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Abstract This paper presents hybrid artificial bee colony
algorithm based approaches for two N P-hard problems
arising in optical ring networks. These two problems falls
under the category of ring loading problems. Given a set of
data transfer demands between different pair of nodes, the
first problem consists in routing the demands on the ring
in either clockwise or counter-clockwise directions so that
the maximum data transmitted through any link in either
directions is minimized. The second problem, on the other
hand, discriminates between the data transmitted in one
direction from the other and consists in minimizing the max-
imum data transmitted in one particular direction through
any link. The first problem is referred to as weighted ring
edge-loading problem in the literature, whereas the latter as
weighted ring arc-loading problem. Computational results
on the standard benchmark instances show the effectiveness
of our approaches on both the problems.
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1 Introduction

Synchronous Optical NETworking (SONET) in USA and
Canada, and Synchronous Digital Hierarchy (SDH) in the
rest of the world are the current standards for transmit-
ting and multiplexing high speed signals over optical fibre
communication networks. Basically, SONET/SDH enforce
a ring based topology where nodes are connected via a ring
of optical fibre cables. Each node is equipped with an Add-
Drop-Multiplexer (ADM) that acts as an interface between
the node and the ring and that performs the following
functions

– It sends the message originating at its associated node
over the ring

– It receives the message meant for its associated node
over the ring and removes that message from the ring

– It relays all other messages

SONET/SDH rings are bi-directional, i.e., a message can
be transmitted in either directions (clockwise or counter-
clockwise) over the ring and the messages routed through
clockwise direction compete with those messages routed
through counter-clockwise direction for the common band-
width. In addition to the type of optical fibre cable, the
bandwidth available along any edge of SONET/SDH ring
depends on the ADM [16]. The amount of data transmitting
through an edge in either directions at a particular instant
is called its load at that instant. Obviously, the load on
any edge can not exceed the available bandwidth. Weighted
Ring Edge-Loading Problem (WRELP) is an important
problem in this context that seeks to minimize the max-
imum load on any edge. Given a set of communication
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demands between various pairs of nodes, the WRELP con-
sists in routing the demands on the ring in either clockwise
or counter-clockwise directions so that the maximum load
over all the edges is minimized.

IEEE 802.17 standard for Resilient Packet Ring (RPR)
combines the benefits of SONET/SDH and Ethernet net-
works for significantly enhancing the performance of opti-
cal fibre ring networks with regard to data traffic [12, 30,
36]. Like SONET/SDH, RPR rings are also bidirectional.
However, unlike SONET/SDH where there is a single bi-
directional ring, RPR consists of two distinct uni-directional
rings (one clockwise and another counter-clockwise) each
with its own bandwidth and the messages sent through
clockwise ring do not compete with those messages sent
through counter-clockwise ring for the common bandwidth.
So bi-directionality, RPR is achieved by making use of these
two rings while sending the messages. Clearly, in RPR,
we have to deal with directed edges or arcs, where an arc,
depending on its direction, belongs to clockwise or counter-
clockwise ring. The amount of data transmitting through an
arc at a particular instant is called its load at that instant.
Weighted Ring Arc-Loading Problem (WRALP) in RPR is
equivalent of WRELP in SONET/SDH. Given a set of com-
munication demands between various pairs of nodes, the
WRALP problem consists in routing the demands either
through clockwise ring or counter-clockwise ring so that
the maximum load over all the arcs of both the rings is
minimized.

Depending on whether demands can be split or not, there
are two variants of WRELP and WRALP. In the first variant,
demands can be split into two parts with each part routed
through a different direction, whereas the second variant
does not allow splitting of demands, i.e., each demand has
to be routed into through one of the two directions. The first
variant can be solved in polynomial time, whereas the latter
variant is NP-Hard. For those interested in the first vari-
ant may refer to [10, 26, 27, 35, 36]. In this paper, we have
considered the second variant only. WRELP and WRALP
with non-split demands are referred to as non-split WRELP
and non-split WRALP respectively in the literature. Here-
after, in this paper, WRELP and WRALP will refer to their
respective non-split variants only even if we don’t use the
qualifier “non-split”.

In this paper, we present artificial bee colony (ABC)
algorithm based hybrid approaches for WRELP and
WRALP. The best solution obtained through ABC algo-
rithm is improved further by two local searches which are
applied one after the other. The ABC algorithm is same
for WRELP and WRALP, but the two local searches differ
according to the problem. We have compared the perfor-
mance of our hybrid approaches with four state-of-the-art
approaches available in the literature on the standard bench-
mark instances. Computational results show the superiority

of our proposed approaches over these approaches. We have
also evaluated the performance of our ABC approaches
without the use of two local searches and found that they are
capable of finding high quality solutions on their own and
local searches improves the solution quality only slightly.

The remaining part of this paper is organized in the fol-
lowing manner: Section 2 provides an overview of ABC
algorithm, whereas Section 3 defines the two ring load-
ing problems in a formal manner. Section 4 provides a
brief survey of related works in the literature. Our hybrid
ABC approaches for WRELP and WRALP are presented in
Section 5. Section 6 reports the computational results and
provide a comparative analysis of our hybrid approaches
vis-à-vis state-of-the-art approaches available in the litera-
ture. Finally, Section 7 outlines some concluding remarks
and directions for future research.

2 Overview of ABC algorithm

The artificial bee colony (ABC) algorithm is a population
based metaheuristic algorithm inspired from the intelligent
foraging behavior of the honey bees. It is developed by D.
Karaboga in 2005 [17]. There exist three groups of bees in
a colony of real bees, viz. scout, employed and onlooker.
Scout bees look for new food sources in the proximity of
the hive. Their status is changed to employed at the moment
new food sources are discovered by them. Employed bees
are responsible for exploiting a food source. They bring
loads of nectar to the hive and share the information about
their food sources with onlooker bees which wait in the hive.
This information is used by the onlooker bees in selecting
the food sources which take into consideration the informa-
tion shared by several employed bees. Each onlooker choose
a food source with a probability directly proportional to the
quality of that food source and then it becomes employed.
An employed bee whose food source is exhausted will leave
that food source and change its status to either scout or
onlooker.

Motivated by this intelligent behavior of foraging bees,
Karaboga developed ABC algorithm with the intention of
solving optimization problems in continuous domain. Later,
ABC algorithm was extended for solving discrete opti-
mization problems also. Now, numerous variants of ABC
algorithm exist in the literature [1, 9, 17–21, 28, 29, 32–
34]. Karaboga et al. [21] provides a good survey on ABC
algorithm and its applications.

In ABC algorithm, there are also three groups of bees,
viz. employed, onlooker and scout with functions similar to
real bees. In ABC algorithm, the food sources represent the
solutions to the problem under consideration and the qual-
ity of a food source represents the fitness of the solution
being represented by that food source. Every employed bee
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is assigned an unique food source, which means, the num-
ber of food sources is equal to the number of employee
bees. The number of onlooker bees is also taken to be
equal to number of employed bees usually (but not always).
Throughout this paper, we will use food source and solution
interchangeably. The ABC algorithm starts with initializa-
tion, then iterates through the cycles of the employed bee
and onlooker bee phases until some stopping criteria is
met.

In the initialization, each employed bee is assigned
a solution which is usually generated randomly. In the
employed bee phase, each employed bee determines a new
food source in the vicinity of its associated food source and
evaluates its quality. The manner in which a new food source
is determined depends on the problem under consideration.
If the new food source determined by the employee bee is of
better quality in comparison to its currently associated food
source, then it leaves the currently associated food source
and proceeds to the new food source. If the quality of the
new food source is not as good as the current one, then
the employee bee remains at the currently associated food
source. Once all employee bees complete this process, they
initiate the onlooker bee phase by sharing the information
about their food sources.

In onlooker bee phase, onlookers select food sources
(employed bee solutions) as per their quality. This selection
is carried out in such a manner that solutions having higher
fitness will have more chance of selection. Such a selec-
tion policy results in better chances of finding good quality
solutions. Then, they determine the new food sources in the
vicinity of their selected food sources and compute their
fitness. The onlookers determine the new food sources in
the same manner as employed bees. Next, the best food
source among all the new food sources determined by all
the onlookers who have selected food source i is found. If
this food source is better than food source i, then this best
food source will be the new location of food source i for the
next iteration, otherwise there is no change in the location
of food source i for the next iteration. Once all food sources
are updated in this manner, the onlooker bee phase ends.

The ABC algorithm repeats itself through the cycles of
the afore-mentioned two phases as long as the termina-
tion condition is not met. If a solution associated with an
employed bee has not improved over certain number of
iterations, then that solution is discarded by the associated
employed bee and it becomes scout. Immediately this scouts
is turned into an employed bee by associating it with a newly
generated solution. This new solution is usually generated
in the same manner as an initial employed bee solution.

The success of any metaheuristic algorithm will mainly
depend on two factors: exploration and exploitation. A bal-
ance between these two need to be maintained to achieve
good results. In the ABC algorithm, during employed bee

phase, every employed bee solution is given a fair chance to
improve itself. However, in the onlooker bee phase, owing
to the selection policy used by the onlookers as described
already, good quality solutions get more chance to improve
themselves in comparison to poor quality solutions. This
bias towards good quality solutions may produce better
quality solutions, as there are higher chances of finding
even better solutions in the proximity of good solutions.
However, if a solution is locally optimal, then no better solu-
tion exists in its proximity and any attempt to improve it
is futile. The concept of scout bees helps in such a situa-
tions. Instead of determining whether a solution is locally
optimal or not which involves exploring the whole neighbor-
hood and which can be computationally expensive, the ABC
algorithm assumes a solution to be locally optimal when it
has not improved over certain number of iterations. To get
rid of this solution, its associated employee bee is made a
scout. This is equivalent to the phenomenon of abandoning
an exhausted food source by an employed bee associated
with that food source in real bee colonies. A locally optimal
solution is treated like an exhausted food source. However,
unlike the real employed bee, in case of ABC algorithm,
the employed bee of a locally optimal solution always
becomes scout only, but never an onlooker. As explained
already, a new solution is generated for this scout bee to
turn it into an employed bee again. Hence by utilizing the
concept of scout bees, solutions which have not improved
since long are replaced with new solutions. Clearly, in
case of the ABC algorithm, exploitation is carried out by
employed bees and onlooker bees, whereas scouts do the
job of exploration. A proper balance is maintained between
exploration and exploitation by appropriately setting the
number of iterations without improvement in the ABC algo-
rithm after which an employed bee abandons a solution and
becomes scout.

3 Problem formulation

Given a n node bi-directional ring Rn = {n1, n2, . . . , nn}
such that ei =< ni, ni+1 > ∀i ∈ {1, 2, . . . , n − 1}
and en =< nn, n1 > are edges of this ring. Each edge
ei =< ni, ni+1 > corresponds to two directed edges or
arcs represented by ordered pairs e+

i = (ni, ni+1) and
e−
i = (ni+1, ni). Likewise en =< nn, n1 > corresponds

to two arcs e+
n = (nn, n1) and e−

n = (n1, nn). The
direction n1, n2, . . . , nn corresponds to clockwise direc-
tion and nn, nn−1, . . . , n1 corresponds to counter-clockwise
direction. So, e+

i , ∀i ∈ {1, 2, . . . , n} are arcs in clock-
wise direction, whereas e−

i , ∀i ∈ {1, 2, . . . , n} are arcs in
counter-clockwise direction. A set of m demands is given
where each demand j is represented by a triple (sj , dj , wj )

where sj is the source node, dj �= sj is the destination
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node and wj > 0 is the weight associated with the demand
j , which can be interpreted as the size of the data to be
transmitted or amount of traffic generated to fulfil this
demand. Demands can not be split, i.e., each demand needs
to be routed into one of the two directions. By associ-
ating binary variables xj with each demand j such that
xj = 1, means demand j is routed through clockwise
direction and xj = 0 means demand j is routed through

counter-clockwise direction, the load L(ei) on an edge ei

can be determined as follows: Clearly, L(ei) = L(e+
i ) +

L(e−
i ) where

L(e+
i ) = ∑m

j=1 f (i, j) × wj

and
L(e−

i ) = ∑m
j=1 g(i, j) × wj

The value of f (i, j) and g(i, j) can be determined in the
following manner:

f (i, j) =

⎧
⎪⎨

⎪⎩

0 if xj = 0
1 if ((i < n) and (xj = 1) and ((sj ≤ ni and dj > ni) or (sj > dj and sj > ni+1 and dj > ni)))

1 if ((i = n) and (xj = 1) and (sj > dj and sj > n1 and dj ≥ n1))

0 otherwise

and

g(i, j) =

⎧
⎪⎨

⎪⎩

0 if xj = 1
1 if ((i < n) and (xj = 0) and ((sj > ni and dj ≤ ni) or (sj < dj and sj < ni and dj ≤ ni)))

1 if ((i = n) and (xj = 0) and (sj < dj and sj < ni and dj ≤ ni))

0 otherwise

The WRELP seeks a route for each of these m demands
such that the maximum load over all the edges is minimized.
In other words, the objective of WRELP is to find the values
of m binary variables x1, x2, . . . xm in such a manner that
minimizes max(L(e1), L(e2), . . . , L(en))

The WRALP seeks a route for each of these m demands
such that the maximum load over all the arcs is minimized.
In other words, the objective of WRELP is to find the values
of m binary variables x1, x2, . . . xm in such a manner that
minimizes max(�+, �−), where
�+ = max(L(e+

1 ), L(e+
2 ), . . . , L(e+

n ))

and
�− = max(L(e−

1 ), L(e−
2 ), . . . , L(e−

n )).
For both WRELP and WRALP, the size of the search

space is 2m as each of m demands can be routed through
one of the two possible directions. Please note that the size
of the search space is independent of the number of nodes
in the ring and depends only on the number of demands.

To illustrate WRELP and WRALP, let us consider the
8 nodes ring shown in Fig. 1. Suppose 10 communica-
tion demands occur between different pairs of nodes in this
ring. These demands, along with their route and values of
their associated variables xi in a routing scheme (a feasible
solution) are shown below:

(1, 5, 4) clockwise x1 = 1
(2, 7, 3) counter-clockwise x2 = 0
(3, 7, 2) clockwise x3 = 1
(4, 8, 5) clockwise x4 = 1
(5, 2, 7) counter-clockwise x5 = 0
(5, 8, 3) clockwise x6 = 1
(6, 1, 5) clockwise x7 = 1
(6, 4, 4) counter-clockwise x8 = 0
(7, 5, 8) counter-clockwise x9 = 0
(8, 2, 3) clockwise x10 = 1

The route for each demand is also shown in Fig. 1. In this
routing scheme, loads on various arcs and edges are as
follows:

L(e+
1 ) = 7 L(e−

1 ) = 3 L(e1) = 10
L(e+

2 ) = 4 L(e−
2 ) = 7 L(e2) = 11

L(e+
3 ) = 6 L(e−

3 ) = 7 L(e3) = 13
L(e+

4 ) = 11 L(e−
4 ) = 11 L(e4) = 22

L(e+
5 ) = 10 L(e−

5 ) = 12 L(e5) = 22
L(e+

6 ) = 15 L(e−
6 ) = 8 L(e6) = 23

L(e+
7 ) = 13 L(e−

7 ) = 3 L(e7) = 16
L(e+

8 ) = 8 L(e−
8 ) = 3 L(e8) = 11
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Fig. 1 Illustrating WRELP and WRALP

If the above routing scheme is used for WRELP then
objective function value is 23. If the above routing scheme
is used for WRALP then objective function value is 15
(max(�+, �−), where �+ = 15, �− = 12).

4 Related work

Cosares and Saniee [11] introduced non-split WRELP and
proved its N P-hardness. This problem is known to be
polynomially solvable only in cases where all demands are
one [14]. The non-split WRALP was introduced and proved
N P-hard by Yuan et al. [36] and further studied in [10,
25].

Schrijver et al. [31] proposed a highly efficient greedy
heuristic for WRELP, which returns a solution that can
exceed the optimal by at most 3

2 times the maximum
demand and which performs much better in practice. More-
over, this heuristic finds the optimal solution when all
demands are equal to one. Extending this work, Khanna [23]
developed a polynomial time approximation scheme for this
problem. Dell’ Amico et al. [13] presented efficient lower
and upper bounding procedures, and a branch-and-bound
based exact algorithm for WRELP.

Among the metaheuristics techniques for WRELP and
WRALP, Karunanithi and Carpenter [22] proposed a genetic
algorithm for WRELP and solved the small instances of
WRELP. Kim et al. [24] presented different variations of
Ant Colony Optimization (ACO) Algorithm for WRELP.
[2–6, 8] proposed several evolutionary algorithms based
approaches and a tabu search based approach for WRELP
and several evolutionary algorithms and swarm intelligence

based approaches for WRALP. In particular, [5] describes an
artificial bee colony algorithm based approach for WRALP.
As explained in Section 5, our proposed ABC algorithm
is altogether different from this ABC algorithm except for
solution encoding. Further, unlike the ABC approach of
[5], no local search is used inside the neighboring solution
generation procedure in our ABC approach. Our neigh-
boring solution generation procedure is based on a very
simple, but effective strategy. Hence, our ABC approach is
computationally more efficient.

Bernardino et al. [7] presented a genetic algorithm
(GA), a hybrid differential evolution algorithm (HDEM)
and a hybrid discrete particle swarm optimization algorithm
(HDPSO) for WRELP and WRALP and compared the per-
formance of these three approaches on both the problems
with best performing previously proposed approaches men-
tioned above. The HDEM performed the best followed by
ABC approach of [5] and HDPSO on both the problems.
It is to be noted, that ABC approach was presented in [5]
for WRALP. However, [7] presented the results of ABC
approach for WRELP also. We have compared our proposed
approaches with these four approaches, viz. GA, HDEM,
HDPSO and ABC on the same benchmark instances as used
in [7].

As mentioned already, we have applied the two local
searches only on the best solution obtained through ABC
algorithm. This strategy has already been used in the ABC
literature, e.g. [29, 34]. However, this strategy deviates from
the widely used strategy of combining local search with
ABC algorithm where local search is used inside ABC
algorithm to improve the neighboring solutions. Actually,
applying a local search on every/some neighboring solu-
tions inside ABC algorithm is computationally expensive
in comparison to using it once on the best solution. This
latter strategy is useful in circumstances where either the
local search is computationally too expensive to be used
inside ABC algorithm or the best solution produced by
ABC algorithm without any local search is already closed to
optimal/best known solution values and applying the local
search only on the best solution can produce the results of
desired quality. We have used the strategy of applying local
search only on the best solution due to latter reason.

5 Hybrid ABC approaches for WRELP
and WRALP

We have developed hybrid approaches combining artificial
bee colony (ABC) algorithm with local search procedures
for WRELP and WRALP. Except for fitness function, the
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ABC algorithm is same for both the problems. The local
search procedure consists of two local searches that are
applied one after the other. These two local searches vary
according to the problem. The local search procedure is
applied only to the best solution obtained through ABC
algorithm in a bid to further improve its quality. Hereafter,
our hybrid approach for WRELP will be referred to as
HABC-E, whereas our hybrid approach for WRALP will be
referred to as HABC-A.

Following subsections describe other salient features of
proposed approaches.

5.1 Solution encoding

We have used a bit vector of length m to represent a solution,
where m is the total number of communication demands. A
value of 1 at the ith position indicates that demand i to be
routed in clockwise direction, whereas a value of 0 at the
same place indicates that demand i to be routed in counter-
clockwise direction. Bernardino et al. [7] and [5] also used
the same encoding.

5.2 Fitness

We have used the objective function as the fitness func-
tion. So, HABC-E uses objective function of WRELP as
fitness function, whereas HABC-A uses objective function
of WRALP as fitness function. As WRELP and WRALP
are minimization problems, so for these problems, a lower
value of the fitness function indicates a more fit solution.

5.3 Initial employed bee solutions

Among the initial employed bee solutions, the first solu-
tion is generated by following a shortest path strategy where
each demand is routed through the direction where it has
to traverse lesser number of links in comparison to the
other direction (ties are broken arbitrarily). All other initial
employed bee solutions are generated by following either
a purely random strategy or a strategy that is a mix of
greediness and randomness. The first strategy is used with
probability ρir , otherwise the second strategy is used. In the
first strategy, each demand is routed uniformly at random
in one of the two directions. In the second strategy, each
demand is routed through shortest path with probability ρig ,
otherwise it is routed uniformly at random in one of the
two directions. ρir and ρig are two parameters whose val-
ues need to be determined empirically. The values for these
parameters are chosen in such a manner so that the initial
population of employed bee solutions is a proper mix of
greediness and randomness.

The ABC approach of [5] generates initial employed bee
solutions either in a completely random manner or in a

completely deterministic manner. The deterministic strategy
was again based on shortest path algorithm.

5.4 Policy used by onlookers to select a food source

We have used probabilistic binary tournament selection
method to select a food source for each onlooker bee. This
method works by choosing two different food sources uni-
formly at random and then comparing their fitness. With
probability ρo, more fit food source is selected, otherwise
the lesser fit food source is selected. ρo is a parameter to
be determined empirically. The reason for using probabilis-
tic binary tournament selection method in place of roulette
wheel selection method, which is used commonly in ABC
algorithm is that probabilistic binary tournament selection
method performs better in general and at the same time
computationally less expensive [15].

The ABC algorithm of [5] assigns Pi × NO onlookers

to a food source i, where Pi =
∑NE

j=1 Fj −Fi
∑NE

j=1 Fj

, Fi is the fitness

of food source i, and NE is the number of employed bees
and NO is the upper limit on the number of onlookers that
can be sent to any food source. Usually,

∑NE
j=1 Fj is much

larger than the fitness of any solution and hence Pi is near
to 1 for all i = 1, . . . , NE. NO is taken to be greater than
NE in [5], so a large number of onlookers are deputed for
every solution in their approach. In contrast, we have used
total number of onlookers for all food sources to be twice as
much as there are food sources.

5.5 Neighboring solution generation

Our neighboring solution generation method is based on the
fact that if a demand is routed through a particular direction
in one good solution, then it is highly likely that this demand
is routed through the same direction in many good solutions.
Hence, to generate a new solution X′ in the neighborhood of
a solution X, another solution Y is utilized. The solution Y is
chosen randomly from all employed bee solutions other than
X. Then to create X′, each demand is considered one-by-
one and it is routed in X′ through the same direction as in Y

with small probability ρns , otherwise it is routed through the
same direction as in X. Pseudo-code of neighboring solution
generation process is given in Algorithm 1, where X[i] refers
to the ith element (bit) of solution X which is a bit vector.
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We have applied the afore-mentioned neighboring solu-
tion generation method in both employed and onlooker
bee phases. Bernardino et al. [5] used different neighbor-
ing solution generation methods in employed and onlooker
bee phases. Unlike our neighboring solution generation
method which does not use any form of local search, these
methods do partial local search around a solution to gener-
ate its neighboring solution. Hence, all these methods are
computationally much more expensive than our method. In
the employed bee phase, two neighboring solution genera-
tion methods are used. In the first method called “Exchange
Direction”, some demand pairs are randomly selected
and each pair is checked one-by-one to see whether the
exchange of directions between the two demands in the pair
can improve the original solution. If more than one such
exchanges are possible, then the exchange which results in
the solution of least cost is performed and solution thus
obtained replaces the original solution. If no such exchange
exists, then the original solution does not change. The sec-
ond method called “Exchange Max Arc” randomly selects
some demands routed through the arc having the highest
load and tries to flip the direction of each of these demands
one-by-one so as to improve the solution. Again the best
improvement strategy is followed like the previous method.
In onlooker bee phase, the neighboring solution generation
method tries to improve a solution by changing the direc-
tion of a randomly chosen demand in the solution. With
probability 0.5, the direction of the chosen demand is set to
shortest path, otherwise the direction of the chosen demand
is set to its direction in the best solution. If the solution
improves, the methods stops, otherwise it repeats itself. The
method stops only after some fixed number of unsuccessful
attempts.

5.6 Other features

If an employed bee solution X has not improved over Sit

number of consecutive iterations, then it is assumed to be
locally optimal and replaced with a new solution X′. How-
ever, instead of generating X′ like the initial population
members, which is usually the case with most ABC algo-
rithms including the one described in [5], we have generated
X′ by perturbing X. For perturbing X to generate X′, each
demand is considered one-by-one and its direction in X is
flipped with probability ρs . We have followed this perturba-
tion strategy because solution thus generated retains major
part of the original highly fit solution, and as a result, it is
expected to be of better quality in comparison to a solution
generated in a manner similar to initial population members.

Unlike the traditional ABC algorithm where there is an
upper limit of only one scout in an iteration, we have not
imposed any limit on the number of employed bee solutions
replaced in an iteration, i.e., number of scouts. This number

can be more than one or can be zero depending on how many
employed bee solutions in an iteration has not improved
over last Sit number of consecutive iterations. This is also
different from ABC approach of [5], where in every itera-
tion, the number of scouts is equal to 10% of the number of
employed bees. The solutions for these scouts bee are cre-
ated in the same manner as the initial population members.
Instead of replacing those employed bee solutions which has
not improved since long, these scout bee solutions replace
worst employed bee solutions in case scout bee solutions are
better. However, this is a severe flaw because if an employed
bee solution is locally optimal, it will forever remain in the
population and waste computational efforts without offering
any opportunity for further improvement.

5.7 Local search procedure

As mentioned already, our local search procedure is com-
posed of two local searches which are applied one after the
other on the best solution obtained through ABC algorithm.
Our first local search repeatedly applies a direction flip
based heuristic as long as there is improvement in solution
quality. This heuristic considers each demand one-by-one
in their natural order and flips its direction in the solution,
if doing so reduces the objective function value. It is to be
noted that in case of WRELP problem, flipping the direc-
tion of only those demands can possibly reduce the objective
function value which are currently routed through the edge
having the maximum load. Similarly, in case of WRALP
problem, flipping the direction of only those demands can
possibly reduce the objective function value which are cur-
rently routed through the arc having the maximum load.
Hence, for efficiency considerations, only such potential
demands should be tried for flipping.

Our second local search repeatedly applies a heuristic,
which considers a pair of demands at a time, as long as
there is improvement in solution quality. This heuristic con-
siders each demand one-by-one in some random order (for
implementing the random ordering, every time the heuris-
tic begins execution, a random sequence of demands is
generated) and if the demand under consideration, say i,
contributes to the maximum load, then we try to pair it with
some other demand so that flipping the directions of both
the demands together reduces the objective function values.
The demands are tried for pairing with demand i in their nat-
ural order. If such a pairing is found, then we immediately
do the required flipping and then again all demands are tried
one-by-one for pairing with i. Only when i can not be paired
with any other demand to reduce the objective function
value, next demand in the random sequence is considered.
Demands in a pair can have the same direction or opposite
directions. Again for efficiency considerations, we can cur-
tail the number of demands that need to be tried for pairing
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with i. Only those demands can possibly pair with i which
does not contribute to the maximum load and which have
weight less than that of i. In case of WRELP, a demand con-
tributes to the maximum load if it is routed through the edge
having the maximum load. In case of WRALP, a demand
contributes to the maximum load if it is routed through the
arc having the maximum load.

The pseudo-code of hybrid ABC approach is presented
in Algorithm 2. In this algorithm, En and On are the number
of employed bees and onlooker bees respectively. DNS(X)
is a function that determines a new solution X′ in the neigh-
borhood of the solution X and returns X′ (Section 5.5).
Pseudo-code for DNS(X) is given in Algorithm 1. Function
PBTS(e1, e2,. . . ,eE) implements the probabilistic binary
tournament selection method (Section 5.4). This function
returns the index of the solution selected. Function Per-
turb(X) perturbs a solution X to generate a new solution X′
as per Section 5.6. LS 1(best) and LS 2(best) are two func-
tions that implement the two local searches described in
Section 5.7. These two local searches are applied once on
the best solution returned by ABC algorithm.

6 Computational results

To evaluate the performance of HABC-A and HABC-E, we
have used the same 19 instances as used in [7] and [5]. The
number of nodes (n) in these instances vary from 5 to 30
and the number of demands (m) in these instances vary from
6 to 435. To generate these instances, six equally spaced
values of n in the interval [5, 30] are considered, i.e., n ∈
{5, 10, 15, 20, 25, 30}. Hence, with respect to n, there are
six cases which are called case 1 (n = 5), case 2 (n = 10)
and so on. The rings with 5/10/15 nodes are characterised
as ordinary sized rings and rings with 20/25/30 as extremely
large rings. For a n node ring, n(n−1)

2 demand pairs are pos-
sible. So if the demand set contains all these pairs then the
demand set is said to be complete, otherwise it is said to

be partial. Four different cases are considered with respect
to the type of demand set. The first three cases are applica-
ble for all values of n, whereas the last case is applicable
to only n = 30. The first case consists of complete set of
demands, the second case consists of partial set of demands
with max(�n(n−1)

4 	, 8) demand pairs randomly chosen from
complete set of demands and the third case consists of
partial sets of demands with max(�n(n−1)

8 	, 6) demand
pairs randomly chosen from complete set of demands. The
weights associated with demands is considered to be uni-
formly distributed in the interval [5, 100] in these three
cases. For each combination of n and these three demand
cases, a single instance is generated leading to a total of 18
instances. The last demand case is applicable for n = 30
only and consists of a complete set of demands with weights
uniformly distributed in [1, 500]. Again, a single instance
is generated for this case, thereby, leading to a grandtotal
of 19 instances. These instances have the name of the form
Cxy where x ∈ {1, 2, 3, 4, 5, 6} is the case with respect to
the value of n and y ∈ {1, 2, 3, 4} is the case with respect
to demand set. Please also note, that y = 4 only when
x = 6. Except for larger ring sizes and higher variance in
demand weights, these instances are similar to the instances
used previously in the literature for ring loading problems.
Table 1 presents the characteristics of these test instances
along with their best known values (BKV) for WRALP and
WRELP.

Table 1 Characteristics of test instances along with their best known
values (BKV)

Instance #Nodes(n) #Demands(m) BKV(WRALP) BKV(WRELP)

C11 5 10 161 185

C12 5 8 116 137

C13 5 6 116 137

C21 10 45 525 583

C22 10 23 243 352

C23 10 12 141 199

C31 15 105 1574 1657

C32 15 50 941 941

C33 15 25 563 618

C41 20 190 2581 2745

C42 20 93 1482 1760

C43 20 40 612 683

C51 25 300 4265 4304

C52 25 150 2323 2488

C53 25 61 912 1015

C61 30 435 5762 5953

C62 30 201 2696 2901

C63 30 92 1453 1506

C64 30 435 27779 29245
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We have implemented HABC-A and HABC-E
approaches in C and executed them on a 2.83 GHz Intel
Q9550 processor based system under Linux environment.
In all our computational experiments with HABC-A,
we have used En = 100, On = 200, ρir = 0.95 if
m < 250, otherwise ρir = 0.75, ρig = 0.25, ρo = 0.8,
ρns = max(0.15, 2

m
), ρs = max(0.15, 4

m
). If m < 250

then Sit is set to 60 and HABC-A terminates when best
solution has not improved over 100 consecutive iterations,
otherwise (m ≥ 250) Sit is set to 90 and HABC-A ter-
minates when best solution has not improved over 150
consecutive iterations. In all our computational experi-
ments with HABC-E, we have used En = 125, On = 175,
ρir = 0.75, ρig = 0.25, ρo = 0.8, ρns = max(0.15, 2

m
),

ρs = max(0.1, 4
m

). If m < 250 then Sit is set to 15 and
HABC-E terminates when best solution has not improved
over 100 consecutive iterations, otherwise (m ≥ 250) Sit

is set to 25 and HABC-E terminates when best solution
has not improved over 150 consecutive iterations. These
parameter values are chosen empirically after performing a
large number of trials. Approaches proposed in [7] and [5]
were designed with the intention of obtaining best known
solution value in every run and their termination conditions
were chosen accordingly. To allow a fair comparison with
the approaches of [7] and [5], the termination conditions
for HABC-A and HABC-E are chosen with the same inten-
tion. Please also note that HABC-E and HABC-A both
use 300 bees in total (En + On) in an iteration, though
the number of employed and the number of onlooker bees
used by them differ, and hence, their termination condi-
tions are equivalent in terms of total number of solutions
generated without improvement in quality of best solution.
Like the approaches of [7] and [5], HABC-A and HABC-E
approaches are executed 100 times independently on each
instance. As termination conditions are chosen for various
methods to reach the best known solution value in every
run, therefore, comparison is done on execution time. How-
ever, on instance C51, we found value of 4283 for WRELP
which is better than BKV of 4304 and no matter how we
tried, we failed to get this value of 4283 in every run. Please
refer to Table 5 for average solution quality in case of this
instance.

Table 2 compares the average execution time of HABC-A
on WRALP instances with that of genetic algorithm (GA),
hybrid differential evolution algorithm (HDEM), hybrid
particle swarm optimisation algorithm (HDPSO) and artifi-
cial bee colony algorithm (ABC). The first three approaches
are from [7], whereas the last approach is from [5]. Data for
GA, HDEM, HDPSO and ABC approaches have been taken
from [7] where all the approaches were executed on a 2.66
GHz Intel Q9450 processor based system and average time
and iterations to reach the best solution were reported for
each method. From average time and iteration to reach the

Table 2 Execution times of various approaches in seconds on
WRALP instances

Instance GA HDEM HDPSO ABC HABC-A

C11 <0.10 <0.10 <0.10 <0.10 <0.10

C12 <0.10 <0.10 <0.10 <0.10 <0.10

C13 <0.10 <0.10 <0.10 <0.10 <0.10

C21 <0.10 <0.10 <0.10 <0.10 <0.10

C22 <0.10 <0.10 <0.10 <0.10 <0.10

C23 <0.10 <0.10 <0.10 <0.10 <0.10

C31 0.33 1.00 0.50 0.67 0.23

C32 <0.10 <0.10 <0.10 <0.10 <0.10

C33 <0.10 <0.10 <0.10 <0.10 <0.10

C41 0.60 0.90 0.53 1.20 0.53

C42 0.19 0.30 0.16 0.3 0.22

C43 <0.10 <0.10 <0.10 <0.10 <0.10

C51 4.69 10.00 2.50 5.00 1.15

C52 1.00 2.00 1.00 2.13 0.39

C53 0.10 0.19 0.09 0.19 0.16

C61 20.19 64.29 15.63 28.13 2.03

C62 3.33 7.50 3.00 5.00 0.65

C63 1.25 2.50 1.25 2.50 0.22

C64 5.00 16.67 10.00 10.00 2.99

best solution, we got average time per iteration and multi-
plying it with total number of iterations allotted yielded the
execution time. This is done to follow the standard practice

Table 3 Execution times of various approaches in seconds on
WRELP instances

Instance GA HDEM HDPSO ABC HABC-A

C11 <0.10 <0.10 <0.10 <0.10 <0.10

C12 <0.10 <0.10 <0.10 <0.10 <0.10

C13 <0.10 <0.10 <0.10 <0.10 <0.10

C21 <0.10 <0.10 <0.10 <0.10 <0.10

C22 <0.10 <0.10 <0.10 <0.10 <0.10

C23 <0.10 <0.10 <0.10 <0.10 <0.10

C31 0.33 0.67 0.50 0.40 0.19

C32 <0.10 <0.10 <0.10 <0.10 <0.10

C33 <0.10 <0.10 <0.10 <0.10 <0.10

C41 0.45 0.75 0.50 0.40 0.45

C42 0.19 0.33 0.20 0.40 0.18

C43 <0.10 <0.10 <0.10 <0.10 <0.10

C51 5.00 6.25 3.33 6.25 1.58

C52 1.00 2.00 0.80 1.33 0.39

C53 0.10 0.25 0.13 0.17 0.13

C61 22.5 60.00 17.50 18.50 2.00

C62 4.29 10.00 5.00 8.33 0.55

C63 1.25 3.75 1.25 2.50 0.19

C64 3.75 12.50 3.13 4.17 2.67
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Table 4 Relative contribution of two local searches and artificial bee colony framework on WRALP instances

Instance HABC-A FABC-A ABC-A

Best Avg SD AvT Best Avg SD AvT Best Avg SD AvT

C11 161 161.00 0.00 0.01 161 161.00 0.00 0.01 161 161.00 0.00 0.01

C12 116 116.00 0.00 0.01 116 116.00 0.00 0.01 116 116.00 0.00 0.01

C13 116 116.00 0.00 0.01 116 116.00 0.00 0.01 116 116.00 0.00 0.01

C21 525 525.00 0.00 0.07 525 525.00 0.00 0.07 525 525.00 0.00 0.07

C22 243 243.00 0.00 0.05 243 243.00 0.00 0.05 243 243.09 0.51 0.05

C23 141 141.00 0.00 0.02 141 141.00 0.00 0.02 141 141.00 0.00 0.02

C31 1574 1574.00 0.00 0.23 1574 1574.00 0.00 0.23 1574 1574.00 0.00 0.23

C32 941 941.00 0.00 0.09 941 941.00 0.00 0.09 941 941.00 0.00 0.09

C33 563 563.00 0.00 0.04 563 563.00 0.00 0.04 563 563.00 0.00 0.04

C41 2581 2581.00 0.00 0.53 2581 2581.00 0.00 0.52 2581 2581.00 0.00 0.52

C42 1482 1482.00 0.00 0.22 1482 1482.00 0.00 0.22 1482 1482.00 0.00 0.22

C43 612 612.00 0.00 0.07 612 612.00 0.00 0.07 612 612.00 0.00 0.07

C51 4265 4265.00 0.00 1.15 4265 4265.00 0.00 1.15 4265 4265.00 0.00 1.15

C52 2323 2323.00 0.00 0.39 2323 2323.00 0.00 0.39 2323 2323.00 0.00 0.39

C53 912 912.00 0.00 0.16 912 912.00 0.00 0.16 912 912.00 0.00 0.16

C61 5762 5762.00 0.00 2.03 5762 5762.00 0.00 2.02 5762 5762.00 0.00 2.02

C62 2696 2696.00 0.00 0.65 2696 2696.00 0.00 0.65 2696 2696.00 0.00 0.65

C63 1453 1453.00 0.00 0.22 1453 1453.00 0.00 0.22 1453 1453.00 0.00 0.22

C64 27779 27779.00 0.00 2.99 27779 27779.06 0.28 2.98 27779 27779.23 0.58 2.98

Table 5 Relative contribution of two local searches and artificial bee colony framework on WRELP instances

Instance HABC-E FABC-E ABC-E

Best Avg SD AvT Best Avg SD AvT Best Avg SD AvT

C11 185 185.00 0.00 0.01 185 185.00 0.00 0.01 185 185.00 0.00 0.01

C12 137 137.00 0.00 0.01 137 137.00 0.00 0.01 137 137.00 0.00 0.01

C13 137 137.00 0.00 0.01 137 137.00 0.00 0.01 137 137.00 0.00 0.01

C21 583 583.00 0.00 0.07 583 583.00 0.00 0.07 583 583.00 0.00 0.07

C22 352 352.00 0.00 0.03 352 352.00 0.00 0.03 352 352.00 0.00 0.03

C23 199 199.00 0.00 0.02 199 199.00 0.00 0.02 199 199.00 0.00 0.02

C31 1657 1657.00 0.00 0.19 1657 1657.00 0.00 0.19 1657 1657.00 0.00 0.19

C32 941 941.00 0.00 0.08 941 941.00 0.00 0.08 941 941.00 0.00 0.08

C33 618 618.00 0.00 0.04 618 618.00 0.00 0.04 618 618.00 0.00 0.04

C41 2745 2745.00 0.00 0.45 2745 2745.00 0.00 0.45 2745 2745.00 0.00 0.45

C42 1760 1760.00 0.00 0.18 1760 1760.00 0.00 0.18 1760 1760.00 0.00 0.18

C43 683 683.00 0.00 0.07 683 683.00 0.00 0.07 683 683.00 0.00 0.07

C51 4283 4284.11 1.16 1.58 4283 4284.55 1.24 1.58 4283 4284.59 1.30 1.58

C52 2488 2488.00 0.00 0.39 2488 2488.00 0.00 0.39 2488 2488.00 0.00 0.39

C53 1015 1015.00 0.00 0.13 1015 1015.00 0.00 0.13 1015 1015.00 0.00 0.13

C61 5953 5953.00 0.00 2.00 5953 5953.00 0.00 2.00 5953 5953.00 0.00 2.00

C62 2901 2901.00 0.00 0.55 2901 2901.00 0.00 0.55 2901 2901.00 0.00 0.55

C63 1506 1506.00 0.00 0.19 1506 1506.00 0.00 0.19 1506 1506.00 0.00 0.19

C64 29245 29245.00 0.00 2.67 29245 29245.02 0.14 2.67 29245 29245.06 0.24 2.67
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of comparing execution times of various approaches. No
matter how fast the best solution is obtained, it is returned
only when the program finishes execution, and hence, com-
parison of time required to reach the best solution does not
make sense. For small instances C11, C12, C13, C21, C22,
C23, C32, C33 and C41, [7] did not report the average time
till best precisely and mentioned that they are < 0.001 sec-
onds, and hence, for these instances we have not reported
the execution times precisely in Table 2. However, precise
execution times for HABC-A are reported in Table 4. In
a manner similar to Table 2, Table 3 compares the aver-
age execution time of HABC-E on WRELP instances with
that of GA, HDEM, HDPSO and ABC approaches. These
tables clearly show the superiority of HABC-A and HABC-
E in terms of execution times over other methods on large
instances of WRALP and WRELP both. Moreover, the dif-
ference in speed between our approaches and other methods
widens with increase in number of demands. Please note
that we have executed our approaches on a 2.83 GHz Intel
Q9550 processor based system which is different from the
system used to execute GA, HDEM, HDPSO and ABC
approaches (2.66 GHz Intel Q9450 processor). However,
Q9550 and Q9450 processors belong to the same series of
processors and Q9550 is the immediate successor of Q9450.
Hence, there is only a slight difference is processing speeds
of the two systems and conclusions drawn here take into
account this difference.

To show the relative contribution of two local searches
and artificial bee colony framework, we have implemented
HABC-A and HABC-E approaches without any local search
and with only first local search. The versions without any
local search will be referred to as ABC-A and ABC-E,
whereas the versions with only first local search will be
referred to as FABC-A and FABC-E respectively. Tables 4
& 5 report the results. For each instance, we report the
best solution (column Best), average solution quality (col-
umn Avg) and standard deviation of solution values (column
SD) over 100 runs found by HABC-A, FABC-A, ABC-A or
HABC-E, FABC-E, ABC-E as the case may be along with
their respective average execution times (column AvT) in
seconds. These tables clearly show that local searches con-
tribute little to the success of artificial bee colony algorithm
which is capable of finding best solutions on its own in
most runs.

7 Conclusions

In this paper, we have proposed hybrid artificial bee colony
algorithm based approaches for two real-world N P-hard
problems belonging to the domain of optical ring networks.
Computational results on the standard benchmark instances
of the problems show the effectiveness of the proposed

approaches. Our ABC approaches are capable of finding
high quality solutions on their own even without the use of
local search.

As a future work, we would like to work on a multi-
objective version of ring loading problems involving mul-
tiple costs. Approaches similar to our approaches can be
designed for other related assignment problems.
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