches. However, errors in the tag bits of the caches are 

critical for data integrity, too. For example, transient errors in 

the tag bits can lead to false misses in the dirty cache lines 

and, consequently, stale data can be consumed. Therefore, 

addressing transient errors in the tag bits are critical for 

correction execution. By our experiments with embedded 

benchmarks on an Intel X-scale-based simulator, most tag 

bits in the data caches have their replica in other cache sets. 

In other words, when a cache line is accessed or replaced, we 

can find an adjacent cache line with the same tag bits as those 

of the cache line accessed in a upper or lower cache set than 

the current set. This is called tag bits similarity in this paper. 

Tag bits similarity can be exploited for improving tag bits 

vulnerability against transient errors. For instance, when an 

error is detected using the conventional parity check bits, the 

error could be corrected if the same tag bits were present in 

one of adjacent cache lines. Faulty tag bits are simply 

replaced with correct tag bits from the adjacent cache line for 

error correction. To exploit similar tag bits for transient error 

protection, we augment the conventional cache architecture 

with four simple hardware components. To access cache lines 

in a upper and/or lower cache set than currently accessed 

cache set, a shifter right after the decoder of a cache or a 

up/down counter is required. Second, an encoder for 

generating similarity information between tag bits is needed. 

Third, a small circuit is necessary for handling similarity bits 

on cache replacements. Finally, an error correction unit 

corrects transient errors in the tag bits using the same tag bits 

from adjacent cache lines. These extra components are 

simple structures and incur little energy, area, and latency 

overheads. We evaluated our proposed scheme with in-cache 

replication (ICR), which was originally proposed to reduce 

data array vulnerability but can also be applied to reduce tag 

bits vulnerability. From our experimental results, our scheme 

shows high error protection coverage of 97% with no virtual 

performance hit while ICR degrades overall system 

performance by around 10% and increases DRAM energy 

consumption by around 20%, on average. 

II. RELATED WORK 

   Different techniques are proposed to protect against 

transient errors in microprocessors. Protection is generally 

achieved by employing redundancy; this redundancy may be 
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in time, in area, or in information. Error Detection Code 

(EDC) and Error Correction Code (ECC) are used widely for 

protecting caches against transient errors. However, the 

conventional ECC protection imposes significant area and 

latency penalties, making it practical only for large memories 

and second-level (L2) caches where the increased latency has 

little impact on performance. To prevent latency increasing, 

first level (L1) caches tend to employ parity check codes that 

allow bit error detection, but no correction. Bhattacharya et 

al. investigate in detail multi-bit soft error rates in large L2 

caches and propose a framework based on the amount of 

redundancy present in the memory hierarchy. 

Table I. Error Protection Techniques for Tag Bits 

    Despite the fact that most of the previous work has studied 

effectiveness in terms of performance, energy, and area 

overheads, it targets data bits reliability with the assumption 

that tag bits are intact. However, tag bits also are vulnerable 

in caches and they have different inherent properties 

compared to data bits. Kim et al. classify tag bits faults into 

pseudo-hit, pseudo miss (also called false-hit or false-miss), 

and multi-hit. Asadi et al. present L1 and L2 cache 

vulnerability computation algorithms and also deal with 

algorithms forag vulnerability computation. They analyze in 

detail the sources of tag bits vulnerability. In-Cache 

Replication (ICR) has been proposed to replicate frequently 

accessed cache blocks to dead blocks. Replicated blocks can 

be used to correct tag bits errors in the active blocks. 

However, the dead block prediction technique is not always 

accurate. Thus, ICR increases cache miss and write-back 

rates resulting in large performance loss and increased energy 

consumption. 

III. OUR PROPOSED APPROACH 

A. Effects of tag bits corruptions 

   Transient errors in tag bits manifest themselves as false 

hits, false-misses, and replacement errors. A false-miss 

makes cache hit as a cache miss because of transient error in 

tag bits. Consequently, the data path gets wrong data on a 

read and updates a wrong location on a write. A false-hit 

refers to a cache hit that is actually a miss in the absence of a 

transient error. If tag bits are corrupted after the line is 

modified, it may write back to a wrong location in the next 

level of memory, which is classified as a replacement error.     

Table I shows tag bits error protection techniques including 

our proposed scheme and ICR. Except for no detection, clean 

cache lines do not need error recovery. If erroneous data are 

in a clean cache line, they can be recovered by invalidating 

the cache line and by fetching correct data from the next level 

of memory. If an error occurs in a dirty cache line, hardware 

exception will be generated and an error handling mechanism 

will take over for error recovery. Parity check code can cover 

transient errors on clean caches but it cannot protect dirty 

cache lines. Single Error Correction Double Error Detection 

(SECDED) can detect 2-bit errors and correct 1-bit errors.  

 
Fig.1. Same tag bits in the adjacent sets 

  These error codes can be augmented with our proposed 

technique. If single or multi-bit errors are detected by parity 

or SEC-DED, our technique will correct the errors using the 

same tag bits from adjacent cache lines. Our scheme and ICR 

use location information for error protection. However our 

scheme exploits prevalent same tag bits while ICR replicates 

tag bits into other locations by force. 

B. Exploiting spatial locality 

  It is highly probable that same tag bits exist in adjacent 

cache sets (see Fig.1). This is a consequence of spatial 

locality of programs. The basic idea of our scheme is to 

exploit the same tag bits in an adjacent set for correcting 

erroneous tag bits. Additional bits are required to encode 

location information which points to exact location of the 

same tag bits in a upper or lower set. These extra bits are 

called “Same Tag Information” (STI). STI bits consist of 

three logical parts; a valid bit, a set location bit, and way 

location bits. The valid bit indicates that tag bits have the 

same bits in an adjacent set. The set location bit denotes a 

lower or upper set and way location bits represent a specific 

cache way which has the same tag bits. To find same tag bits 

and set STI bits properly, extra components are required. The 

tag bits of the missed data are compared with the tag bits of 

adjacent sets during fetching data from the next level of 

memory on a cache miss. If there is a match, the STI bits for 
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the missed data are generated and stored in the data cache. It 

is possible that replaced tag bits are indicated by the STI bits 

of adjacent sets (A). If this situation is not handled properly, 

the STI bits will point non-existing tag bits. To solve this 

problem, another extra component reads STI bits from lower 

and upper sets A. If there are matching STI bits, new STI bits 

are generated. All of these procedures are performed while 

pipelines are stalled due to cache misses. Therefore, there is 

no performance degradation virtually.  

 
Fig.2. Detailed architecture of Sim Tag. 

 
Fig.3. Counter-based technique to access adjacent sets 

C. Proposed architecture 

    In this subsection, we present our proposed architecture 

and explain additional components which are required to 

implement it. Fig.2 shows the micro-architecture-level 

schematic of our architecture called Sim Tag. Detailed 

operation of each component is described below. Shifter Our 

approach uses a shifter for accessing lower or upper cache 

lines. This is simple and intuitive but it may increase the 

critical path of data cache access. An alternative approach is 

to use a counter for hiding the decoding latency. Fig.3 shows 

the counter-based technique for set index control. Basic 

operation is same as in the shifter approach but it operates in 

parallel with cache access. 

STI Encoder: To generate STI bits, STI encoder compares 

the tag bits of cache missed data with the tag bits from lower 

and upper sets during pipelines are stalled due to cache 

misses. 

STI Replacement Handler: STI replacement handler checks 

the STI bits in the upper and lower sets on cache 

replacement. If the STI bits point to replaced tag bits in 

question, then simply invalidate the STI valid bits and 

generate new STI bits by finding other same tag bits. 

Error Corrector: When errors are detected, this component 

fetches uncorrupted tag bits from an adjacent cache set by 

using STI bits (if same tag bits exist) for error correction. 

Main Controller: On cache misses or tag bits errors, the 

pipelines are stalled and, at the same time, the main 

controller signals the additional shifter (or counter) to access 

adjacent sets. 

  There is little area overhead due to the additional 

components. A set index bits-wide shifter or counter is put 

into the cache. A 4-to-1 tag bits-wide multiplexer is used for 

tag matching in the Error Corrector. STI Encoder uses a 2-

bits multiplexer, a 1-bit AND gate and tag bits-wide 

comparators. 

Table II. Baseline System Configuration 

 
  Also, STI bits-wide comparators are required for STI 

Replacement Handler. A few bits are required for the way 

location. These bits depend on the number of sets inside the 

data cache. If there are M sets, the size of way location bits is 

log2 (M) 

IV. RESULTS 

 
Fig.4. Cache memory. 
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Fig.5. STI memory 

 
Fig.6. Encoder Design. 

 
Fig.7 Corrector. 

 

 
Fig.8. Error correction result 

V. CONCLUSION AND FUTURE SCOPE 

A. Conclusion 

   It is becoming important to provide error detection and 

correction capability for hardware circuits, especially for 

cache memories. Traditionally, parity or SEC–DED code has 

been widely used for caches against transient errors. Many 

techniques are proposed to reduce performance, energy, and 

area overheads of the conventional error protection 

mechanisms. However, most of the techniques consider only 

data bits without considering tag bits corruption. To improve 

tag bits reliability, this paper exploits tag bits similarity. Most 

of the tag bits in the data caches have their replica in adjacent 

cache sets due to spatial locality of programs. Hence, when 

an error is detected using the conventional parity check bits, 

the error can be corrected if the same tag bits were present in 

adjacent cache sets. Faulty tag bits are simply replaced with 

correct tag bits from the adjacent cache sets for error 

correction. We evaluate and compare our proposed 

architecture with the ICR scheme. With the trend of 

increasing soft error rate, it is becoming important to provide 

error detection and correction capability for hardware 

circuits, especially for cache memories. However, most of the 

previous techniques focus only on data bits without 

considering tag bits corruption. Most tag bits in the data 

caches have their replica in adjacent cache sets from our 

experiments. We exploit this tag bits similarity against 

transient errors. Faulty tag bits are simply replaced with 

correct tag bits from the adjacent cache lines for error 

correction. 

 

B. Future scope 

   Processor caches already play a critical role in the 

performance of today’s computer systems. At the same time, 

the data integrity of words coming out of the caches can have 

serious consequences on the ability of a program to execute 

correctly, or even to proceed. The integrity checks need to be 

performed in a time-sensitive manner to not slow down the 

execution when there are no errors as in the common case, 

and should not excessively increase the power budget of the 

caches which is already high. A  novel solution to this 

problem by allowing in-cache replication, wherein reliability 

can be enhanced without excessively slowing down cache 

accesses or requiring significant area cost increases. The 

mechanism is fairly power efficient in comparison to other 

alternatives as well. In particular, the solution replicates data 

that is in active use within the cache itself while evicting 

those that may not be needed in the near future. Our 

experiments show that a large fraction of the data read from 

the cache has replicas available with this optimization. 
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