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Abstract This paper proposes a hybrid artificial bee

colony algorithm for the cooperative maximum covering

location problem (CMCLP) on a network. In location

covering problems, it is assumed that each facility gener-

ates a signal whose strength decreases with the increase in

distance and a demand point is considered to be covered if

the total signal strength received by it from various facil-

ities exceeds a certain threshold. The objective of the

CMCLP is to locate the facilities in such a way that

maximizes the total demands covered. The proposed hybrid

approach obtained better quality solutions in comparison to

the methods available in the literature.

Keywords Artificial bee colony algorithm � Cooperative
maximum covering location problem � Heuristic �
Networks � Swarm intelligence.

1 Introduction

The cooperative maximum covering location problem

(CMCLP) was introduced by [3]. In this problem, it is

assumed that each facility generates a signal whose

strength decreases over distance, according to some signal

strength function. A demand point receives the signals

from all the facilities and it is considered as covered, if the

strength of the combined signal received by it from all the

facilities exceeds a certain threshold. Hence, the CMCLP

follows a cooperative coverage model, where all the

facilities cooperate in providing the coverage. This cover-

age model differs from the one used in classical maximum

covering location problem (MCLP) introduced by [5],

where the signal received from the single closest facility

determines whether a demand point is covered or not, thus

it is referred as individual coverage model.

The individual coverage model may not always be

appropriate as it may result in poor quality of solutions by

underestimating the coverage provided by the group of

facilities together. This will obviously result in deployment

of more number of resources than actually needed. In fact,

it was shown in [3], that the solution resulting from con-

sidering individual coverage only can be around twice as

worse as the solution resulting from considering coopera-

tive coverage.

Signal can be physical or non-physical. Physical signal

such as radio signal propagates along the straight line path

between two points, whereas a non-physical signal may

not. An example of a non-physical signal is the service

time of an ambulance to reach a particular point from its

rest location. Rather than traveling on a straight line path,

an ambulance has to make use of the road network to reach

the desired point from its rest position.

The potential application for cooperative cover prob-

lems include situations, where the facilities are generally

unreliable and the customer needs to be covered by mul-

tiple facilities in order to ensure a satisfactory coverage.

Another application of cooperative cover includes models

assuming partial coverage by the facilities, i.e., a single

facility is not sufficient to provide the required coverage to

any customer.

Application of both signal types, physical and non-

physical, of the cooperative coverage models have been
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discussed by [3]. For example, application such as, instal-

lation of light towers to provide adequate lighting to an

area, location of warning sirens and location of cell phone

towers belong to physical signal class. The main aspect of

the physical signal class of cooperative cover models is—

strength of the signal received by a particular demand point

is the combined signal strength from all the facilities. In

case of installation of light towers, a demand point is

covered if the luminous intensity at that point exceeds a

certain threshold value. Similarly, in case of installation of

warning sirens, a demand point is covered if the intensity

of the sound at that point exceeds a certain threshold. In

case of location of cell towers, the demand point (mobile

phone user) is considered as covered if the probability of

establishing a successful connection exceeds a certain

threshold value. On the other hand, applications such as

emergency response system design, belong to non-physical

signal class. In such systems, having a single facility within

the coverage of demand point is not sufficient, to ensure the

coverage all the time, because it may become busy at some

point. To deal with these types of issues, the demand point

must be within the coverage radius of several facilities.

Averbakh et al. [1] provided a practical example for

cooperative coverage model on a network in the context of

‘‘Pizza Delivery System’’. Consider a set of pizza centres

promoting their service as ‘‘Delivery in 30 Minutes Only’’.

Suppose the pizza preparation time is distributed as a

normal variable with the mean of 20 min and standard

deviation of 2 min. Also suppose that the trading area is

defined as the set of customers who can be served at least

75 % of time within 30 min. For an individual coverage

model, the customers should be within the coverage of

30� 20� 0:7� 2 = 8.6 min (0.7 = 75 % of the standard

normal distribution) to get the delivery within 30 min. For

instance, a customer located at a distance of 15 min from

the pizza centre has only 50 % chances to get the pizza

delivery within 30 min time. Suppose this customer has

another pizza center which is at a distance of 9 min away.

The customer has only 69 % chance to get a pizza deliv-

ered within 30 min time from this alternate pizza center.

So none of the centers cover this customers who is located

outside the coverage areas of both centers. Assuming the

existence of a dispatcher which has the ability to redirect

the order to the center which is least busy at the moment

and on-site preparation times at both the centers are

independent of each other. Here in this particular situation,

it is possible to deliver the order to the customer within 30

min time with the probability of 1� ð1� 0:5Þð1� 0:69Þ =
0.84, which meets the coverage standard. Hence, this

example, clearly shows that the customer has better

chances of being covered by assuming cooperative cov-

erage rather than individual coverage. From this example,

we can also conclude that if we need to determine the

locations of some fixed number of pizza centres so as to

cover as large an area as possible with required level of

coverage, the area covered with cooperative coverage

model will always be greater than or equal to the area

covered by the individual coverage model. Likewise,

location of emergency services such as fire stations and

ambulances can be determined using cooperative coverage

model on a network in a more efficient manner than using

individual coverage model.

In the literature, covering problems are analyzed in

plane by [6, 20] and [7] as well as for network topology by

[16] and [2] assuming the discrete demand. Covering

problems are also analyzed under the assumption of con-

tinuously distributed demand by [19] and [9]. The planar

version of the CMCLP is solved using both optimal and

heuristic algorithms by [3]. Berman et al. [3] proposed an

algorithm which is based on the big triangle and small

triangle approach [8] for the 2-facility problem with the

assumption that one of the facilities location is known. For

more than 2-facilities problem, they proposed a heuristic

method. The discrete version of the CMCLP was consid-

ered by [4], where the location space is restricted to the

nodes of the network. The discrete version allowing the

facilities to be located at both the nodes and along the

edges is solved by [1], where they proposed greedy

methods and local search based heuristics to solve the p-

facility problem.

In this paper, we have proposed an artificial bee colony

algorithm based approach for solving the CMCLP for

network version of p-facility problem where facilities can

be located both at the nodes and along the edges. The

artificial bee colony (ABC) algorithm is a recently devel-

oped population based meta-heuristic, proposed by [10].

ABC algorithm is inspired by foraging behaviour of real

honey bee swarms. ABC algorithm has been successfully

applied to solve numerous optimization problems in vari-

ous domains. Motivated by the success of ABC algorithm

in solving different optimization problems in various

domains, we have designed an ABC algorithm to solve the

CMCLP. We have compared the results obtained through

our approach with two interchange heuristic methods pro-

posed in [1]. In comparison to these methods, our approach

obtained better quality results on most of the instances.

The remaining part of this paper is structured as follows:

Sect. 2 defines the CMCLP formally. In Sect. 3, we provide

a brief introduction to ABC algorithm. Section 4 presents

our ABC approach for the CMCLP. Section 5 reports the

computational results and compares our approach with

other approaches available in the literature. Finally, Sect. 6

presents some concluding remarks and directions for future

research.
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2 Formal problem definition

The CMCLP can be formally defined as follows: Let G ¼
V;Eð Þ be an undirected network, with V ¼ 1; . . .; nð Þ be the
set of demand points and E ¼ e1; . . .; enð Þ be the set of

edges connecting various demand points. Each demand

point i has a non-negative real weight wi indicating the

total demand at this point. Each edge ek has a positive

length lk. p facilities need to be located on the edges (in-

cluding end demand points) to cover these demand points.

A demand point is said to be covered, if the combined

strength of the signal received by it from all the facilities is

not less than a threshold T. The CMCLP seeks a location

vector Xp for these p facilities so as to maximize the

sumtotal of the weights of the covered demand points.

f Xp; T
� �

¼
X

i:Ui Xpð Þ� T
wi

The signal strength function is defined as the sum of all

signals received by a demand point i 2 V from p facilities.

Ui Xp

� �
¼

Xp

k¼1
/ di xkð Þð Þ

Location x of a facility along an edge ek joining demand

point j1 with j2 (ek ¼ ðj1; j2Þ) is represented by an ordered

pair ðlk; tÞ where t is the relative distance of x from j1 with

respect to lk, i.e., 0� t� 1. The distance from a node i 2 V

to this facility is defined as follows

d i; xð Þ ¼ min d i; j1ð Þ þ t � lk; d i; j2ð Þ þ ð1� tÞ � lkf g

where dði; j1Þ and dði; j2Þ are the lengths of the shortest

paths connecting node i to node j1 and node j2 respectively.

The notations used above are summarized in the Table 1.

To illustrate CMCLP, consider the network depicted in

Fig. 1. Let p = 3, T = 0.5, and the signal strength function

be defined as /ðdÞ ¼ max 0; 1� d
10

� �
.

One possible solution that we can obtain by locating the

facilities along the edges as well as on nodes is

X ¼ ð4Þ; ð½7; 8�; 0:6Þ; ð½1; 2�; 0:4Þf g, where the first point p1
is located on node 4, the second point p2 is located on edge

[7, 8] at a relative distance of t ¼ 0:6 from node 7, and the

last point p3 is located on edge [1, 2] at a relative distance

of t ¼ 0:4 from node 1. This solution produces an objective

value of 29 covering all nodes. In this example, we have

selected the points randomly. There might be a possibility

of some other solutions existing for this network.

3 Overview of ABC algorithm

The artificial bee colony (ABC) algorithm proposed by

Karaboga in 2005 is a population based meta-heuristic

algorithm, which is inspired from the intelligent behavior

of the foraging honey bees [10]. In a bee colony, there are

three types of bees: employed, onlooker and scout.

Employed bees are those bees which are currently

exploiting a food source. The responsibility of the

employee bees is to bring loads of nectar to the hive and

share the information about their food sources with other

bees waiting in the hive. The waiting bees are the

onlookers. The onlookers then choose a food source with a

probability directly proportional to its quality and becomes

employed. Scout bees search for new food sources in the

vicinity of the hive and they become employed as soon as

they find a new food source. An employed bee whose food

source becomes empty will abandons that food source and

becomes either a scout or an onlooker.

Motivated by the foraging bees’ behavior described

above, Karaboga developed ABC algorithm. This

Table 1 Summary of notations
n The number of nodes or demand points, i.e., n = |V|

wi The weight associated with demand point i 2 V

lk The length associated with each edge ek 2 E

X The location space

p The number of facilities to locate

di xj
� �

The distance between demand point i 2 N and facility j

/ dð Þ The strength of the signal at distance d from the facility, / dð Þ ¼ max 0; 1� d=Uf g
Ui xð Þ The overall signal at point i 2 N

U The fraction of diameter of the network

T The threshold for coverage

Fig. 1 Illustrating CMCLP
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algorithm was originally developed for solving optimiza-

tion problems in continuous domain only, later, it has been

extended to solve discrete optimization problems also [10–

13, 15, 17, 18]. For a recent survey on ABC algorithm and

its applications, interested readers may refer to [14].

In ABC algorithm also there are three groups of bees,

viz. employed, onlooker and scout with functions similar to

their real counterparts. In ABC algorithm, the food sources

represent the possible solutions to the problem under

consideration and the quality of a food source represents

the fitness of the represented solution. The employed bees

are associated with food sources. Always, there is a one-to-

one association between food sources and employed bees,

which means, the number of food sources is equal to the

number of employee bees. Usually, but not always, the

number of onlooker bees is also taken to be equal to

number of employed bees. The ABC algorithm is a itera-

tive search process, which starts with initializing the

employee bees, with randomly generated food sources

(solutions), then repeats through the cycles of the employed

bee and onlooker bee phases.

In the employed bee phase, each employed bee generates

a food source in the proximity of its associated food source

and evaluates its quality. The method of determining a new

food source in the proximity of a particular food source

depends on the problem under consideration. If the quality of

the new food source is better than the current one then the

employed bee moves to the new food source leaving the old

one. Otherwise, it remains at the old food source. When all

the employed bees finish this process, then employed bee

phase ends and onlooker bee phase begins.

Onlooker bee phase starts with sharing of information by

employed bees about their food sources with the onlookers.

Onlookers select the food sources depending on their quality,

i.e., higher the value of the fitness of the solution represented

by a food source, higher will be the chances of its selection.

As a result of such a selection, good quality food sources will

get more chance for selection by the onlookers. After all

onlookers select the food sources, they determine the food

sources in the proximity of their selected food sources in a

manner similar to the employed bees and evaluate their fit-

ness. Among all the neighboring food sources generated by

the onlookers who chose food source i and the food source

i itself, the best quality food source is determined. This best

food sourcewill be updated as food source i for next iteration.

The onlooker bee phase ends once all food sources are

updated, and then the next iteration of the ABC algorithm

begins. The algorithm is repeated until the termination

condition is satisfied. If a solution associated with any

employed bee does not improve over some specific number

of iterations, then that food source is considered as exhausted

and it is discarded by its associated employee bee and that

employee bee becomes scout. Such scouts are converted

back into employed bees by associating them with newly

generated solutions. Usually, these new solutions are gen-

erated randomly in the same manner as initial employed bee

solutions.

In the employed bee phase, every solution is given a fair

chance to improve itself, whereas in the onlooker bee

phase, because of the selection policy used by the

onlookers as mentioned above good quality solutions get

more chance to improve themselves in comparison to poor

quality solutions. This inclination towards selecting good

quality solutions may produce better quality solutions, as

there will be higher chances of finding even better solutions

within the proximity of good solutions. However, if a

solution is locally optimal, then no better solution exists in

its proximity and any attempt to improve it will always fail.

The concept of scout bees helps in this situation. If a

solution is not improved over certain number of iterations

then it is assumed to be locally optimal and is discarded by

making its associated employed bee a scout. A new solu-

tion is generated for this scout bee to make it employed

again. This new solution is created either in the same

manner as an initial solution or by perturbing an existing

solution. Hence by utilizing the concept of scout bees,

solutions which are not improved since long are replaced

with new solutions. In a robust search process, the balance

between the exploration and exploitation must be main-

tained. In the ABC algorithm, employed bees and onlooker

bees carry out the exploitation, and scouts perform the

exploration. A proper balance need to be maintained

between exploration and exploitation by appropriately

setting the number of iterations without improvement in the

ABC algorithm after which an employed bee abandons a

solution and becomes scout.

4 ABC approach for the CMCLP

This section presents salient features of our ABC approach

for the CMCLP.

4.1 Fitness of a solution

We follow the same two level approach as used in [1] for

determining the fitness of a solution. We say that a solution

X0 is better than another solution X, if solution X0 either has
a larger objective function value,

f X0; Tð Þ[ f X; Tð Þ

or, if solution X and solution X0 have same objective

function value, but solution X0 provides larger total

coverage.
X

i2V Ui X
0ð Þ[

X
i2V Ui Xð Þ

Int. J. Mach. Learn. & Cyber.

123



4.2 Method for selecting a food source

for an onlooker

We have used the binary tournament selection method for

selecting a food source for an onlooker. In the binary

tournament selection method, two food sources are selected

uniformly at random, and their fitness is compared. The

better of the two food sources is selected with the proba-

bility ponl. Otherwise, the worse of the two food sources is

selected, i.e., the probability of selection of the worst

solution is 1� ponl. The Pseudo code for the binary tour-

nament selection method is as follows:

4.3 Initial solution

To generate an initial solution, we have followed a

method which is a mix of greediness and randomness. In

this method one facility at a time will be added to the

current partial solution starting with an empty solution. In

each iteration, to add a facility to the current partial

solution S, we compute the set Y of all points x 2 G

(including nodes 2 V) that provide exact or greater

coverage for yet uncovered nodes V 0. The x points are

considered on edges at equal intervals separated by a

relative distance of 0.1. The condition of exact or greater

coverage is based on the signal strength function defined.

With the choice of the signal strength function used and/

or the way we are considering the points on the edges, it

may happen during the iterations of the greedy method

that there may not exist even one point which can pro-

vide exact coverage (specially in case of large instances).

So we have chosen points providing either exact or

greater coverage. Next, we evaluate the points based on

how much coverage they are providing, then choose R

best points from the set Y, and select one point randomly

from R.

Y ¼ V [ x 2 Gj/i xð Þ� Ti Xð Þf g for some i 2 V 0

After locating a facility, the threshold is updated as

follows:

Ti Sð Þ ¼ max 0; T � Ui ðSð Þf g for i 2 V

This process is repeated till the desired number of facilities

are located.

4.4 Neighboring solution generation

To generate a solution X0 in the neighborhood of solution

X, we delete F facilities from X randomly. Then, F facili-

ties are added one-by-one from the set Fnew containing all

points x 2 G (including nodes 2 V) which provide exact

coverage for at least one yet un covered node in V 0. A
formal definition of Fnew is given below.

Fnew ¼ Z � X

where

Z ¼ V [ x 2 Gj/i xð Þ ¼ Ti Xð Þf g for some i 2 V 0

To add each facility, we first choose R best points from

Fnew and then choose one randomly from R. Once a facility

has been added, Fnew is updated. The manner in which

facilities are added is similar to Greedy 1 heuristic of [1]

except for the fact that Greedy 1 always choose the best

point, whereas we choose randomly a point from among

R best points.

4.5 Other features

We have used different number of employee bees and

onlooker bees. If an employed bee solution does not

improve for a specified number of iterations limit then the

associated employed bee becomes scout. There is no

restriction on the number of scout bees in an iteration. The

number of scouts in a particular iteration depends on the

number of employed bee solutions which have not

improved for exactly limit number of iterations. The scout

bee is again made employed by assigning it to a new

solution which is generated in the same manner as one of

our initial solution.

4.6 Local search

We have used a local search on the best solution obtained

through ABC algorithm in a bid to improve it further. In

this local search, each facility x in a solution S is consid-

ered one-by-one and the best point bx to relocate it is

determined. For this, we compute the set Fnew for solution

ðSnfxg and find the best point bx to locate the next facility.

If the solution ðSnfxgÞ [ fbxg is better than S then we

replace S with this new solution. This process is repeated

till each facility is considered once.

Algorithm 2 provides the pseudo-code for our hybrid

ABC approach, where ne and no are respectively the number

of employed bees and number of onlooker bees. Gener-

ate_Neighbor(ei) and Binary_Tournament(e1; e2; . . .; en) are

two functions. The former function generates a solution in

the neighborhood of solution ei as per Sect. 4.4, whereas the
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latter selects a solution for an onlooker bee from all

employed bee solutions e1; e2; . . .; en as per Sect. 4.2.

5 Computational results

To test our ABC approach, we have used the same

instances as used in [1]. These instances are generated

randomly in the following manner: For each combination

of (n, dgr) where n is the number of nodes and dgr is the

average degree of nodes, five instances were generated by

[1]. In these instances n 2 {40, 60, 80, 100, 120, 140, 160,

180, 200} and dgr 2 {5, 6, 7}. Like [1], we have done all

computational experiments by taking p = 3, 4, 5 for n = 40,

60, 80; p = 4 , 5, 6 for n = 100, 120, 140; and p = 5, 6, 7 for

n = 160, 180, 200. Three different values have been used

for signal threshold values T, i.e., T 2 {0.6, 0.8, 1.0} and

linear signal strength function / dð Þ ¼ max 0; 1� d=Uf g
has been used like in [1]. The parameter U was determined

in [1] as a fraction of the diameter of the network and U% 2
{0.15, 0.25, 0.35} for T 2 {0.6, 0.8} and U% 2 {0.2, 0.3,

0.4} for T ¼ 1:0 were used. Overall, there are 3625

instances.

Our ABC approach has been implemented in C and

executed on a Linux based Intel Core i5 2400 system with

4 GB memory running at 3.10 GHz. In all our computa-

tional experiments, the number of employed bees (ne) is

taken to be 10, the number of onlooker bees (no) is taken to

be 20, limit is set to 50, ponl is set to 0.9 for U% ¼
0:15; 0:25; 0:35 and T ¼ 0:6, it is set to 0.8 for remaining

combinations of U and T, and R ¼ 20. We have taken F ¼

2 for n ¼ 40; 60; 80 and p ¼ 3; 4; 5, F ¼ 3 for n ¼
100; 120; 140 and p ¼ 4; 5; 6, F ¼ 4 for n ¼ 160; 180; 200

and p ¼ 5; 6; 7. Our ABC approach terminates after 500

iterations. All these parameter values were chosen empir-

ically after a large number of trials.

We have compared the results of our ABC approach

with interchange heuristics I1 and I2 proposed in [1].

Results are reported in the same format as used in [1].

Averbakh et al. [1] reported the average percentage

improvement in solution quality by I2 with respect to I1

over all the instances with same T and U%. The percentage

improvement in solution quality by method A over method

B on a particular instance is 100� UiðSAÞ�UiðSBÞ
UiðSBÞ where SA

and SB are the solutions obtained by methods A and B

respectively on the particular instance under consideration.

However, average execution times are reported over all

instances with n ¼ 200 only, i.e., all instances having

maximum number of nodes. Table 2 reports the results of

I1, I2 and our ABC approach. Data for I1 and I2 have been

obtained from the corresponding author of [1] through

personal communication. The first column in Table 2

represents the thresholds (T value), second column repre-

sents U% values, third column (%(ABC,I1)) reports the

average percentage improvement of our ABC approach

over I1, fourth column (%(ABC,I2)) reports the average

percentage improvement of our ABC approach over I2.

And the last 3 columns (R(.)) report the average execution

times of various approaches on the largest instance (n =

200). There are 405 instances with same T and U% and

hence, reported average percentage improvements are

averaged over these 405 instances. Similarly, reported

execution times are averaged over 45 instances with 200

nodes.

The results shows that the performance of our ABC

algorithm is better compared to the Interchange heuristics

on all classes of instances with same T and U% values. In

fact, average percentage improvement in solution quality

Table 2 Comparison between our ABC approach and I1 and I2

heuristics of [1]

T U% %(ABC, I1) %(ABC, I2) R(I1) R(I2) R(ABC)

0.6 0.15 1.28 1.21 42.36 25.28 351.62

0.6 0.25 12.84 12.76 99.99 67.21 253.26

0.6 0.35 1.1 1.07 80.61 104.49 244.21

0.8 0.15 4.88 4.71 39.07 28.93 366.45

0.8 0.25 22.36 21.98 84.42 78.00 271.49

0.8 0.35 5.34 5.06 118.80 141.13 257.82

1.0 0.2 35.98 35.52 36.26 29.48 263.43

1.0 0.3 25.15 24.86 122.42 108.10 278.56

1.0 0.4 12.08 12.09 82.56 153.21 206.29
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by our approach over I1 and I2 is always positive. Our

approach on an average provide larger coverage than

already existing methods. I1 and I2 were executed on a

system having 3.31 GHz AMD Phenom II processor and 16

GB RAM which is different from the system used to

execute our ABC approach. Therefore, execution times can

not be compared directly. However,it is clear that our

approach is slower than interchange heuristics I1 and I2.

6 Conclusions

In this paper, we have proposed an ABC algorithm based

approach for the CMCLP and compared it with two

interchange based heuristic methods proposed in the liter-

ature. Our ABC algorithm outperformed these two methods

in terms of solution quality. However, its slower than these

methods.

Our ABC algorithm based approach is the first meta-

heuristic approach for the CMCLP. Averbakh et al. [1] also

experimented with tabu search and variable neighborhood

search, but results obtained by these approaches were only

slightly better than those obtained by interchange heuristics

and hence they did not present these metaheuristics.

Therefore, population based metaheuristics seem more

appropriate for this problem. As a future work, we intend to

investigate this further by developing some other meta-

heuristics for the CMCLP and compare them with our ABC

approach and two heuristics of [1]. Approaches similar to

our ABC approach can be developed for other related

problems employing cooperative coverage model.
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