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Abstract
Prediction of boundary shear force distributions in open channel flow is crucial in many critical engineering problems such

as channel design, calculation of losses and sedimentation. During floods, part of the discharge of a river is carried by the

simple main channel and the rest is carried by the floodplains. For such compound channels, the flow structure becomes

complicated due to the transfer of momentum between the deep main channel and the adjoining floodplains. The com-

plexity further increases when dealing with a compound channel with non-prismatic floodplains. Knowledge of momentum

transfer at the different interfaces originating from the junction between the main channel and floodplain can be acquired

from the distribution of boundary shear in the subsections. The calculation of boundary shear and depth average velocity in

non-prismatic compound channel flow is more complex and simple conventional approaches cannot predict the boundary

shear and depth average velocity with sufficient accuracy. Hence, in this area, an easily implementable technique, the

Artificial Neural Network can be used for predicting the boundary shear and depth average velocity at different sections of

a converging compound channel for different geometry and flow conditions. The model’s performance has lead satisfactory

results. Statistical error analysis is also carried out to know the degree of accuracy of the model.

Keywords ANN � Converging angle � Depth average velocity � Non-prismatic compound channel � Relative flow depth �
Velocity distribution

1 Introduction

Distribution of boundary shear stress and depth average

velocity are an important aspect of river hydraulics and

engineering problems such as to give a basic understanding

of the resistance relationship, to understand the mechanism

of sediment transport and to design stable channels, which

needs to be addressed properly. Due to flow interaction

between the main channel and the floodplain, the flow in a

compound section consumes more energy than a channel

with simple section carrying the same flow and having the

same type of channel surface. Due to continuous settlement

of people near the river bank, the width of the flood plain of

compound channel decreases and causes channel con-

verging. Flood plain converging is also seen in many nat-

ural river cases. An improper estimation of floods in these

regions will lead to an increase in the loss of life, and

properties. The modeling of such flows is of primary

importance when seeking to identify flooded areas and for

flood risk management studies, etc. A strong interaction

has always existed between the deep main channel and

shallow floodplain, even for a prismatic compound chan-

nel. In non-prismatic compound channels with converging

floodplains, due to continuous change in floodplain

geometry along the flow path, the resulting interactions and

momentum exchanges are further increased (Bousmar et al.

2004; Proust et al. 2006; Rezaei and Knight 2011). This

extra momentum exchange is a very important parameter

and should be taken into account in the overall flow
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modeling of a spatially varied river flow. The boundary

shear stress distribution, velocity distribution and flow

resistance in compound cross-section channels have been

investigated by a number of authors (Ghosh and Jena 1971;

Myers 1987; Rhodes and Knight 1994; Patra 2004; Patra

and Kar 2000; Khatua and Patra 2008; Khatua et al. 2012).

Distribution of boundary shear stress and depth average

velocity mainly depends upon the shape of the cross-sec-

tion and the structure of the secondary flow cells. However,

for converging floodplain geometry, there is wide variation

in the local shear stress distribution from point to point in

the wetted perimeter. Also, the magnitude of boundary

shear and depth average velocity of a converging channel is

significantly different from that of straight channels having

the same geometry, shape and cross-sectional area.

Therefore, there is a need to evaluate the boundary shear

stress and depth average velocity carried by the main

channel and floodplain walls at various locations of con-

tracted path. Conventional approaches lack in providing

high accuracy for the prediction of the boundary shear in

channels due to neglecting the factors causing non-uni-

formity of flow. This necessitates a new and accurate

technique. The present research investigates some experi-

mental findings of different converging compound chan-

nels of different geometry and converging angles. The

effect of geometry and converging angle on flow prediction

of such channels is studied and finally an efficient approach

is proposed to estimate the boundary shear and depth

average velocity with the help of artificial neural network

(ANN) which is a promising computational tool. Some of

the important past studies in this direction are neuro-fuzzy

model to simulate Coolbrook White equation by Walid and

Shyam (1998), prediction of friction factor in smooth open

channel flow using ANN by Bigil and Altum (2008) and

Yuhong and Wenxin (2009), prediction of discharge in

straight compound open channel flow by Sahu et al. (2011),

prediction of roughness coefficient of a meandering open

channel flow using neuro-fuzzy inference system by

Moharana and Khatua (2013), predicting apparent shear

stress in prismatic compound open channels using artificial

neural networks by Huai et al. (2013). Ebtehaj and Bon-

akdari (2013) utilized an MLP neural network to predict

the minimum sediment transport velocity in sewers. The

results indicated that the MLP neural network can quite

accurately estimate the minimum velocity. Sun et al.

(2014) investigated the capability of ANN to predict the

velocity distribution in combined open channels using

computational fluid dynamics data. Kızılöz et al. (2015)

predicted scour around submarine pipelines using ANN

and found that the ANN results are in good agreement with

the measured data.

New experiments have been conducted at the Hydraulics

and Fluid mechanics Laboratory of Civil Engineering

Department of NIT, Rourkela to analyse the behaviour of

boundary shear and depth average velocity caused by

floodplain contractions. An evaluation of the boundary

shear and depth average velocity in different converging

sections of a compound channel reach for different

hydraulic and geometric conditions is done and the

dependency of boundary shear and depth average velocity

for such channels is analysed. An attempt is also made to

develop a mathematical model based on ANN to predict

the boundary shear and depth average velocity due to

contraction effect and flow conditions for several con-

verging compound channels. The results are compared with

the experimental data of N.I.T Rourkela and Rezaei (2006).

2 Boundary Shear Stress Measurement

Shear studies in open channel flow have many implications

such as bed load transport, channel migration, and

momentum transfer. Bed shear forces are useful for the

study of bed load transfer, whereas wall shear forces pre-

sent a general view of the channel migration pattern. There

are several methods used to evaluate bed and wall shear

stress in an open channel. The Preston tube method is an

indirect estimate for shear stress measurements and is

widely used for the experimental channel which is descri-

bed below.

Using Preston’s technique together with calibration

curves of Patels (1965), local boundary shear stress mea-

surements were made around the wetted perimeter of the

present converging channel. Preston developed a simple

shear stress measurement technique for smooth boundaries

in a fully developed turbulent flow using a Pitot tube.

Preston presented a non-dimensional relationship between

the differential pressures Dp and the boundary shear stress

sw.

Dp
q

d2

v2
¼ F

d2sw
qv2

� �
ð1Þ

where d is the outside diameter of the tube, q is the density

of the flow, m is the kinematic viscosity of the fluid and F is

an empirical function. Following this work, Patel (1965)

presented definitive calibration curves for the Preston tube

defined in terms of two non-dimensional parameters which

are used to convert pressure readings to boundary shear

stress.

x� ¼ log10
Dpd2

4qv2

� �
ð2Þ

y� ¼ log10
swd2
4qv2

� �
ð3Þ
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The calibration of x* and y* for different regions of the

velocity distribution (i.e., viscous sub layer, buffer layer

and logarithmic layer) are expressed by three different

formulae.

y� ¼ 0:5x� þ 0:037 for 0\y�\1:5 ð4Þ

y� ¼ 0:8287� 0:1381x� þ 0:1437x�2 � 0:0060x�3

for 1:5\y�\3:5
ð5Þ

x� ¼ y� þ 2 log10 1:95y� þ 4:10ð Þ for 3:5\y�\5:3 ð6Þ

In the present case, all shear stress measurements are

taken on all the five sections of the converging angles. The

pressure readings were taken using Pitot tube. These are

placed at the predefined points of the flow-grid in the

channel, facing the flow which is demonstrated in Fig. 1c

for in a bank and overbank flow conditions, respectively.

The manometers attached to the respective Pitot tubes are

used to measure the head difference. The differential

pressure was then calculated from the readings on the

vertical manometer.

DP ¼ qgDh ð7Þ

where Dh is the difference between the two readings from

the dynamic and static, g is the acceleration due to gravity

and q is the density of water. Here the tube coefficient is

taken as a unit and the error due to turbulence is considered

negligible while measuring velocity. After that, the shear

stress values were integrated over the entire perimeter to

calculate the total shear force per unit length normal to

flow cross-section carried by the compound section. The

total shear thus computed was then compared with the

resolved component of weight force of the liquid along the

stream-wise direction to check the accuracy of the mea-

surements. The error percentages are found out to be within

± 10%.

3 Tangential Velocity Measurement

In the present work velocity, readings are taken using Pitot

tubes as well as 16-MHz Micro-ADV (Acoustic Doppler

Velocity Meter) manufactured by M/s Son-Tek, San Diego,

Canada. According to the laboratory data analysis, shear

stress from a Pitot tube is the most appropriate shear stress

calculation method as compared to ADV, as near the

boundary, the velocity measurement ADV has never been

accurate (Khatua 2008). Apart from this, ADV has some

limitations of velocity measurements. It can measure 5 cm

below its top edge. In down probe of micro-ADV, it could

not measure 5 cm near the free surface. So, Pitot tube has

been utilized to measure the short fall. The accuracy of this

method has been verified from the energy gradient

approach, i.e., weight component of the flow. Pitot tubes

are placed in the direction of flow and then allowed to

rotate along a plane parallel to the bed and till a relatively

maximum head difference appeared in manometers

attached to the respective Pitot tubes. The deviation angle

between the reference axis and the total velocity vector is

assumed to be positive when the velocity vector is directed

away from the outer bank. The total head h reading by the

Pitot tube at the predefined points of the flow-grid in the

channel is used to measure the magnitude of point velocity

vector as U = (2gh)1/2, where g is the acceleration due to

gravity. Resolving U into the tangential and radial direc-

tions, the local velocity components are obtained. Here the

tube coefficient is taken as a unit and the error due to

turbulence is considered negligible while measuring the

velocity. Here, head loss has been neglected. After finding

the velocity from point to point, we have estimated the

observed discharge by time rise method by volumetric

tank. We have distributed the error uniformly to all the

points. Point velocities were measured along verticals

spread across the main channel and flood plain so as to

cover the width of the entire cross-section. The depth-av-

eraged velocity Ud is defined by the Eq. (8).

Ud ¼
1

H

ZH

0

U dy ð8Þ

Ud is a very important parameter along with the boundary

shear stress in all compound channel flow studies and

needs to be measured with sufficient accuracy to determine

its distribution across the flow section with varying relative

depth (b = (H - h)/H, where H = height of water at a

particular section and, h = height of water in main channel)

as well as for the estimation of unit discharge.

4 Sources of Data and Selection of Hydraulic
Parameters

Along with the presently carried out experimental data set,

an extensive literature related to the analysis of converging

compound channels is also reviewed. The standard data set

was collected from several is prepared in Table 1

4.1 Selection of Hydraulic, Geometric
and Surface Parameters

Flow hydraulics and momentum exchange in converging

compound channels are significantly influenced by both

geometrical and hydraulic variables; the computation

becomes more complex when the floodplain width con-

tracts and become zero. The flow factors responsible for the
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estimation of boundary shear stress and depth average

velocity are

1. Converging angle denoted as h.
2. Relative flow depth denoted as b = (H - h)/H. Where

H = height of water at a particular section and,

h = height of water in the main channel.

3. Width ratio (a), i.e., Ratio of width of floodplain to

width of main channel.

4. Aspect ratio (r), i.e., ratio of the width of the main

channel to depth of main channel

5. Relative distance (Zr), i.e., ratio of the distance

between the two consecutive sections to the total

contracted length of the non-prismatic channel.

Fig. 1 a Plan view of

experimental setup.

b Longitudinal and cross-

sectional dimension of the non-

prismatic compound channels.

c Typical grid showing the

arrangement of velocity

measurement points at the test

section. d Photo of converging

compound channel with

movable bridge, pitot tube and

pointer gauge
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5 Experimental Setup and Procedure

Experiments have been conducted in three sets of non-

prismatic compound channels with varying cross-sections

built inside a concrete flume measuring 15 m long 9

0.90 m width 9 0.5 m depth and flume with a Perspex

sheet of the same dimensions. The width ratio of the

channel is a = 1.8 and the aspect ratio is r = 5. The con-

verging angles of the channels are taken as 12.38�, 9� and
5�, respectively. The converging length of the channels is

found to be 0.84, 1.26, and 2.28 m, respectively. In a

compound channel with converging floodplains, due to

change in floodplain width, the flow condition is not uni-

form. Hence based on the downstream water depth

imposed by tailgates, different water surface profiles in the

upstream prismatic and the converging part of the flume

can be observed. For each flume configuration of four

different overbank flows (corresponding to the four relative

flow depths b = 0.15, 0.2, 0.25 and 0.3 at the central reach)

were tested. For each selected discharge, the downstream

water level was adjusted, using the tailgate setting, in such

a way that the backwater profile (M1 and M3 profile) was

reached at a given depth at the central section of narrowing

reach. To achieve this, for each non-prismatic compound

channel configuration, a wide range of discharges was

used. For each specific discharge, by changing the tailgate

level various water surface profiles could be measured.

When the channel bottom slope is less than the critical

slope then it is called as mild slope, thus profiles that occur

in mild slope are called M slopes. In mild slope condition

M1 and M3 profiles are backwater profiles which signify

the slope of water as positive. Water was supplied through

a series of centrifugal pumps (each 11,185.5-W capacity)

discharging into a large RCC overhead tank. In the

downstream end, there is a measuring tank followed by a

sump which feeds the water to the overhead tank through

pumping. This arrangement completes the recirculation

system of water for the experimental channels. Figure 1a

shows the plan view of experimental sections. Figure 1b

shows the diagram of prismatic and non-prismatic test

section. Consider a prismatic compound channel which has

total width = B and main channel width of b. Let the

floodplain be contracted from width B at section 1 to the

width of b at section 5 as shown in Fig. 1b. It may be

noted that total converging part of the channel has been

divided into 5 arbitrary sections. Figure 1c shows the

typical grid showing the arrangement of velocity mea-

surement points along the horizontal and vertical direction

of the test section. Figure 1d shows the photo of con-

verging compound Channel with Movable Bridge, Pitot

tube and Pointer gauge. At the downstream end, another

adjustable tail gate was provided to control the flow depth

and maintain a uniform flow in the channel. A movable

bridge was provided across the flume for both span-wise

and stream-wise movements over the channel area, so that

each location on the plan of the compound converging

channel could be accessed for taking measurements.

Point velocities were measured along verticals spread

across the main channel and flood plain so as to cover the

width of the entire cross-section. Measurements were thus

Table 1 Hydraulic parameters for the experimental channel data set collected from literature and experiments

Verified

test

channel

Types of

channel

Angle of

convergent

Longitudinal

slope (S)

Cross-

sectional

geometry

Total

channel

width (B) in

m

Main

channel

width (b) in

m

Main

channel

depth (h) in

m

Main

channel side

slope (s)

Width

ratio B/

b (a)

1 2 3 4 5 7 8 9 10 11

Rezaei

(2006)

Convergent

(CV2)

(h = 11.31�,
2 m)

0.002 Rectangular 1.2 0.398 0.05 0 3

Rezaei

(2006)

Convergent

(CV6)

(h = 3.81�,
6 m)

0.002 Rectangular 1.2 0.398 0.05 0 3

Rezaei

(2006)

Convergent

(CV6)

(h = 1.91�,
6 m)

0.002 Rectangular 1.2 0.398 0.05 0 3

N.I.T.

Rkl

data

Convergent (h = 5�,
2.28 m)

0.0011 Rectangular 0.9 0.5 0.1 0 1.8

N.I.T.

Rkl

data

Convergent (h = 9�,
1.26 m)

0.0011 Rectangular 0.9 0.5 0.1 0 1.8

N.I.T.

Rkl

data

Convergent (h = 12.38�,
0.84 m

0.0011 Rectangular 0.9 0.5 0.1 0 1.8
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taken from the midpoint of the main channel to the left

edge of the floodplain. The lateral spacing of grid points

over which measurements were taken was kept 5 cm inside

the main channel and the flood plain. Several runs were

conducted for overbank flow with relative depth varying

between 0.15 and 0.3. Table 1 shows the hydraulic

parameters of different channels used in this paper. For the

present analysis, we have also used the data of Rezaei

(2006). Rezaei (2006) conducted experiments on different

converging angles. Now we have evaluated the boundary

shear stress and depth average velocity in the flow due to

the convergence of floodplain at different sections of the

converging lengths.

6 Experimental Results

The depth average velocity distribution of relative depth

0.3 for converging angle 12.38� and for relative depth 0.5

of the converging angle 11.31� (Rezaei 2006) are shown in

Fig. 2a, b. From these figures, we can observe that the

depth average velocity distributions are reasonably sym-

metric in all sections and gradually increase from Sec-1 to

Sec-5. In all sections, the boundary shear value is found to

be maximum in the middle of the main channel and

gradually decreases towards the interface between the main

channel and floodplain. The boundary shears distribution

for relative depth 0.15 for converging angle 12.38� and for

relative depth 0.5 of the converging angle 11.31� (Rezaei

2006) is shown in Fig. 3a, b. These figures indicate that the

boundary shear stress distributions are reasonably sym-

metric in all sections and gradually increase from Sec-1 to

Sec-5. In all sections, the boundary shear value is found to

be maximum in the middle of the main channel and

gradually decreases towards the interface between the main

channel and floodplain. At the interface the boundary shear

suddenly falls, then it decreases and reaches the minimum

at both ends of floodplains. This may be due to momentum

transfer phenomena between the main channel and flood-

plains. Similarly, this happens to the converging channel of

Rezaei (2006) with angle 11.31�. However, at the last

section of Rezaei (2006), maximum boundary shear are

found to occur at the two ends of the main channel instead

of the middle of the main channel. Because the last section

is the single channel with higher aspect ratio, as compared

to the present experimental channel.
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Fig. 2 a Depth average velocity distribution for present experimental

channel of relative depth 0.3 (for converging angle 12.38�). b. Depth
average velocity distribution for the Rezaei (Walid and Shyam 1998)

experimental channel of relative depth 0.5 (for converging angle

11.31�)
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Fig. 3 a Boundary shear distribution for the present experimental

channel of relative depth 0.15 (for converging angle 12.38�).
b Boundary shear distribution for the Rezaei (Walid and Shyam

1998) experimental channel of relative depth 0.5 (for converging

angle 11.31�)
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7 Artificial Neural Network

ANN is a new and rapidly growing computational tech-

nique. In recent years, it has been broadly used in hydraulic

engineering and water resources. It is a highly self-organ-

ised, self-adapted and self-trainable approximator with

high associative memory and nonlinear mapping. ANNs

may consist of multiple layers of nodes interconnected with

other nodes in the same or different layers. The various

layers are referred to as the input layer, the hidden layer,

and the output layer. The inputs and the interconnected

weights are processed by a weight summation function to

produce a sum that is passed to a transfer function. The

output of the transfer function is the output of the node. In

this paper multi-layer perception network is used. Input

layer receives information from the external source and

passes this information to the network for processing.

Hidden layer receives information from the input layer and

does all the information processing, and output layer

receives processed information from the network and sends

the results out to an external receptor. The input signals are

modified by interconnection weight, known as weight

factor Wij which represents the interconnection of ith node

of the first layer to the jth node of the second layer. The

sum of modified signals (total activation) is then modified

by a sigmoidal transfer function (f). Similarly, output sig-

nals of hidden layer are modified by interconnection weight

(Wij) of the kth node of the output layer to the jth node of

the hidden layer. The sum of the modified signal is then

modified by a pure linear transfer function (f) and output is

collected at the output layer.

7.1 Sigmoidal Function

A bounded, monotonic, non-decreasing, S shaped function

provides a graded nonlinear response. It includes the

logistic sigmoid function

F xð Þ ¼ 1

1þ e�x
ð9Þ

where x= input parameters taken

The architecture of back propagation neural network

model, that is the l-m-n (l input neurons, m hidden neurons,

and n output neurons) is shown in Fig. 4.

7.2 Learning or Training in Back Propagation
Neural Network

Batch mode type of supervised learning has been used in

the present case in which interconnection weights are

adjusted using delta rule algorithm after sending the entire

training sample to the network. During training, the pre-

dicted output is compared with the desired output and the

mean square error is calculated. If the mean square error is

more, then a prescribed limiting value is back propagated

from output to input and weights are further modified till

the error or number of iteration is within a prescribed limit.

Mean squared error, Ep for pattern p is defined as

Ep ¼
Xn
i¼1

1

2
Dpi � Opi

� �2 ð10Þ

where Dpi is the target output, Opi is the computed output

for the ith pattern.

Weight changes at any time t is given by

DW tð Þ ¼ � nEp tð Þ þ a� DW t � 1ð Þ ð11Þ

n = learning rate, i.e., 0\n\1; a = momentum coeffi-

cient, i.e., 0\a\1.

8 Results and Discussions

8.1 Testing of Back Propagation Neural Network

The total experimental data sets of both boundary shear

stress and depth average velocity are divided into training

set and testing set. The experimental data sets contain three

converging angles, five different sections of each con-

verging angle and four relative depths each converging

angle and different section of Rezaei (2006) along with

three converging angles of NIT Rourkela channels. Details

of all the experimental data are given in Table 1. For

boundary shear stress calculations, 12,298 data are used,

among which 70% are training data and 30% are taken as

testing data. For depth average velocity calculations,

24,196 data are used, among which 70% data are used

training and 30% are taken as testing data. The number of

layers and neurons in the hidden layer are fixed through

exhaustive experimentation when mean square error is

minimized for training data set. It is observed that mini-

mum error is obtained for 5-7-1 architecture. So, the back

propagation neural network (BPNN) used in this work has

three layered feed forward architecture. The model was run

on MATLAB commercial software dealing with trial and

error procedure.

A regression curve is plotted between actual and pre-

dicted boundary shear stress, which is shown in Figs. 5 and

6. It can be observed that data for both cases are well-fitted

because a high degree of the coefficient of determination,

R2 of 0.964 is obtained for the boundary shear stress cal-

culations and R2 of 0.977 is obtained for the depth average

velocity between the sections. The residual analysis is

carried out by calculating the residuals from the actual

boundary shear stress and predicted boundary shear stress

data. The residual testing and training data are plotted
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against the sample number as shown in Figs. 7 and 8,

which shows that the actual data and predicted boundary

shear stress against the sample number follows the same

pattern with little or no exception; this demonstrates that

the model predicts the pattern of the data distribution with

adequate accuracy.

The actual depth average velocity and predicted depth

average velocity training data against the sample number is

shown in Fig. 9. Similarly, the actual depth average

velocity and predicted actual depth average velocity testing

data against the sample number is shown in Fig. 10. Fig-

ures 9 and 10 follow the same pattern with little or no

exceptions; it demonstrates that the model predicts the

pattern of the data distribution with adequate accuracy. To

check the strength of the model, error analyses have been

done. Mean absolute error (MAE), the mean absolute

percentage error (MAPE), mean squared error (MSE), the

root mean squared error (RMSE) for all the converging

Fig. 4 The architecture of back

propagation neural network

model

Fig. 5 Correlation plot of the

actual boundary shear stress and

predicted boundary shear stress
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compound channels for different flow conditions have been

estimated. The statistical results of empirical equations in

predicting boundary shear stress and depth average veloc-

ity are shown in Table 2.

The definitions of error terms are described below.

8.1.1 Mean Absolute Error (MAE)

The mean absolute error has been evaluated as,

Fig. 6 Correlation plot of actual

depth average velocity and

predicted depth average velocity

Fig. 7 Comparison of actual and predicted boundary shear stress

(training data)
Fig. 8 Comparison of actual and predicted boundary shear stress

(testing data)
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MAE ¼ 1

n

Xn
i

Pi � Oi

Oi

����
���� ð12Þ

where Pi= predicted values, Oi= observed values

Mean absolute error (MAE) measures how far predicted

values are away from observed values. Thus, the minimum

deviation of the predicted value from the observed value

will obtain a better the result.

8.1.2 Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error also is known as mean

absolute percentage deviation is usually expressed as a

percentage and is defined by the formula

MAPE ¼ 1

n

Xn
i

Oi � Pi

Oi

����
���� ð13Þ

If mean percentage deviation of the predicted value from

the observed value is within 10% then the model can be

regulated as a good prediction model.

8.1.3 Mean Squared Error (MSE)

Mean squared error measures the average of the squares of

the errors. It is computed as

MSE ¼ 1

n

Xn
i

ðPi � OiÞ2 ð14Þ

The MSE value zero signifies that the estimated data of the

observed parameter is likely to be most accurate or ideally

best. Since it is difficult to achieve zero value, it is seen that

the closest value to zero is reasonably acceptable.

8.1.4 Root Mean Squared Error (RMSE)

Root mean squared error or root mean squared deviation is

also a measure of the differences between values predicted

by a model or an estimator and the actually observed val-

ues. These individual differences are called as residuals

when the calculations are performed over the data sample

that is used for estimation and are known as estimation

errors when computed out of the sample. The RMSE is

defined as,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð15Þ

When two data sets, i.e., one set from theoretical prediction

and the other from actual measurement of some physical

variable (which in our case is observed versus predicted)

are compared, the RMSE of the pairwise deviation among

the two data sets can function as a measure of how far on

average the error is from 0.

Fig. 9 Comparison of actual and predicted depth average velocity

(training data)

Fig. 10 Comparison of actual and predicted depth average (testing

data)

Table 2 Statistical results of empirical equation in predicting

boundary shear stress and depth average velocity

Error calculations Boundary shear stress Depth average velocity

MSE 0.001196 0.000255

RMSE 0.034577 0.015958

MAE 0.023199 0.012193

MAPE 3.33 2.40
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9 Conclusions

Prediction of boundary shear stress and depth average

velocity of converging compound channels are found to

depend on upon a number of hydraulic and geometrics out

of which aspect ratio, depth ratio, width ratio, relative

distance, converging angle and relative depth are the most

influencing non-dimensional parameters.

An ANN model is proposed for accurate estimation of

boundary shear stress and depth average velocity of con-

verging compound channels. The trend and pattern of

experimental data match with boundary shear stress and

depth average velocity. The basic reason of high degree of

prediction accuracy lies in the fact of the capability of

nonlinear mapping of inputs and outputs in a neural net-

work system. The nonlinear relation of geometrical and

hydraulic input parameters with boundary shear stress and

depth average velocity data are difficult to establish with

any traditional boundary shear stress and depth average

velocity data prediction methodology. It can be inferred

that this model is more adaptive to the prediction of

boundary shear stress and depth average velocity under

different conditions.

ANN model holds the boundary shear stress prediction

with minimal error, i.e., MSE as 0.001196 RMSE as

0.034577, MAE as 0.023199 and MAPE 3.33 which is less

than 10%. Similarly for depth average velocity MSE as

0.00025, RMSE as 0.015958, MAE as 0.012193 and

MAPE 2.40 which is also less than 10%. So, the present

ANN model is a more convincing model.
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Kızılöz B, Çevik E, Aydoğan B (2015) Estimation of scour around

submarine pipelines with artificial neural network. Appl Ocean

Res 51:241–251

Moharana S, Khatua KK (2013) Prediction of roughness coefficient of

a meandering open channel flow using neuro-fuzzy inference.

Flow Meas Instrum 51:112–123

Myers WRC (1987) Velocity and Discharge in Compound Channels.

J. Hydraul. Eng. ASCE 113(6):753–766

Patel VC (1965) Calibration of the Preston tube and limitations on its

use in pressure gradients. J Fluid Mech 23:185–208

Patra KC (2004) Flow and velocity distribution in meandering

compound channels. J Hydraul Eng 130(5):398–411

Patra K, Kar SK (2000) Flow interaction of meandering river with

flood plains. J Hydraul Eng 126(8):593–603

Proust S, Rivière N, Bousmar D, Paquier A, Zech Y (2006) Flow in

the compound channel with abrupt floodplain contraction.

J Hydraul Eng 132(9):958–970

Rezaei B (2006) Overbank flow in compound channels with prismatic

and non-prismatic floodplains. PhD Thesis University of Birm-

ingham, UK

Rezaei B, Knight DW (2011) Overbank flow in compound channels

with non-prismatic floodplains. J Hydraul Res 137:815–824

Rhodes DG, Knight DW (1994) Distribution of shear force on

boundary of smooth rectangular duct. J Hydraul Eng

120–7:787–807

Sahu M, Khatua KK, Mahapatra SS (2011) A neural network

approach for prediction of discharge in straight compound open

channel flow. Flow Meas Instrum 22:438–446

Sun S, Yan H, Kouyi GL (2014) Artificial neural network modelling

in simulation of complex flow at open channel junctions based

on large data sets. Environ Model Softw 62:178–187

Walid HS, Shyam SS (1998) An artificial neural network for non-

iterative calculation of the friction factor in pipeline flow.

Comput Electron Agric 21:219–228

Yuhong Z, Wenxin H (2009) Application of artificial neural network

to predict the friction factor of the open channel. Commun

Nonlinear Sci Numer Simul 14:2373–2378

Iran J Sci Technol Trans Civ Eng

123


	Flow Prediction of Boundary Shear Stress and Depth Average Velocity of a Compound Channel with Narrowing Floodplain
	Abstract
	Introduction
	Boundary Shear Stress Measurement
	Tangential Velocity Measurement
	Sources of Data and Selection of Hydraulic Parameters
	Selection of Hydraulic, Geometric and Surface Parameters

	Experimental Setup and Procedure
	Experimental Results
	Artificial Neural Network
	Sigmoidal Function
	Learning or Training in Back Propagation Neural Network

	Results and Discussions
	Testing of Back Propagation Neural Network
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)


	Conclusions
	Acknowledgements
	References




