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Abstract - The chip design and its fabrication process use the VLSI realizations to reduce the complexities. 
This paper presents the VLSI realization process for the digit-recurrence binary division and, it uses the 
redundant representation of partial remainders and quotient digits. The fast carry-free computation for 
next partial remainder is allowed by the partial remainders and, the quotient digits help to reduce the 
required divisor multiples. A four-division architectural approach has proposed in this paper for 
exploring the design space and, this novel idea is based on binary CS or radix-16 signed digit (SD) 
representations of partial remainders. On the other end, the partial remainders use the full or partial pre-
computation of divisor multiples and to maintain the consistency in the design operations an operand 
must be constant in all cycles. This operand is additionally added to the system by a small multiplexer at 
the cost of two adders. A radix-16 [−9, 9] SDs stage is used to represent the quotient digits and, the 
proposed method synthesis results achieve the better than the previous works. When compared with the 
reference work the power and the energy-delay of the product are 26%–35% less. 

Index Terms VLSI realizations, Digit-recurrence binary division, Partial remainders, Quotient digits, radix-
16, Signed digit (SD) representation 

1. INTRODUCTION 

Execution of complex problems using the basic arithmetic operations on digital processors needs millions of 
transistors and an innovative technology named as "Very Large Scale integration (VLSI)" known for its ability 
to execute the complex problems by using basic mathematical operations such as addition, subtraction, 
multiplication, and division. As mentioned in various research papers the division operation is the least used 
operation among all four. The execution of the typical complex problems is carried out smoothly by the division 
operation. It takes more time for the execution process and simultaneously the complexity levels are high 
because of high time consumption. The VLSI circuitry and its design process need realization approach for 
executing the algorithms within the prescribed timeline. The dividers used in the VLSI realization are classified 
as follows, 

S.NO. Digital recurrence Functional 

1 It is popularly known as subtractive 
operation. 

It is popularly known as multiplicative 
operation. 

2 It is a kind of realization divider acts 
based on two classes of algorithms. 

It is a kind of realization divider acts 
based on two classes of algorithms. 

3 It is cost effective.  It is a little bit expensive than the digit-
recurrence. 

4 It is slow such that it requires a 
separate recurrence cycle for 
obtaining each digit of the quotient. 

The number of iterations is 
logarithmically proportional to the 
number of quotient digits. 

Table 1: Digital recurrence vs Functional 
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1.1 Quotient digit selection (QDS) 

 The division schemes are classified into two types namely storing and non-storing based on the application. 
The traditional binary algorithms are simple in their design such as non-storing division scheme, where the 
subsequent quotient bit is obtained just by examining the sign of partial remainder. A radix-2h (e.g., h = 4) 
division scheme has been proposed to reduce the number of recurrences at the cost of more complex QDS and, 
this approach helps to select the one out of 2h possible digit values. 

1.2 Signed Digit Number Systems 

The usage of the high radix SD number systems for representing the partial remainders and which helps to 
carry the specified carry-free addition based on recurrence. A reference of radix-16 SD representation of partial 
remainders in two of the proposed designs in this paper and in one previous work [13]. Almost all previous 
works fail to indicate a specified digit set to represent the radix-16 stage but the proposed design comes up 
with new indication parameter known as MRSD. In the previous works that use radix-16 MRSD number system 
(see [4], [5]), each radix-16 MRSD digit is represented by a 5-bit two’s complement encoding. In [5], the most 
significant bit is a negabit with arithmetic value −1(0) corresponding to logical status 0(1) [14]. The below 
figure 1 shows the two digit slice of the required carry-free addition, where white (black) dots represent 
negabits (posibits). One 4-bit adder is allocated to each radix-16 position and, it repeats for every radix-16 
position. Once the allocation process is accomplished, the sum digits are produced using the input bits. The 
allocated 4-bit adders produce the necessary negabit and three posibitsfo the sum digit for each radix-16 
position. The proposed four designs use the carry save (CS) adder is leading to less power dissipation due to 
the use of the aforementioned adder. The low power dissipation is due to usage of 5 bits compare of the 8 bits 
of the previous works. 

 

Figure 1: Two digit slices of the carry-free addition (CFA) for partial remainder computation (PRC) 

2. BACKGROUND 

2.1 VLSI 

The very-large-scale integration (VLSI) has brought revolutionary changes in both design and testing of 
micro-chip. According to Moore’s law the usage of transistors in chip design increases dual times for a margin 
of 18 months and standard research organizations defined very-large-scale integration (VLSI) as combination 
of millions transistors which results in micro chip of size (tens of nanometers). The millions of FETS integration 
through very-large-scale integration (VLSI) to perform operations of predominant research areas like medical 
content processing, digital signal processing and advance robotics for artificial intelligence creation.  

2.2 Power Efficient Division 

Although division and square root are not frequent operations, most processors implement them in hardware 
to not compromise the overall performance. Two classes of algorithms implement division or square root: 
digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work shows that division and 
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square root units based on the digitrecurrence algorithm offer the best tradeoff delay-areapower. Moreover, 
the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square 
root unit obtained by overlapping two radix-4 stages. The proposed unit is compared to similar solutions based 
on the digit-recurrence algorithm and it is compared to a unit based on the multiplicative Newton-Raphson 
algorithm. 

3. LITERATURE SURVEY 

The knowledge abundance in the digital arithmetic is not enough to create the new generation processors free 
of problems. The researchers, graduates, and designers will find the appropriate solutions. In the past, the 
design of the processors based on digital arithmetic is to be technology dependent. In 2003, Ercegovac and 
Lang, the two prolific experts of the digital arithmetic design a unified treatment of digital arithmetic, to 
encourage the researchers towards technology independent and, they conclude that this concept helps in 
reducing the problems in a diplomatic way [1].  

The division operation has a negative impact on the area and the performance of the processor. Then three 
noted researchers namely Sweeney, Robertson, and Tocher (1958) diagnose that the usage of the traditional 
floating points is a reason behind the low division performance. They proposed a new concept called SRT 
[Sweeney, Robertson, and Tocher] dividers and these dividers attain the higher performance and low 
complexity by retiring more quotient bits in each cycle. The previous research works reveal that the realistic 
stages are limited to radix-2 and radix-4 and, these low-radix stages are effectively combined to form higher 
radix dividers. The effect of the radix-2 and radix-4 SRT divider’s architecture on divider area and performance 
is analysed. This idea significantly improved the divider performance by aggressive circuit techniques [2]. 

Previous Works 

Reference 
Author(s) 

Focus Objective Main Findings and 
Conclusions 

Morgan 
Kaufmann, 
2003 

 

 

 

Digital 
Arithmetic 

The digital arithmetic has been an 
essential research area in the 
processor's design. The prominent 
application-oriented research fields 
such as digital image processing, 
digital signal processing, graphical 
designing systems, and 
communications use the digital 
arithmetic for designing the 
processors for various applications 
based on the complexity. 

A definitive reference 
and a consistent 
teaching tool for 
developing a deep 
understanding of the 
"arithmetic style" of 
algorithms and 
designs. 

Tony M. Carter  
& 
James E. 
Robertson1990 

Radix-16 
signed-digit 
division 

The algorithm requires a two-digit 
estimate of the (initial) partial 
remainder and a three-digit estimate 
of the divisor to correctly select each 
successive quotient digit. The 
normalization of redundant signed-
digit numbers requires 
accommodation of some fuzziness at 
one end of the range of numeric 
values that are considered 
normalized. A set of general 
equations for determining the ranges 
of normalized signed-digit numbers 
is derived. 

The staged division 
algorithm used can be 
extended to other 
radices as long as the 
signed-digital number 
representation used 
has certain 
properties. 
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Previous Works 

Reference 
Author(s) 

Focus Objective Main Findings and 
Conclusions 

Lee et al. 
(2005) 

A Modified 
Booth‟s 
algorithm 
(MBA) 

The proposed multiplier inherits the 
advantage of the MBA and then 
reduces both space and time 
complexities. A multiplexer-based 
structure is proposed for realization 
of the proposed algorithm. The 
authors have shown that their 
multiplier saves about 9% space 
complexity as compared to former 
multipliers, if the generating 
polynomial is trinomial or all one 
polynomial 

The proposed 
multiplier inherits the 
advantage of the MBA 
and then reduces 
both space and time 
complexities. 

 
4. PROPOSED METHODOLOGY  

4.1 Intended Architectures 

The schematic diagram of the general digit recurrence division architecture is shown in Fig. 2. The relevancies 
of the proposed designs are provided as appropriate. All proposed designs are set to be double precision 
operands (i.e., binary64 floating point) and, it has set as per the main reference [6].  

The above figure 2 states the Two different representations namely static and semidynamic DMGs and, it helps 
to provide the design space based on the following four options. 

(A)  Radix-16 Quotient Digit Set 

 The radix-n stages are more prevalent in many of the previous works and as well as in the proposed 
method. 

 It helps to reduce the number of cycles.  
 Radix-16 Quotient Digit Set happened as the direct generation of quotient bits vs the reduced number of 

cycles. 

(B) SD Representation of Quotient Digits 

 Once the direct generation of the quotient bits happened as stated in the previous step and here a [−9, 
9] radix-16 SD set is used to represent the intermediate representation of quotient digits. 

 As discussed in the introduction chapter, many of the previous works tend to use the 8 bits which in 
turn results in the high power consumption and whereas in the proposed methodology 5-bit 
representation of MSRD is used as shown in figure 1. 

 The initial redundant choice is [−8, 8] digit set which needs a minimum number of divisor multiples.  
 The maximum choice is [−15 15] digit set which needs a maximum number of divisor multiples. 
 Another interesting set of bits that taken into consideration is fractional digits, which are sufficient for 

truncated comparison of partial remainders with divisor multiples. This is later shown to be 2 in 
thecase of digit sets [−α, α] (α ∈ [9, 15]), and 3 for α = 8. 
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Figure 2: General division architecture. 

(C) Semidynamic DMG 

 The initialization cycle is used by the partial remainder computation (PRC) [−9, 9] multiples of the 
divisor, where the ten-way multiplexer is required for selecting q j+1D within the initialization cycle. 

 Although the proposed use the conventional method for implementation and it also uses a four-way 
multiplexer generate only {2, 3, 6}D, and dynamically obtain ±{4, 5, 7, 8, 9}D, as ±{6D − 2D, 6D ∓ D, 6D + 
2D, 6D + 3D}, respectively, within each recurrence. 

(D) Use of Redundant Number Systems for PRC 

 A significant amount of work has been carried out in the past and most of the conventional works opted 
for CS representation of partial remainders. 

 To show the advantage of the aforementioned semidynamic DMG, the CS use as one option and it 
doubles the representation storage to yield the desirable lower power dissipation. 

 Apart from the carry save, the proposed methodology uses the higher radix redundant number systems 
as another choice for the partial remainder representation. For example, radix-16 maximally redundant 
number system (MRSD) [5] is a viable choice, with only 25% extra representation storage. 
 
The above mentioned architectural description makes it sure that the proposed methodology will have 
the following attributes to its credit. 

 CS-10, CS-4, 
 MRSD-10, and MRSD-4, where CS and MRSD regard the partial remainder representation, and 4 

and 10 refer to the sizes of utilized multiplexers, 

4.2 Quotient Digit Selection 

The quotient digit set has high-level prominence as stated in the previous works and the proposed choice of 
quotient digit set is [−9, 9]. As discussed in the previous sections, the next quotient digit qj+1 should be selected 
from [−α, α] based on the convergence condition and in the proposed approach it is taken as (i.e., α = 9), ρ = 
(a/(16 − 1)) = (9/15) = 0.6. 

The algorithmic approach of the quotient digit is as follows 

a) The comparison of the partial remainder with a set of divisor multiples are done based on the 
convergence condition as displayed in figure 2 and it is stated as (e.g., −1.6D and −0.4D, for q j+1 = −1) 
and finally, it helps to decide the value of the next quotient digit.  

Initialize 

Clean-up 

QDS 

PRC 
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b) However, for some W[ j ] values (e.g., 16W[ j] = −.5 D), there may be more than one valid q j+1. For 
example, see the overlapped zone between the dashed lines for q j+1 = −1 and q j+1 = 0. 

c) A pre-computation of a set of comparison constants helps to ease the process of QDS at one end and, at 
the other end; it helps to reduce the number of comparisons which eventually helps to reduce the 
complexity. Therefore, an ease to compute choice is Mk = (k + 0.5)D, which leads to the case that the 
exact interval of 16W[ j ] (for a particular value of q j+1 = −1) falls between M−2 = −1.5D and M−1 = 
−.5D (see the corresponding bold arrows in Fig. 3) 

 (     )      (     )    ( ) 
d) The comparison of an SD or CS number cannot be performed by digit by digit comparator as it won't be 

trustworthy anymore. The digit comparator but at the cost of with respect to losing the carry-free 
advantage of SD or CS number systems 

e) The proposed methodology opts for significant fractional bits over the conventional comparator and, he 
digit by digit comparator and the fractional bits simply cannot lose the advantage of having the carry-
free advantage of SD or CS number systems. 

For example, consider the first two digits of a hexadecimal MRSD operand as X = x1x0, and nonredundant 
number Y = y1 y0, and assume x1 = 8, x0 = −2, y1 = 7, and y0 = 15. A normal comparator rules X > Y, since x1 > 
y1. However, it turns out that X can be equivalently represented as x1 = 7 and x0 = 14. Therefore, the same 
trivial comparison scheme leads to X <Y , since x0 = 14 < 15 = y0. 

4.2.1 Proof of t = 2 

Let's assume that "t" fractional digits is for Mkand W, and truncated operands be denoted as Mk − 16−t < (Mk )t 
≤ Mk and 16W[ j] − 16−t < (16W[ j ])t < 16W[ j] + 16−t , respectively. In the latter case, the discarded bits are 
assumed as the positive as well as negative due to SD nature of the partial remainders. A similar procedure can 
be adapted to the decimal values by adapting it to the radix-16 division. Replacing the operands of (2) with the 
corresponding truncated operands, we get at (5) and (6), respectively 

(  )  (      )           ( ) 

        (  )                 ( ) 

Applying these results on the convergence condition in (3) (i.e., −ρD<W[ j + 1] and W[ j + 1] <ρD) leads to (7) 
and (8), respectively. After doing the much needed changes in the above two equations, they can be 
represented as follows, 

( )          (  )                                            
        

( )                      (  )             (   )         (   ) 
                                      ( ) 

        (   )          (   ) ( ) 
Recalling that ρ = 0.6 and 1/16 ≤ D < 1, and combining the inequalities (7) and (8), we get at the following: 

                      (   )         (    )            
  

 
 

However, given the existence of a non-fractional integer digit of the operands, three-digit comparisons are 
required, for which the cost of converting into two’s complement can be afforded. 

4.3 Partial Remainder Computation 

The Partial Remainder Computation is the one aspect which is mainly involved in all the four architectural 
designs and, it is described in this section.  
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4.3.1 CS-10 and MRSD-10 Designs 

Here a straightforward PRC is taken into account and which use a unified carry-free adder/subtractor (CFA/S) 
and a 10:1 multiplexer, for the quotient digit set [−9, 9]. a digit is meant to denote either an MRSD or four CS 
digits, and QDS box represents Fig. 4, whose output control signals are shown as “MUX Selector” and 
“ADD/SUB.”  

The ten-way multiplexing is expected to be highly influential in prolonging the latency. Recalling the PRC, as W[ 
j + 1] = 16W[ j] − q j+1D, note that W[ j ] is maintained either in radix-2 CS or radix-16 MRSD, and the multiples 
of D are represented in binary. Therefore, the PRC is simply done via a CS  

addition (for the CS-10 case), and by a 4-bit  

adder per radix-16 digit (for the MRSD-10 case), as was described in Section II-B. The nonredundant binary 
dividend X must be converted into redundant representation to provide for W[0]. 

 

Figure 3: PRC for designs CS-4 and MRSD-4 

4.3.2 CS-4 and MRSD-4 Designs 

In order to utilize a smaller selector of divisor multiples, we propose the architecture of Fig. 6, where again QDS 
box represents Fig. 4, whose output control signals are shown as “MUX Selector” and “ADD/SUB.” The 
operation of this part overlaps with the QDS. The rest of PRC is carried out after QDS, where βD is selected via 
the four-input multiplexer, followed by computing W[ j + 1] = W[ j + 1]’ + βD, via another CFA. 

4.4 Initialization and Clean-Up 

The initialization cycle is responsible for the following tasks.  
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1) Converting X to W[0]: This is a cost- and delay free operation. In case of CS designs, zero-valued bits are 
inserted as the second bits of CS representation. However, in MRSD cases, a zero-valued negabit (with logical 
status 1) is added per each four bits of X to lead to the radix-16 MRSD representation of W[0].  

2) Parallel Computation of the Divisor Multiples: a) CS-10 and MRSD-10 Designs: There are four shifters (for 
2D,4D,6D, and 8D) and four parallel adders (for 3D = 2D + D,5 D = 4D + D,7 D =8D−D, and 9D =8D+D).  

3) Parallel Precomputation of the Truncated Comparison Constants: This is done, as in the following 
expressions for M0 to M8.  

CS-4 and MRSD-4 Designs:  

M1 = D/2, M2 =3D/2, M3 =2D+M1  

M4 = 3D+M1, M5 =4D+M1  

M6 = 4D+M2, M7 =6D+M1  

M8 = 6D+M2, M9 =8D+M1.  

The terminal cycle is responsible for the conversion of the obtained quotient and remainder to nonredundant 
binary format. Such conversionentails word wide binary addition that is undertaken via a parallel prefix binary 
adder in both CS and MRSD cases, which also takes care of the required rounding addition. 

5 RESULTS AND ANALYSIS 

5.1 Proposed Results 

1. The improvement in power and EDP measures also follow the following.  

1. The power dissipation in comparison to the average of the power measures of the four proposed designs is 
about 62% more.  

2. The area consumption is, on the average, 35% less than that of the proposed designs. However, that of the 
former is more when excluding the area measure of the initialization stages.  

3. The least achieved delay is, on the average, 26% less than that the proposed designs  

4. The energy figures of the proposed designs are, on the average, 48.5% less  

5. The EDP of the proposed designs is, on the average, about 30% less  

6. The EDP of the MRSD-4 design is, on the average, 15.5% less than that of our other three designs. The 
energy-per division of the MRSD designs are, on the average, 10% less than those of the CS designs.  

7. The E × Area of all the proposed designs and the EDP × Area of MRSD-4 are less.  
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Figure 4: RTL Schematic 

 

Figure 5: Design and Summary 

Figure 6: Timing Report 
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6. CONCLUSION 

We studied the impact of the following two design options on the figures of merit of binary digit-recurrence 
division hardware. 1) Representation of partial remainders via high radix redundant number systems. Our 
representation choice is maximally redundant radix-16 SD number system with digit set [−15, 15]. 2) Dynamic 
generation of some divisor multiples in [−9, 9] ×D around the pre-computed multiple 6D. We also studied the 
relevant previous designs, which have opted for binary CS representation of partial remainders and 
representation of radix-16 quotient digits via minimally redundant radix-4 [−2,2] digits, which leads to partial 
dynamic generation of divisor multiples. For better evaluation of the above options, we explored a design space 
containing four architectures based on pre-computation of all or part of divisor multiples and CS or MRSD 
representation of partial remainders. The HDL simulations and synthesis showed low-power and low-energy 
advantages of all the four designs as compared with the best previous work. However, while our designs do not 
operate as fast as the reference one, the EDP of the proposed designs is 26%–35% less than that of the 
reference work. 
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