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Abstract---Electro-encephalogram (EEG) is the 

electrical activity of brain cell groups in the cerebral 

cortex or the scalp surface. It plays an important role 

in studying the patient mental condition and Human 

Machine interfacing. Normal EEG signals can avail in 

the band of DC to 100Hz frequencies with a   few 

hundreds of micro volts of strength. Ocular artifacts 

and muscular noise with similar statistical properties 

are the major challenges which make the analysis more 

complex and may yields wrong interpretation. Here un 

this paper we implemented a tool called Two Scale 

PCA to enhance the EEG data in the noise 

environment. Two scale PCA combines the ability of 

PCA to de correlate the variables by extracting a linear 

relationship, with that of wavelet analysis to extract 

deterministic features and approximately de correlate 

auto correlated measurements. Due to its multi scale 

nature, Two scale PCA is appropriate for modeling of 

data containing contributions from events whose 

behavior changes over time and frequency so that it 

can be utilized efficiently to process the EEG data. It 

has been investigated that the experimental results 

show the superiority of the proposed method over 

wavelet based methods. 

  
Index Terms – EEG, EOG, PCA, Two scale PCA, Ocular 

artifacts and Wavelet transform. 

I. INTRODUCTION 
 

Biomedical signals such as ECG (Electro cardio Gram), 

EEG (Electro Ecephalo Graphy), EOG (Electro Occulo 

Gram) and PPG (Poly Plethismo Graphy) etc. are very 

helpful in diagnosis and as well as in artificial intelligence 

like Brain Computer Interference. All these signals are non 

stationary and low amplitude signals with DC to 100 Hz 

frequency range. It is complex to analyze the signals since 

they suffer from the interference of the other biomedical 

signals. Generally EEG signals are classifieds into 

different wave’s i.e. Delta, Theta, Alpha, Beta and Gamma 

with respect to their oscillations in the range of 0-80Hz 

[1].  In this paper a novel technique called two level 

Principal Component Analysis is used to process the EEG 

signal to compress the EEG signals. This method of two 

level PCA is shows the superiority over the single level 

PCA in compressing the EEG data. This compressed data 

is very much useful in feature extraction as well as to 

estimate the RMSE of EEG signals effectively[2].    

Principal component analysis (PCA) is among the most 

popular methods for extracting information from data, and 

has found application in a wide range of disciplines [3]. In 

chemical process operation, control, data rectification 

gross error detection, disturbance detection and isolation, 

statistical process monitoring. PCA transforms the data 

matrix in a statistically optimal manner by diagonalizing 

the covariance matrix by extracting the cross correlation or 

relationship between the variables in the data matrix. If the 

measured variables are linearly related and are 

contaminated by errors, the first few components capture 

the relationship between the variables, and the remaining 

components are comprised only of the error. Thus, 

eliminating the less important components reduces the 

contribution of errors in the measured data and represents 

it in a compact manner.  

 

Wavelet transform is a power full tool with its multi 

resolution property for analyzing localized variations of 

power within a non stationary time series. By decomposing 

a time series into time–frequency space, one is able to 

determine both the dominant modes of variability and how 

those modes vary in time. Two level PCA combines the 

ability of PCA to extract the crosscorrelation or 

relationship between the variables [4], with that of 

orthonormal wavelets to separate deterministic features 

from stochastic processes and approximately de correlate 

the autocorrelation among the measurements. The Two 

level PCA approach is analogous to multi block PCA 

(Wold et al., 1996), with the sub-blocks being defined by 

the wavelet coefficients at each scale, and the super-block 

by the selected scales together.  

 

Here in this paper compression of  EEG signals are done 

with the wavelet decomposition and Two level PCA by 

decomposing the signal into 6 levels. Comparative analysis 

of compressed EEG signal with single level PCA and Two 

level PCA is performed  

This paper is organized as follows, Introduction about 

the paper is given in section I and PCA and Wavelet 

transforms are explained in section II. Section III deals 

with the Two level PCA proposed method description. 

Results and discussions are given in section IV. Finally 

conclusions are made in section V  

II. PRINCIPAL COMPONENT ANALYSIS 
 

PCA is a technique which is generally used for reducing 

the dimensionality of multivariate datasets i.e. reducing the 

number of dimensions, without much loss of information. 

Considering a vector of n random variables x for which the 

covariance matrix is Σ, the principal components (PCs) 

can be defined by 
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z = Ax 

Where z is the vector of n PCs and A is the n by n 

orthogonal matrix with rows that are the eigenvectors of Σ. 

The Eigen values of Σ are proportional to the fraction of 

the total variance accounted for by the corresponding 

eigenvectors, so the PCs explaining most of the variance in 

the original variables can be identified. If, as is usually the 

case, some of the original variables are correlated, a small 

subset of the PCs describes a large proportion of the 

variance of the original data. 

 

The data matrix X is size of m x n, where n is the SVR 

computed periodicity and m is the number of periods 

considered. 

  1 1 1 1( ) [ ( ), ( ), ( ), ( )]X t x t x t x t x t   (2.1)  

       

is the time ordered collection of the feature at all beats into 

a single matrix to which PCA can be applied. The means 

of the xi are removed and the covariance matrix computed. 

Then covariance is defined as 

       1 TX X
n
                       (2.2) 

  is an m x m square symmetric matrix, Eigen values (aj) 

and corresponding eigenvectors (λj) will be calculated, In 

general, once eigenvectors are found from the covariance 

matrix, the next step is to order them by Eigen value, 

highest to lowest. This gives you the components in order 

of significance. The lesser Eigen values can be ignored; 

this will form the basis for compression. Principal 

components are ordered eigenvectors of the covariance 

matrix. The PCs were obtained using 
                 zj=aj x   j=1,2, …….n             

 The PCs are a linear transformation of the beats with 

transformation coefficients given by the eigenvectors αj. It 

is the eigenvectors which provide the surrogate respiratory 

signal in our analysis. 

 PCA can be solved using two methods, one is using 

covariance matrix and other is using singular value 

decomposition (SVD). 

Let X be an arbitrary n × m matrix and XTX be a rank 

r, square, symmetric m × m matrix. 1 2 3
ˆ ˆ ˆ ˆ{ , , ...... }rv v v v is 

the set of orthonormal m×1 eigenvectors with associated 

Eigen values for 1 2 3{ , , ,...... }r     the symmetric matrix 

TX X . 

     ˆ ˆ( )T

i i iX X v v                     (2.3) 

i i  are positive real and termed the singular values 

1 2 3
ˆ ˆ ˆ ˆ{ , , ...... }ru u u u is the set of n×1 vectors defined by 

 1ˆ ˆ
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 Eigenvectors are orthonormal.  (2.4) 

  î iX v       

The scalar version of singular value decomposition is 

  ˆ ˆ
i i iX v u            

X multiplied by an eigenvector of XTX is equal to a scalar 

times another vector. The set of eigenvectors 

1 2 3
ˆ ˆ ˆ ˆ{ , , ...... }rv v v v and the set of vectors are 

1 2 3
ˆ ˆ ˆ ˆ{ , , ...... }ru u u u both orthonormal sets and bases in r 

dimensional space. 
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             (2.5) 

1 2 3        are the rank-ordered set of singular 

values. Likewise we construct accompanying orthogonal 

matrices, 

   1 2 3
ˆ ˆ ˆ ˆ, , ...... rV v v v v                       (2.6) 

   1 2 3
ˆ ˆ ˆ ˆ, , ...... rU u u u u                 (2.7) 

Matrix version of SVD 

  XV U                                  (2.8) 

where each column of V and U perform the scalar version 

of the decomposition (Equation 3). Because V is 

orthogonal, we can multiply both sides by V−1 =VT to 

arrive at the final form of the decomposition. 

  
TXV U V    

III. WAVELET TRANSFORM 

 

A wavelet transform is the representation of a function 

by wavelets. The wavelets are scaled and translated copies 

(known as "daughter wavelets") of a finite-length or fast-

decaying oscillating waveform (known as the "mother 

wavelet"). Wavelet transforms have advantages over 

traditional Fourier transforms for representing functions 

that have discontinuities and sharp peaks, and for 

accurately deconstructing and reconstructing finite, non-

periodic and/or non-stationary signals. 

  Wavelet Transform can be represented as a linear 

transformation i.e. Y= WX, where X, Y are input and output 

of the transformation and W is orthogonal mother wavelet 

transformation matrix. Mother wavelet is defined as   
 

            ,

1
( )u s

t u
t

ss
 

 
  

 
                  (3.1) 

 

Wavelets are oscillating functions of time that must 

satisfy several conditions: A wavelet ψ has zero time 

average and unit energy corresponds to ortho normality 

property of wavelets. The amplitudes of a wavelet have 

large fluctuations within a designated time period and 

extremely small values outside of that time while being 

band-limited in terms of their frequency content. The CWT 

of a signal f (t) can be calculated using equation 
 

        
*1

( , ) ( )
t u

F u s f t dt
ss


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               (3.2) 
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By varying the values for s and u results in an infinite 

number of combinations, can be used to decompose the 

signal f (t). Here u and s are the translation and dilation 

respectively.  

A much more computationally efficient approach is the 

use of the discrete wavelet transform (DWT), which was 

developed by Mallat. Knowing only the values of the 

DWT coefficients, the waveform can be perfectly 

reconstructed. All of the extra coefficients of the CWT 

create a redundancy in calculation because they are highly 

correlated with the ones of the DWT. In implementation, 

the DWT performs even better because waveforms are 

already digitally sampled and have finite duration so the 

number of coefficients is limited DWT or CWT can be 

seen as a number on the time scale plane representing the 

correlation between the signal vector and  the wavelet 

function at a given time-scale point. The DWT produces as 

many wavelet coefficients as there are samples in the 

original signal by using a filter scheme shown in Fig. 2. 

The original signal is convolved with a low and high 

pass filter whose impulse response is determined by the 

wavelet chosen. The output of each filter produces the 

same number of samples as the original signal, so both 

outputs are down sampled by 2 resulting in the 

approximation and detail coefficients each with half the 

number of points as the original signal. 
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Figure 1. Wavelet Decomposition  
 

The EEG signal will be corrupted by additive white 

noise during the process of signal acquisition. The 

corrupted EEG signal (observed) is given as 

           
i i iy y s v        1.............i n .  (3.3) 

Where si is original EEG signal, iv  represents the 

independently and identically distributed random variable 

representing the amplitudes of the white Gaussian noise 

with  0,N   here the problem is to remove or attenuate 

the maximum no. of vi from the output signal ‘y’. 

Decomposition
W

Thresholding
D

Reconstruction
w-1

EOG
denoised

EOG

S
  

Figure 2. Wavelet denoising  

Noisy corrupted signal is decomposed into 4 levels with all 

the mother wavelets. The sub bands thus formed contains 

the frequencies in the bands of 0-10 Hz, 10-20 Hz, 20-40 

Hz and 40-80 Hz. These sub bands contains almost all the 

energy contained by the signal. Since the mother wavelet 

resembles the signal‘s’ and large coefficients are generated 

corresponding to the eye moments and low coefficients 

corresponding to the noise. There are different 

thresholding methods such as soft and hard thresholding.  

 Soft thresholding: 
 

              
sgn( ).( )

0

y x x t x th

x th

  

 
           (3.4) 

                        

 Hard thresholding: 
 

                 
0

y x x th

x th

 

 
                          (3.5) The 

threshold is defined as 22 ln( )th N                          

where 2  is the variance of the signal, N is the total 

number of samples and x & y are the wavelet coefficients 

before and after threshold respectively.  

 

Proposed Method 
  Two level PCA 
 

Two level PCA combines the ability of PCA to extract the 

cross correlation or relationship between the variables, 

with that of orthonormal wavelets to separate deterministic 

features from stochastic processes and approximately de 

correlate the autocorrelation among the measurements. To 

combine the benefits of PCA and wavelets, the 

measurements for each variable (column) are decomposed 

to its wavelet coefficients using the same orthonormal 

wavelet for each variable. This results in transformation of 

the data matrix, X into a matrix, WX, where W is an n ´ n 

orthonormal matrix representing the orthonormal wavelet 

transformation operator containing the filter coefficients, 
 

 

To combine the benefits of PCA and wavelets, the 

measurements for each variable (column) are decomposed 

to its wavelet coefficients using the same orthonormal 

wavelet for each variable. This results in transformation of 

the data matrix, X into a matrix, WX, where W is an nXn 

orthonormal matrix representing the orthonormal wavelet 

transformation operator containing the 
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- (4.1) 
 

Where, Gm is the 2log2nxm n matrix containing wavelet 

filter coefficients corresponding to scale m = 1, 2, ..., L, 

and HL is the matrix of scaling function filter coefficients 

at the coarsest scale. The matrix, WX is of the same size as 

the original data matrix, X, but due to the wavelet 

decomposition, the deterministic component in each 

variable in X is concentrated in a relatively small number 

of coefficients in WX, while the stochastic component in 

each variable is approximately de correlated in WX, and is 

spread over all components according to its power 

spectrum. 
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Artifacts are the major problems for analysis of the EEG 

signal and it makes the diagnosis more complex. Many 

methods are proposed to remove artifacts till now.  

In this paper we proposed a method called Two level 

PCA to compress the EEG data for better feature 

extraction as well as for estimation of RMSE of EEG 

signals. The compression results using single level PCA 

and Two level PCA were tabulated in Table.1for two 

different data sets, which are taken from the references’ [8] 

and [9].and the noisy and compressed EEG signals of two 

data sets are shown in the Figure 3. 

Data1 corresponds to noisy EEG signal and Data2 

corresponds to compressed EEG signal. 

 

 
 

 
 

Figure.3. Noisy and Compressed EEG signal  

of two data sets 

IV. COMPARATIVE ANALYSIS 

      Table 1 Performance Results 

S.No EEG DATA 

SET1 

EEG DATA SET 

2 

RMSE 

Using 

single 

level 

PCA 

22.190493345

8124% 

73.949742800

8459% 

RMSE 

Using 

Two 

level 

PCA 

99.9981% 99.9991%. 

   

From Table.1, it is clear that RMSE is approaching near to 

100% using a two level PCA than single level PCA for the 

two EEG data sets which is very much desirable feature in 

estimating the SNR of an EEG signal and also for feature 

extraction.      

V. CONCLUSIONS 

 The results reveal the superiority of the proposed 

method in the processing of EEG signals for better 

compression of EEG signal. This approach is very helpful 

for analyzing the non stationary signals as it is designed 

with the advantages of wavelets and principal component 

analysis which are mostly uses for the same in general. 
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